An Environment For Automated
Reasoning About Partial Functions

David A. Basin

87-884
November 1987

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

=kThis research was supported in part by NSF grant DCR83-03327.

An Environment For Automated
Reasoning About Partial Functions®

David A. Basin
Department of Computer Science,
Cornell University, Ithaca, NY 14853

November 24, 1987

Abstract

We report on a new environment developed and implemented in-
side the Nuprl type theory that facilitates proving theorems about
partial functions. It is the first such automated type-theoretic ac-
count of partiality. We demonstrate that such an environment can
be used effectively for proving theorems about computability and for
developing partial programs with correctness proofs. This extends the
well-known proofs as programs paradigm to partial functions.

1 Introduction

Over the past 20 years, research by Martin-Lo6f[20], Constable[7,8], Huet
and Coquand|[12], and others has demonstrated that constructive type the-
ory provides a useful foundation for theorem proving and program devel-
opment. The Nuprl proof system, developed at Cornell[9], has been used
to demonstrate that type theory does indeed provide a rich framework for
theorem proving. Howe has used Nuprl to prove the fundamental theo-
rem of arithmetic[18] and Girard’s paradox[17]. Cleaveland developed the

*This research was supported in part by NSF grant DCR83-03327

synchronization-tree model of CCS[6], and Kreitz proved theorems in con-
structive automata theory[19]. However, current type theories are inad-
equate for reasoning about partial functions. The theories of Martin-Lof
and Huet/Coquand cannot represent partial functions. In Nuprl, one can
approximate partial functions by considering them as total functions on
subsets of their domain. However, the exact domain of convergence can-
not be represented and only head normalizing functions may be extracted
from Nuprl proofs. As a result, it is difficult to use these theories to prove
theorems about computation and impossible to use them to development
partial programs.

Recent work by Constable and Smith has established a theoretical foun-
dation for reasoning about partial objects in type theory. In [11], they
present a method of extending the logic of Nuprl to reason about nonter-
mination. For each type T in the underlying type theory, they add a new
type T consisting of terms that represent computations of elements in T'.
An inhabitant of T may diverge, but if it terminates, it converges to an
inhabitant of 7. For example, the type int—int corresponds to the stan-
dard notion of a partial function space; it is inhabited by functions that
take an integer argument and, if they converge on their input, return an
integer.

We demonstrate that this partial type theory, along with proof assist-
ing tactics, can be easily implemented within Nuprl. Once implemented,
the resultant partial type environment is surprisingly powerful. We simul-
taneously gain the ability to give concise proofs of familiar theorems about
computation, and we can extend the “proofs as programs” paradigm to
partial program development via the type-theoretic equivalent of partial
correctness reasoning. Hence, we dramatically increase the power of Nuprl,
both as a theorem proving system and as a program development system.

In the next section, we show how a partial type environment can be
implemented within Nuprl, given the specification of a partial type theory.
In the third section, we demonstrate how we can give concise proofs of
interesting theorems in this environment. In section 4, we present a new
paradigm for partial program development and provide an example of its
use. In the final section, we draw conclusions from our work.

2 The Environment

2.1 The Partial Type Theory

A type theory may be specified by defining the terms of the theory, an
evaluation relation “—” defined on closed terms, a definition of types and
type equality, and a type membership relation. Constable and Smith[24]
extend the Nuprl type theory to a partial type theory as follows: The
terms of the partial type theory are the terms of the underlying theory
(Nuprl) plus a new term fix(f,z.b). The evaluation relationship is the

old evaluation relationship augmented with the reduction shown below.
fix(f,z.b)(a) — blfix(f,z.b),a/f,z]

The rules for defining types and determining type membership are aug-
mented with rules for reasoning about the partial types. They allow us, for
example, to prove that a partial, or “barred”, type T is a type whenever T
is a type, that if an element of T converges, it converges to an inhabitant
of T, and that two computations ¢ and t' are equal in a partial type T
when if either converge, they both converge to equal terms in 7.

Recall’ that proofs in Nuprl consist of trees where a goal and a re-
finement rule are associated with each node. Refinement rules are either
primitive inference rules or ML programs called refinement tactics and they
are are applied in a top down fashion to construct members of types. In
the presentation of a rule, the first line contains the goal to which the rule
is applied. The “>>” symbol is the printable equivalent of the logical
turnstile, and H represents a (possibly empty) list of hypotheses. After the
goal, indented lines contain the subgoals that result from the application
of the refinement rule. These subgoals correspond to the children of the
current node. If there are no subgoals, then that branch of the proof tree
is complete.

A complete list of rules for the partial type theory may be found in
[24]. Some representative ones, which we present top down, or refinement
style, are given in figure 1. BarIntro is a formation rule used for proving
typehood. If a subgoal is to show that T is an element of Ui, then the

1The reader is referred to [9] for a complete description of Nuprl and refinement style
theorem proving.

1. H > T in Ui by BarIntro
H> T in U

2. H > t in T by BarCTotality
H»> tin T
3. H > t in!' T by BarInlIntro
H > tin T
4. H >> fix(f,z.b) in z:A->B by BarFix Ui

H,f:(z:A->§),a::A >> b in B
H>> A in U:
H,z:A >> B in Ul

Figure 1: Sample Partial Type Rules

refinement rule BarIntro reduces the proof obligation to showing that T
is an element of Ui. BarCTotality provides one way of demonstrating
that ¢ is in some type T, namely by showing that ¢ is total, i.e., £ in
T. Constable and Smith’s partial type theory comes with a termination
predicate in! that allows for abstract reasoning about termination. If ¢
converges in the type T then ¢t in! T, meaning ¢ is in T. By rule 3, when
we can prove that ¢ inhabits T we can can then prove t in! T'. Perhaps the
most interesting rule is BarFix which allows us to type partial functions.
Given a functional Af.Az.b, where if f inhabits A— B and z inhabits 4,
then if we can demonstrate that the body b inhabits B and that 4 and B
are types, then, by BarFix, the fixedpoint of Af.Az.b inhabits A—B. We
will see later that this rule is also useful for proving goals via computational
induction.

2.2 The Implementation

Given our partial type specification, we must add its new terms and refine-
ment rules to the underlying type theory. One approach would be to make
extensive modifications to the Nuprl source. Alternatively, we chose to im-
plement the theory by creating an appropriately endowed Nuprl library, a
collection of definitions and theorems, which we can then use for developing
theorems in the extended theory. Our partial type library is developed in

three phases:

1. New primitive objects are defined to reflect new partial type theory
syntax.

2. Library objects are created that implement the new refinement rules.
3. Support tactics are written that assist proving partial type goals.

The first phase consists of using the Nuprl def mechanism to define
three objects at the top of our library. The operator bar, represented as a
horizontal line over a type T, is simply defined as the string “bar” and sim-
ilarly the predicate in! is defined as the string “in!”. Less straightforward
is the definition of the fixedpoint operator fix(f,z.b) whose defining ob-
ject must have the reduction characteristic stated in the previous section.
While not all terms in the A calculus are typeable, any of them may serve
as a Nuprl term. Thus, we define fix(f,z.b) as Y (Af.Az.b), where Y is
the fixedpoint combinator Af.((Az.f(zz))(Az.f(z2))).

For each new refinement rule in the partial type theory, in the second
phase we create a theorem and an ML object. The theorem object states
that the subgoals of a refinement rule imply that rule’s goal. The ML
object, named after the refinement rule it implements, applies the theorem
object in proofs and contains checks to insure that the refinement rule is
properly applied. These objects are constructed so that when they are
applied to a goal, they give the illusion that a primitive inference rule has
been invoked.?

With the refinement rules implemented, the environment is completed
with the addition of a collection of proof assisting tactics. These tactics
partially automate the theorem proving process and thereby relieve the
user from filling-in many tedious proof details. The most important tactic
implemented is a partial type Autotactic which is automatically applied
to any unproven subgoals that arise after each refinement step. This tactic
contains modules that perform type checking, propositional and arithmetic
reasoning, and backchaining to prove or simplify subgoals. We extend this

2We do not describe these objects in detail as future versions of Nuprl will contain a
context mechanism that will provide the user with a facility for implementing new rules.

tactic to automatically prove the well-formedness of most partial type ex-
pressions and perform simple kinds of reasoning about partial types. An-
other important tactic is FixInd which helps prove goals via fixedpoint
induction. We shall discuss this tactic in section 4.

3 Partial Object Proofs

Our initial motivation in implementing the partial type theory was to de-
sign an environment in which we can prove abstract versions of recursion-
theoretic theorems. It was our hope that, by making the Nuprl type theory
more expressive, we could then prove interesting facts about recursive and
recursively enumerable sets, complete sets, reducibilities, and unsolvable
problems. Moreover, we hoped that the resulting proofs would be compre-
hensible so that those who wished to learn about recursion theory could use
the environment and the proofs as an interactive textbook on the subject.

Our experience to date with the environment has been quite positive.
We have, for example, used it to prove the undecidability of the halting
problem, Rice’s theorem, and have shown that not all recursively enumer-
able sets are recursive[10]. Some of these proofs involve subtle reasoning
and reductions of previously proved problems. We have also begun using
the environment to explore a theory of abstract fixedpoint algebras in which
we prove theorems of recursion theory[1]. In this abstract setting, it is easy
to err, and the environment has proved valuable as a proof checker.

In this section, we present one of the proofs developed in the environ-
ment, a proof of the undecidability of the halting problem. This proof is
interesting for a number of reasons. First, it demonstrates that the partial
type theory is expressive enough to construct partial functions and reason
about their termination properties. Second, it demonstrates the power of
partial type tactics in theorem proving. Tactics automatically type the
diagonalizing combinator, prove all well-formedness subgoals, and manip-
ulate fixedpoint terms. Finally, the proof is direct. With the exception of
some equality reasoning, the refinement steps are concise and the amount
of reasoning compares favorably with that found in many textbook proofs.

The undecidability of the halting problem may be stated as follows.
There does not exist any total procedure h such that, when given an integer

* DEF bot

1 == fix(£f,x.£(x))(0)

* DEF d

d == fix(f,x.int_eq(h(£(x));1;1;1))

Figure 2: Nuprl Definitions For Halting Problem.

computation z, h decides if z halts. Using the partial type int and the
convergence predicate in! we express the halting problem in our theory as
follows.

>> ~(Jh:int—int.Vx:int. x in' int < h(x) = 1 in int)

Our proof of this statement is similar to traditional proofs found in such
textbooks as [22]. It does not, however, rely on the enumerability of the
partial recursive functions. Informally, our proof is as follows: Assume that
a decision procedure h exists. To derive a contradiction, define a diagonal
function d defined as follows.

i(z) :{ L if h(d(z)) = 1

1 otherwise

Our Nuprl definition for d is given in figure 2. Now consider the value of
h(d(1)). There are two cases, and as h is total, we can decide which holds.
The first case is when h(d(1)) = 1. In this case, by the definition of d,
d(1) = int_eq(h(d(1));1; L;1) which evaulates to L when h(d(1)) =1 and
1 otherwise. Thus, by direct computation d(1) = L and, by the definition
of h, h(d(1)) # 1 as L diverges. Hence, h(d(1)) = 1 = h(d(1)) # 1,
yielding a contradiction. The other case A(d(1)) # 1 is argued similarly.
A linearized proof tree of the actual theorem is given in figure 3. Here,
an expression’s level of indentation indicates its position in the tree. Goals
are preceded by >> and their hypotheses are the numbered lines found
above at lesser indentation levels. Goals are followed by refinement rules
and subgoals, if any, occur below at one deeper level of indentation.
Through the use of powerful general purpose tactics, the logical struc-
ture of the proof closely follows the our informal explanation. Initially, we

7

>> =(Jh:int->int. Vx:int. x in! int <=> h(x) = 1 in int)

9. 1 in! int->h(1)=1 in int
10. h(1)=1 in int->1 in!' int)
11. h(1)=1 in int

>> void

2)

...) THEN Try

BY (EOn ’1’ 3 ...) THEN OnNthLastHyp 2 Elim THEN Try (BarInIntro ...)

| BY (Intro ...)
| 1. 3h:int->int. Vx:int. x in! int <=> h(x) = 1 in int
|- >> void
| | BY elim 1 new h
| | 2. h:int->int
| | 3. Vx:int. x in! int <=> h(x) = 1 in int
| 1= >> void
I | | BY (Seq [’d in int->int’; ’d(1)=int.eq(h(d(1));1;1;1) in int’]
I I | 4. 4d in int->int
I 1 1- > d(1)=int.eq(h(d(1));1;1;1) in int
I | | | BY (ReduceFixConcl ‘z‘ ’z(1)=int.eq(h(d(1));1;1;1) in int’
I | | 4. d in int->int
I | | 5. d(1)=int eq(h(d(1));1;1;1) in int
I | 1->> void
I I | | BY (Decide ’h(d(1))=1 in int’ ...)
I I I | 6. h(d(1))=1 in int
I 1 | |- > void
I | | | | BY (Seq [’int.eq(h(d(1));1;L1;1)=1 in in%’;’d(1)=1l in inmt’]
(ReduceDecisionTerm 1 true ...)
I I 1 | | 7. int.eq(h(d(1));1;1;1)=1 in int
I I I & | 8.4a()=1 in int
I 11 I 1= > void
I I & 1 | | BY (EOn ’1l’> 3 ...) THEN (OnLastHyp Elim ...)
I 1 1 1 1 | 9. L1 in! int->h(1)=1 in int
I I 1 1 1 | 10. h(1l)=1 in int->1 in! int
I 1 1 & | 1-> h(Ll)=1 in int
I 1 1 1 | | | BY (SubstForInHyp ’d(1)=1 in int’ 6 ...
I 1 1 1 | | 9. L1 in! int->h(L)=1 in int
It I 1 | | 10. h(L)=1 in int->1 in' int
It 1 I 1 11. 1 in! int
I 11 1 1 I->> void
I I 1 I | | | BY (NoBotComv [11] ...)
11 I | 6. =(h(d(1))=1 in int)
I 11 1= >> void
Il | | | | BY (Seq [’int.eq(h(d(1));1;L;1) =1 in int’; ’d(1) = 1 in int’] ...) THEN
Try (ReduceDecisionTerm 1 false ...)
I 1 | 7. int.eq(h(d(1));1;1;1) = 1 in int
I 1 | 8.4d(1) =1 in int
I 1 1= > void
1
[
[
[
[
1

| BY (SubstForInHyp ’d(1) = 1 in int’ 6 ...

Figure 3: Proof Of The Undecidability Of The Halting Problem.

apply Intro and elim refinement rules, which set up a proof by contra-
diction by hypothesizing the existence of the decision procedure h. Then,
using a tactic Seq®, we cut d into the hypotheses list and use a partial
type tactic ReduceFixConcl to unwind the fixedpoint combinator and per-
form the B-reductions necessary for equality reasoning. The Decide tactic
sets up the case analysis. In the case h(d(1)) = 1, we cut in and prove
that d(1) = L. Then, we introduce L into hypothesis 3, which yields that
(h(L) =1) = (L in! int). This allows us to substitute d(1) = L into the
hypothesis A(d(1)) = 1 and conclude that | in! int. But as 1 diverges,
the tactic NoBotconv yields a contradiction, i.e., a proof that the empty
type void is inhabited. Again, the other case is proven similarly.

It is interesting to compare our proof with the Boyer and Moore proof[5],
the first machine verified proof of the unsolvability of the halting problem.
They took 4 days to create their proof outline, which spans five pages of
text, and contains 29 definitions and theorems, the final theorem being the
unsolvability of the halting problem. Their proof took 75 minutes to verify
on a DEC 2060. On the other hand, our type theory comes equipped with
much of the computational machinery they needed to build. As a result,
the development of our proof took under an hour. It consists of only two
definitions, d and 1, and no preliminary lemmas. Twelve refinement steps
were required, each using primitive refinement rules or general purpose

tactics, and each reflecting a step in our informal proof. The proof was
verified by a Symbolics 3670 Lisp Machine in under 20 seconds.

4 Partial Program Development

As our partial type theory is constructive, a proof of a statement contains
information on how to build a witness for the statement. For example, the
constructive content of a proof of

>> Vx:T.3Jy:T'.R(x,y) (*)

3Seq is short for sequence and is used like cut in logic to add new facts to the hypothesis
list. Any sequenced fact must first be proved before it can be used. However, this is often
automatically done by Autotactic. For a complete description of all tactics found here,
see [16].

is a function that for each z in type T yields a pair: a y in T’ and a proof of
R(z,y). This program can be automatically eztracted from a proof with the
Nuprl term of operator and executed with the Nuprl evaluator. Thus, the
type theory provides a natural way of interpreting proofs as programs|2].

In the base type theory, all extracted terms head normalize to canonical
terms, which inhabit the goal of the proof from which they were extracted.
This can be viewed as a type-theoretic analog of total correctness. Recall
that total correctness may be formalized in terms of triples

{P}5{Q}

where § is a program and P and @ first order predicates about the states
of program variables. The triple {P} S {@} is true if whenever P holds
for the initial values of program variables, execution of S terminates with
Q satisfying the final values of the program variables[13]. Analogously, in
Nuprl, given a proof P with goal G, we can form the pair

term of(P) {G}

and the program term_of (P) is said to be type-theoretically totally correct
when term_of (P) inhabits G. As a proof P in Nuprl is a demonstration of
type inhabitation where term_of (P) is the inhabiting object, all programs
developed are guaranteed to be correct in the above sense.

This correctness guarantee can be used for program development when
the specification is given by (x). Here the type specifies a functional rela-
tionship of y on z given by the predicate R. As our type theory embodies
the propositions-as-types principle[15], we can reflect the logical structure
of any desired specification directly into the goal. This technique can be
used to express program specifications almost identical to those given by
standard Hoare postconditions. For example, if one wishes to develop a
sorting program, the specification G could be defined as

>> Vx:int list.dy:int list.Perm(x,y) & Ordered(y)

where Perm and Ordered are definitions stating that y is a permutation of z
and y is ordered smallest to largest. This goal would be proved in Nuprl by
showing that given an unordered list z, we can find an ordered list y thatis a

10

permutation of z. The extracted function would be a sorting program. This
approach to program development has been used by Howe[16] and others
to develop saddleback search, quicksort, and integer factoring programs.

Total correctness is a strong requirement. As the termination of some
programs cannot be proved, the weaker requirement of partial correctness
[14] is often needed to prove that a program meets its specification. That
is, given a precondition P, a program §, and a postcondition @, then a
triple

P {5} Q

is partially correct if when § is started with its program variables satisfy-
ing P and it either fails to terminate, or it terminates with its variables
satisfying @. Analogously, given a proof P with goal GG, we call a pair

{termof(P)} G

type-theoretically partially correct when term_of(P) either diverges or con-
verges to a value inhabiting G.

By extending the Nuprl type theory to a partial type theory, we extend
our ability to automatically synthesize programs meeting type-theoretic
total correctness specifications to those meeting type-theoretic partial cor-
rectness specifications. This follows from the semantics given to the partial
types. They guarantee that if an object in T converges, then it inhabits the
underlying type T. Hence, by placing a bar over all or part of the goal, we
attain a partial correctness specification. For example, if we are trying to
extract a partial function in T— T", then instead of stating a specification
in the form of (x), our goal becomes

>> Vx:T.dy:T'.R(x,y).

The extracted object from a proof P of the above statement will be a func-
tion that takes an z in T, and, if it converges, produces a witness y in T’
such that R(x,y). Thus, just as in the case of total correctness, the ex-
tracted program is guaranteed to meet its type-theoretic partial correctness
specification.

As an example, consider a simple program that returns the integer
square root y of an integer z. Our partial correctness specification for

11

this program is the following.

>> Vx:int.dy:int where y*y = x (%)

Such a program could be developed in a total type theory only by altering
the specification; for example, finding the largest y such that y xy < z.
However, in our extended theory, we can prove the partial specification and
extract a proof from it that computes the square root of integers that are
perfect squares.

In figure 4, we give our proof of (**). The highlight of this proof is the
way in which fixedpoint induction is used to prove partial type inhabitation.
Here, the BarFix refinement rule provides a not necessarily well-founded
induction principle which can be used to prove the existence of a partial
function meeting our correctness specification. A tactic FixInd is used that
applies BarFix to the goal and manipulates the resulting subgoals to set
up the inductive proof.

The proof begins with the tactic Intro which moves z, the integer whose
square root we seek, into the hypothesis list. The goal is now of the form
P where P is

dy:int where y*y = x.

To make an induction argument go through, we cut in something stronger
than P, namely Vz:int.P. Under the propositions as types interpretation,
this new proposition is the function type z:int— P and by BarFix this type
is inhabited by a fixedpoint term whenever (z:int— P)—(z:int— P) is
inhabited. But the inhabitation of the latter type is equivalent (by two
applications of Intro) to demonstrating that P is inhabited given the hy-
potheses z:int— P and z:int. Thus, the FixInd tactic sets up a proof
that P is inhabited, giving us a function z:int—P and a z in int. This
construction is subtle and if we are not careful Autotactic will use these
two new hypotheses to prove P by introducing 1, a diverging term that
trivially satisfies our specification. Instead, we prove P by case analysis on
z%z =1z. When z * z = ¢ we explicitly introduce z as our witness for P.
Using BarCTotality (rule 2, figure 1) Autotactic proves that z inhabits
T by hypothesis 4. In the case z * z # z, we use the function z:int— P,
which we are inductively defining, on z + 1. The proof is completed by ap-
plying 0 to the function we constructed, proving P and providing a starting
point for our square root search.

12

>> Vx:int. Jy:int where y*y = x
| BY (Intro ...)
| 1. x:int
- >> Jy:int where y*y = x
| BY Seq [’Vz:int. Jy:int where y*y = x’]
|- >> Vz:int. Jy:int where y*y = x
| | BY FixInd
2. Vz:int. Jy:int vhere y*y = x
3. z:int
>> Jy:int where y*y = x
| BY (Decide ’z*z = x’ ...)
| 4. z#z = x
|- >> Jy:int where y*y = x
| | BY (ExplicitI ’z’ + BarCTotality)
| 4. -(z*z = x)
>> Jy:int vhere y*y = x
I | BY (EOn ’z+1’ 2 ...)
. Vz:int. Jy:int vhere y*y =
> Jy:int where y*y = x
BY (EOn °0’ 2 ...)

X

_ VN ——— e — -
|

Figure 4: Square Root Proof.

The extracted program from our proof is given below.*
Az.(fix(Af.Az.int_eq(z * z;z;2;f(z + 1)))(0))

This is a function that when given an integer z, begins at z = 0 and iterates
through the natural numbers until it finds a z such that z x z = z. For
perfect squares, it terminates with their square root, otherwise it diverges.

5 Conclusion

We have used the environment to develop proofs of interesting results in
recursion theory and as a tool to explore new theories of computation.
In these settings, the environment has proved valuable in preventing faulty
reasoning and in leading to the development of readable and natural proofs.
We have also used it to develop partial programs which cannot be developed
in any total type theory. The proofs generating these programs are concise,
as the user provides the main algorithmic ideas leaving Autotactic to fill in

4Several inner redices are 3-reduced to clarify program structure.

13

the details. These results demonstrate that partial type environments serve

as important tools for both abstract theorem proving and partial program

development.

Acknowledgements

I would like to thank the following people: Robert Constable and Scott
Smith for laying the foundations of the Nuprl partial type theory. Doug

Howe for his over-abundant assistance in using the Nuprl system. And

Stuart Allen and Nax Mendler for helpful discussions.

References

[1]

2]

3]

[4]

[5]

[6]

(7]

David Basin. Using Partial Types In Nuprl. Technical Report, Cornell
Universty, 1987. In preparation.

Joseph L. Bates and R.L. Constable. Proofs as programs. ACM Trans-
actions on Programming Languages and Systems, January 1985.

Nordstrom Bengt. Programming in constructive set theory: some ex-
amples. In Conference on Functional Programming Languages and
Computer Architecture, 1981.

Robert S. Boyer and J. Strother Moore. A Computational Logic. Aca-
demic Press, 1979.

Robert S. Boyer and J. Strother Moore. A mechanical proof of the
unsolvability of the halting problem. Journal of the Association for
Computing Machinery, July 1984.

W.R. Cleaveland II. Type-Theoretic Models of Concurrency. PhD
thesis, Cornell, 1987.

R.L. Constable. Constructive mathematics and automatic program
writers. In Proceedings of IFIP Congress, Ljubljana, 1971.

14

[8] R.L. Constable. On the theory of programming logics. In proceedings
of the 9th Annual ACM Symposium on Theory of Computing, Boulder,
Colorado, 1971.

[9] R.L. Constable et al. Implementing Mathematics with the Nupr! Proof
Developement System. Prentice Hall, 1986.

[10] R.L. Constable and S.F Smith. Computational foundations of basic
recursive function theory. Pre-print.

[11] R.L. Constable and S.F. Smith. Partial objects in constructive type
theory. In Symposium on Logic in Computer Science, Computer Soci-

ety Press of the IEEE, 1987.

[12] Thierry Coquand and Gérard Huet. A theory of constructions. 1984.
Unpublished manuscript.

[13] David Gries. The Science Of Programming. Springer-Verlag, 1981.

[14] C.A.R Hoare. An axiomatic basis for computer programming. Com-
munications of the Association for Computing Machinery, October

1969.

[15] W. Howard. The formulas-as-types notion of construction. In J.P.
Seldin and J.R. Hindley, editors, To H.B. Curry: Essays on Combina-

tory Logic, Lambda-Calculus, and Formalism, Academic Press, 1980.

[16] Douglas J. Howe. Automating Reasoning in an Implimentation of Con-
structive Type Theory. PhD thesis, Cornell, 1987.

[17] Douglas J. Howe. The Computational Behaviour of Girard’s Paradoz.
Technical Report 87-820, Cornell Universty, 1987.

[18] Douglas J. Howe. Implementing number theory: an experiment with
Nuprl. In 8th International Conference On Automated Deduction,
1986.

[19] Christoph Kreitz. Constructive Automata Theory Implemented with
the Nuprl Proof Development System. Technical Report 86-779, Cor-
nell Universty, 1986.

15

[20] Per Martin-Lof. Constructive mathematics and computer program-
ming. In Sizth International Congress for Logic, Methodology, and
Philosophy of Science, pages 153-175, North Holland, Amsterdam,
1982.

[21] Lawrence Paulson. Lessons learned from LCF: a survey of natural
deduction proofs. Comp. J., 28(5), 1985.

[22] H. Rogers, Jr. Theory of Recursive Functions and Effective Com-
putability. McGraw-Hill, 1967.

[23] N. Shankar. Towards Mechanical Metamathematics. Technical Re-
port 43, University of Texas at Austin, 1984.

(24] S.F. Smith. The Structure Of Computation in Type Theory. PhD
thesis, Cornell, 1988. In preparation.

[25] E.G Wagner. Uniformly reflexive structures: on the nature of
Godelizations and relative computability. In Studies In Logic and The
Foundations Of Mathematics — Logic Colloguim ’69, North-Holland,
1969.

16

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

