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Abstract In this paper, we offer a set of problems for evaluating the power of automate*! theorem-proving pro-
gram and the potential of new ideas. Since ihe problems published in the proceedings of ihe lirst CADE- confer-
ence [McCharen761 proved to be so useful, and since researchers are now far more disposed to implementing and J
testing their ideas, a new soi of problems to complement those that have been widely studied is in order. In general,
the new problems provide a far greater challenge for an automated theorem-proving program than those in the fust
set do. Indeed, to our knowledge, live of the six problems we propose for study have never been proved with a
theorem-proving program. For each problem, we give a set of st"'.e»nents that can easily be translated into a stan-
dard sei of clauses. We also state each problem in ils mathematical and logical form. In many cases, we also pro-
vide a proof of the theorem from which a problem is laken so that one can measure a program's progress in iLs
attempt lo solve the problem. Two of 'he theorems we discuss an: of especial interest in that they answer questions
lhai had been open concerning ihe construciibil-iy ol two types of coinbinalor. We also include a brief description
of a new strategy for restricting the application of paramoduluiion. All of ihe problems we propose for study
emphasize ihe role of equality. This pa|ier is tuunial in nature.

1. Introduction

To estimate ihe possible value and power of an automated theorem-proving progiam or of a new approach,
one needs various test problems. One cannot simply make diverse computations in the abstract about CPU cycles,
conclusions drawn and discarded, conclusions drawn and retained, and such. Rather, one musi attempt io solve
problems from various areas—mathematics and logic, for example—with one's program or with the new approach. :
After all, the value of a discovery, such as an inference rule or strategy, rests mainly with its effectiveness for prob-
lem solving.

To determine how well a given program is doing in ils attempt to prove some given theorem or solve some
specified problem, one usually requires access to a proof or solution to measure ihe program's progress. For,
without knowing whai the answer is, how can one estimate how close the program is to solving die assigned prob-
lem'.' Therefore, to facilitate and encourage the needed experimentation, we offer in this paper various tesi prob-
lems, and for each we include ;t solution for measuring progress. All of the problems we present emphas'/.e the role
of equality.

Each problem focuses on a theorem laken from combinaiory logic. In general, the problems we propose for
study ars far more challenging ihan those usually used for evaluating a theorem-proving program or a new concept.
As evidence of iheir difficulty, for almost all of them, from what we know, no proof has ever been obtained with a
ihcorem-pro-'ing program. These problems are net only hard for a computer program to solve, but, in many cases,
also hard for a person to solve. Indeed, one of ihe theorems (Theorem C3) we include answers a question thu!. had
been open, a question mat concerns the constructibiliiy of a particular type of combinator. Theorem C3 is also of
interest in lhai ii illustrates the excellent meld between automated theorem proving and combinalory logic, for ils
proof depends on various properties of unification.

For each problem, we shall first state it as a logician would. To make the presentation self-sufficient, we
shall, where necessary, give ihe needed background. Except in Section 2.1, our discussion of the required concepts
will be iefbc. In that section, we do give a rather lengthy treatment of the problem under discussion. We take this
action in part lo provide u sample of how one can proceed and to focus on various strategics for restricting pan»mof-s*. '•• •> .„
dulalion |RobinsonG69]—especially for those who are new to automated theorem proving—and in part to promc#f>S i'j ••_" r
a sharp increase in experimentation in general. In particular, we include three short proofs of a simple theorem *
(Theorem Cl.l) to illustrate llie role of different strategies. We conjecture thai, with the rapid growth in the interest
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ii1. automated theorem proving, itiul with the new breed of researcher who is far mure excited about implementing
and testing ideas, the field is eagci lor a set of problems that includes some perhaps beyond the capability ol any
program now in existence.

To complement the mathematical and logical statement of a problem, we shall give a set of statements —
abbreviated clauses- that can IK- used to submit the problem lor attack by a theorem -proving program. II the para-
digm on winch a particular program is based does not rely 01 on the use ol clauses, the mathematical description that
we. give tor each problem will make ii possibb U> map the problem accordingly.

In all cases, we shall supply a mathematical proof, an outline of such a pan)!', or a proof in abbreviated clause
notation —sometimes, more than one. of the three. Since almost all of the problems we pose have the property that
no proof, as far as we know, has ever been obtained with a theorem-proving program, we include no statistics
obtained from an attempt to obtain a solution with one ot our programs. We would, of course, he very interested in
any statistics obtained by a researcher who is successful in solving one of :he posed problems—if the solution is
obtained with a program. Such statistics provide an important measure of a problem's difficulty and of a program's
etleciiveness. As an example, the statistics found in the earlier paper |McCharen76|—thai focusing on problems
and e*|iciimen!s and published in the first L'AlH- conference proceedings—have proved most useful.

In addition to our primary goal of encouraging researchers to test and evaluate programs, we have the secon-
dary goat of causing others io supply various problems for this purpose. Although an earlier attempt to stimulate
suets contributions clcmiy did not succeed, the changes evidenced in the past tour years may be ol sufficient magni-
tude that ilu's new attempt will in t'aci succeed. Consistent with out stated goal*, we plan So make available some
time in the future a database of test problems, including those presented in this paper and cithers we use lor study.
11ns database will be accessible by electronic mail.

We focus on problems heavily emphasizing equality in part because of the importance of this relation to so
many possible applications of automated theorem proving, and in part because of a view we have concerning the
history of automated theorem proving. In particular, were we sipping brandy and having a pleasant conversation
with friends, we would suggest that automated theorem proving would have progressed far more rapidly had it not
been for the dominant practice of treating equality as just another relation. S|)eci!'ically, until relatively recently, a
large fraction of the discussion, research, and experimentation focusing on problems in which eqtu'.lity—front the.
viewpoint of mathematics and logic—naturally plays u vital rote was in terms of the so-called P-formulation. Tor
example, lu avoid the obstacles presented by directly coping with cquaiiiy, the axiom of left identity in a group was
almost always represented as

P(e.x.x)

rather than as

f(e.x) = x

which is unfortunate. Perhaps this practice is justified by the fact that the field bad been in existence for only a few
years; on the other hand, perhaps researchers should have been more aggressive. Now, at any rate, we recommend
thai, when the equality relation naturally dominates the description of a problem domain, the P-formulation be
avoided where possible.

With this introduction in hand, lei us now turn to a brief discussion of notation, and then to the field of combi-
nalory logic from which we have taken the problems. Combinatory logic, one of the deepest areas of mathematics
and logic, offers many problems to test—and perhaps surpass—a theorem-proving program's capacity to solve
problems. This field also offers many opportunities to use such a program to answer various currently open ques-
tions, and challenges one to formulate new approaches and strategics. With regard to the former, we include prob-
lems taken from our successful attack on some of those questions. To illustrate the latter, we include a brief discus-
sion of a new strategy which was formulated to increase the effectiveness of our programs when used for studying
various tyjies of coinbinators. The object of the new strategy is io sharply restrict the application ol pafamodulalion.
Since the strategy .lid in fact prove very useful for our studies in coinniiialory logic, it or a variant of it might be of
use for studies of oilier fields of mathematics or logic.

2. Combinaiory Legit"

Before we discuss the first problem, let us supply the needed background, beginning with notation, in all of
the problems we oiler, as commented earlier, we heavily emphasize equality and equality-oriented notation.
Because we wish io cmnhasizc that the equality relation is treated as a built-in relation, we write - or * between the
arguments of a literal, lather than using a predicate such a.s l.QUAL or -J iQUAL followed by its two arguments.
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I., ultier wmils, we do not precisely present clauses lo i haracleii/e eai h pruhU-m but, instead, use ahbievialed

ci.iib.es. which we simply call clauses. One can, ul course, iiiuuk ;lie junliloiiis we present within ordinary Inst-

unler predicate calculus, which is obviously necessary it one 's pioi'i.int l.wAs the tauli iy lor treating equality as

limit in. Nevertheless we strongly recommend iliat, li pus.Mlile, the problem* be considered within the cMendcd

lirsi order predicate calculus whcie equality docs not require a\ininali/aiiuii. It uric chooses lo lollov, utir recom-

mendation, then une must of course include relle'xivity as an ;>xioni it paiaiiiodulaiion is tlie inlereiu e rule in he

used. We in fact did use paraniodukilioti Iieavily in out studies ol cnmbmalory Inuic, the field limn wliiih »'o have

'.aken the problems.

Combiuaioiy logic ICiirrySS.C.'uuyTZ.SiiiiiIlyaiiSS.liaiendregti'l j is parueulatly sigu'Sicaul lor mathematics
and logic because il is concerned with llie mosl liindaineiiuil aspects of bolh lields. This tield is also ol potential
interest to automated theorem proving lieeause it challenges the researcher to tormulaie new striitcj1,ics to control the
reasoning needed to solve problems Uwusing on comliinalors and iheir various properties. In uddiiion, coinbiualnry
logic oilers one the intriguing opportunity ol attempting to answer a ruiiul.C! ot cuueuily O|Vti i|iieslinus, many ol
which are amenable to attack with a theorem-proving program playing the uile ol research assistant. To pique one's
curiosity, we shall list some ol these open questions.

Comhinatory logic can Ix; viewed a* an alternative foundation tor mathematics -which was Curry's
prujiosal —or viewed as a programming language. On the one hand, the logic oilers the same geneiahly and power
us set theory in the sense thai essentially all ul mathematics can be emlvdded in it. On the other hand, any comput-
able function tan be expressed in combinatory logic, and the logic can lie used as an alicrnalive lu ilie 'lining
machine. In f;u.l, comhinalius have been used a_s the 1»;LSIS lor the design 11 computers. This logic is concerned with
ihe abstract mn.'.m ot applying one liuictioii to another.

For a more formal definition, we can Imrrow (Yum Harendregl who defines combitiiitory logic as a system
satisfying tlie coiubinaiors S ui»d K (delincd shortly) with S and K as as cniutanis, and satisfying rellexivity, sym-
nietry, iramiliviiy, and two equality substitution axioms lor the. function that exists implicitly lor up])lying one coin-
h'naior to anoliier. In other woiVs. since the majority of conibmaiory logic can be studied strictly within the first-
order predicate calculus, this logic is clearly within the province of automated theorem-proving, liven further,
although one can clearly operate within ordinary first-order predicate calculus and rely on inference rules such as
hyperresolution and UK-resolution, we recommend lhai one instead study coinbinatory logic within the extended
calculus and use paramodulaiion as the inference rule. (,01 course, one might prefer 10 rely ou an alternative infer-
ence rule for building in equality.) Therefore, lo study the entire logic, we need only choose an appropriate function
symlK)l, sucli as u lo stand tor "apply", and supply the axiom for rellexivity and those for the conibinators S anil K.

x = x
a(a(a(.S,x),yt,z) = ava(x,/),a(y./))
a(a(K,x),y) = x

Even though one can study all of conciliatory logic in terms of S and K, one can also study the Held or sub-
sets of it by chixising other combinalors lo replace S and K. Indeed, our locus will shift from one set ol combinalors
lu another, deluding on the type of problem to be studied. For each combinator of interest, we supply an equation
lhai gives the behavior of the combinator. In such an equation, the combinator appears as a constant. Strictly
speaking, a comhinalor is a member of a class of objects that exhibits the behavior given by its equation. For exam-
ple, were we being more rigorous, we would say that if the combinator 1- satisfies

(F-x)y = x

for all comhinaiors x and v, then we would say that E is a K since K satisfies

(Kx)y = x,

which we staled earlier in clause form. Therefore, when a problem asks for tlie construction (if a combinator E from
a set P of eombiiwtors, the object is lo find an expression n. terms of the elements of 1' that exhibits the behavior thai
E does. The solvability of such probl:ms is one of the reasons that the system consisting of S and K alone is stu-
died, lor one can always succeed in iiiHlmg the required expression. Formally, one SL-ys that the set consisting of S
and K alone is complete. One can fui.l other complete sets ol combinators by reading one of the general texts on
combinatory logic |Cuny5K,Curry72,SnnillyanH5,UarendreglHI ].

To complete the background—especially for those who are new to automated theorem proving—we point out
that, if one follows our recommendation of using paramodulalion as the inference rule, one will directly encounter
the impressive obstacle of coping with equality-oriented reasoning. Overcoming the difficulties inherent when
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equality plays a \iial rule is one of the most important rcse;tn.h aieas in the held, winch is one reason for illustrating
iwilh three proofs ot Theccem Cl . l ) ll\c use ol diftercnt reduction strategics, The strategies lor coniiollmg the
application ol paramodulatton include allowing or preventing paramodtilauon fri<m a variable, into a vatiable,/u>m
the leti side of an equality, from llie right side ol an equality, ami /m<> leinis *:ttislying some given condition con-
cerning their relative position within a statement. Since the advantages aiul disadvantages vary widely depending
o'.\ which combination of strategies is employed, by discussing this aspect in the context ol dilleient pmols, we i.uty
succeed in increasing the interest in the corresponding rcseuieh.

2.1. Problem 1

For the first problem in this section, we focus on one of the interesting properties, the weak fixed point pro-
perty, thiJl is sometimes present and sometimes absent for some given set i' of coinhinators. From what we can tell,
Raymond Suvullyan deserves credit as Use one lo introduce ami then study this properly. 1 lis book To Mm:k n Mock-
tn^hird [SmulIyauKSI is an excellent source lor problems and open questions, and a delight U> read. We therefore
need the following delinition.

Definition. If V is a given set of comhiuaiors, then the wviikfnrtl point proper holds lor 1' if ami only if for
all coiubinalors x there exists a combiuator y such that y = xy.

For this paper, we can only give the following small hint about why the weak fixed point pro|KTty and the lo-
be-det'med stiong fixed |x>int properly are ol interest. Godd's self-referential sentence and Kleene's recursion
theorem can IK interpreted as applications of tixed point combinalors |BarendreglXl |. Also, fixed point combinalors
were known as paradoxical coiubinators in the early ikiys oi eomhinalory logic, because (he Russell Paradox and
oilier paradoxes can lie formulated in terms of fixed point combinalors.

To study a combinalor of the type in which we are interested in here, an equation giving the behavior of the
combinuUir is required. We restrict our attention to combinalors that are called proper, one such that the left side of
its equation is left associated and consists ol' ihe eombinator followed by some nonempty list of distinct variables,
and the right side consists of some or all o? the variables '.hat occur on (he tett side. For example, the combinalor S
is ilelined with ihe equation

((Sx)y)z = (x/.)(yz),

which ex,)Sains why we can, when sunlying S, use Uie second clause of Jie four clauses given cuilicr, where the
I unction, a is given explicitly to show that one coinbinator is being applied to another.

Theorem (..'I. The weak fixed point property holds for the set P consisting of the combinalors S and K alone,
where U^xjyk = (n/)(yz) and (K.x)y = x.

Problem 1 asks for a proof of Theorem Cl. Tlie following clauses, in abbreviated notation, characterize Ehis
problem. (.!" tonlrasl, coinbinatory logic does not explicitly employ a function symbol such as a and observes the
convention Uiai all expressions are lelt associated unless oilier vise indicated.)

x = x
a(a(a(S.x).y)./.) = a(a(:,.z),a(y,z))
aia(K.x).y) = x
y * a(f.y)

If one assigns a chosen automated theorem-proving program the task of finding a proof for some specific
theorem—in particular, lor Theorem Cl—with the object of testing and evaluating the program, some means must
exist for measuring the program's progress. Tlie most obvious means—and perhaps the only significant one—
focuses on what percentage of a proof has Ixren found by the program. One must, therefore, have a proof in hand,
or be able to complete a proof by using whatever information the program has found. To ineel this requirement for
Theorem Cl , we shall, as promised earlier, supply our own proof. Ik-lore we give that proof, let us locus on .v>me
simpler problems lo provide additional information that might prove useful lor attacking Theorem Cl in various
ways—Problem 1 admits a number of distinct solutions—and, even more, might prove useful for formulating gen-
eral strategies. These simpler problems illustrate some ot the interesting aspects of the coupling of strategy and
inference rule, liach ol ihe simpler problems focuses on proving Theorem Cl . l , but proving it under different res-
trictions.

Theorem Cl . l . The weak fixed point property holds for the set P consisting of Llie conibinalors S, 11, C, and
i, where (Cix)y)z = U/.)(yz), ((lix)y)/. - x(y/.), ((Cx)yrz = U'-)>. and lx = x.
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A> pail ot iln." hackgiound, one might find ii interesting and useful to une that, just :;s S and K lorm a com-
plete scl of comhiuatois tor eonihiuaioiy logic, S, li, C, and 1 liimi a fniiiplcic sol lui iluii pan ol the logic known as
non-elmiuraung. A conibmaior is non eliminating if all ol the variables iliai appear on ilie loll side o! as equation
.iKo appear at least once on the right side. In oilier words, from the sei consisting ol S, U, C, ami !, one can con-
struct u combmalor ol any desired type IKIIII these lour eombinalors providing, o! course, that the comhinator to he
constructed is uou-climuiatiug. Naturally, when a given set v>l contbinators is complete lor the entire logic or lor a
large traction ol" the logic, one should e \ |vct to encounter various hazards when Iodising on such a set. Among the
obstacles one encounters are 'he propensity lor requiring the use of long expressions to complete a desired construc-
tion, the need to strongly consider permitting paramodulaiion/rc/M a variable, and the need to strongly consider per-
muting paramodulatioii U I B a vai bble. Hach of the simpler problems licusing on proving Theorem CI . I, which we
discuss on the \\'M to giving a prout' lor Theorem CM, illustrates smite ol these dilliculties.

The following si.» clauses can be used.

(1) x = x
1.2) a(.a(at.S.\),y),/) = a(alx./^,a(y,x))
(\) a(a(a(U.x).>),/.i = a(x,a(y./))
(4) a(a(.a((.\xi.yi,/) = a(a(x./),y)
(5) ail.x) = x
(ti) y *• a(f.y)

From this set of clauses, we can quickly and easily give three proofs of Theorem CM.I. Hath of the proofs
satisfies some given restriction on parainodulation, ami corresponds to one of the simple problems we promised to
examine. We include all three proofs to illustrate the use of different strategies thai one might consider using in
other studies. No1- that, in the first of the three, we use paramodulaiion in a fashion that is contrary to our usual
recommendations tor its use—in particular, paranuxlulation boih/Wwi and into variables occurs. As a form of com-
pensation, we do not allow paramodulanon/rom the left side of any equality, and only terms in negative clauses are
allowed to he into terms, in other words, from a technical viewpoint, we place clause (6) only in the set of sup|X)rl
and require every parainodulalion to l>e related to what is called in eoiuhiuatoiy logic an expansion. I-'or the lirst
proot, therefore, the strategy consists of using set of support and restricting paramodulaiion to expansions into terms
coutmed to the second argument of an tiia|i;.t!;ty.

Proof 1 orTheori-m Cl.I

U) x = x
(2) a(a(a(S,.M,y),/) = a(a(x,z).a(y,/)>
(V) a(a(a(B.x),y),/) -a(x,a(y,/)>
(4) a(.a(a(C.x).y),/.) = a(a(x,/i,y)
CS) a(l.x) = x
\6) y * a(l.y)

from the second argument of clause O) into term a(f,y) of clause (ft)
(7) a(y,z) *a(a(a(ll,l'),y).7.)

from the second argument of clause (5) into the second occurrence of the. term / incl:uise (7)
(8) a(y.z) * a(a(a(»,fi.y),a(l,/))

Clause (8) and clause (2) form a unit conflict, which can be seen by letting the. variables in clause (2) l>e <r,
u, and v in the order m which they occur, atid applying the substitution a(li,f| lor x, I lor a, and
a(a(S,a(U,f|),l) for v, y, and z. Tlieieiore, a conlrailiv-iion is obtained, and ihe proof is complete.

P«K)f 1 shows that indeed the weak lixed point property holds for the set P consisting of S, H, C, and I Note
that the combinalor (' plays no role in this proof.

To use the proof of Theorem Cl.l to obtain the value for the existentially quantified variable y that occurs in
the definition of the weak lixed point pm|>crty, one can adjoin the ANSWtiK literal—in this case, the literal
ANSWLkiy) - IO the clause corresjHHiding to the denial of the theorem. The answer literal will contain at each
point in tiic pr<x>f the current instantiation of the universally quantified variable _y ihal exists because ol assuming
Theorem C l . l false. One simply takes the argument of the ANSWHK literal when unit conllicl is found and, taking
into account ihal v.e began by assuming the theorem false, replaces the constant/by the variable .r. Summarizing,
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an examination of the unification thai establishes unit conflict, the ivgahun ol ihc conclusion ol liieorem C l . l , ami
the path that leads to the unit conflict shows that, tor the cxistculially quantified y that one is seeking, one can
choose the square ol ((S(Bx'))l).

As we see in the second proof we give shortly, we can avoid paramodulaiiou fmm ami inu> vanablcs if we
allow paranuxlulaiioii/f(w ttie lett sides uf the various clauses allow paiamodulaiions related to what are calleil
reductions in conthmatory logic. The avoidance of paraiiHKhilatiiig/nwi and into variables is olien essential for, as
is known to those how have experimented with paramodulalion or oilier approaches to building in equality, allowing
from terms or into terms to bo variables usually destroys the effectiveness of a theorem-proving program. The rea-
son for such total destruction, for those who may be new to this aspect of the held, is that variables always unify
will) any chosen expression. This properly of never failing lo unify would not necessarily be so damaging if a pro-
gram could separate the needed deductions from the unneeded, but no one has come close at this point in lune lo
discovering a strategy that produces anything resembling such a separation. Such a discovery wouid deserve and
icceive overwhelming acclaim, ii it is ever made.

Proof 2 of Theorem (.'1.1

(I) x = x
il) a(a(a(S,x).y),/) = a(a(x,/j,a(y,/))
(.3) a(aUHN,x),y),/.> = a(x,a(,y,')>
(4) auualC.x >.>•),<-) = a(a(x./J,y)
(5) a(t.x) = x
ifi) y *a(f,y)

from the second argument of clause (3) into term a(l,y) of clause (6)
{7} a(y,z) * a(aMB.I">,y),•/)

from the second argument of clause (2* into term a(a(a(B,f),y),') of clause (7)
(d) a(v,u(u,vn *a(a(a(.S,aUU'))."),v)

from the first argument of clause (5"i into term a(u,v) of clause (N.i
(»J) a(v,v) ^ a

Clause {L)) unit conllicis with clause (1), and the proof is complete.

We can even get a proof that prevents paramodulation from using variables as from terms or as into terms,
and also restricts it to the use of expansions only. However, where the first two proofs fail it) use C, ihe third proof
lads to use 1.

Pr«wf 3 of Theorem Cl.l

(1) x = x
(2) a(a(a(S,.xj,y),z) = a(a(x,z),a(y,/))
(3) a(a(a(H,.x),y),z) =a(x,a(y,z))
(4) a(.a(a(C,x),y),y.) = a(a(x,/.),y)
(5) a(l,x) = x
(6) y-^a(f,y)

from the second argument of da i se (3) into term a(l ,y) of clause (6)
(7) a(y.x) * a(a(a(l!,0,y),z)

from the second argunieril of clause (A) into leini a(a(a(It,O,y),/) of clause !7)
lK) al/.y) /ala(a(C,ii(l»,f)),y),/)

Clause (S) unit conllitls with clause (.2)—which can be seen by naming the variables in clause (2) t, //,
and v. and by substituting a((_',a(R.f)) for x, a(.S,a(t',a(li,f))) for u. v, and y, ami
a(a(S1a(C,a(B,f))),a(S,a(C,a(U1O))j lor z—and the primf is complete.

Afi analysis of this third proof shows that, for the y that must exist for ilie weak (ixed point pro|x:ity lo hold
lor Theorem C l . l , one can choose the cube ol S(C(!ix)) in umtrasl to the square ol ((S(Hxnl) which was lound in
the lirst two prools. Because the set ol conibinators consisting ol S and K alone is csiiiiplele, we could use enher
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value ol v to lead us to a proot i)t 'Theorem C'l hy expressing certain eoinhinators I>I terms ol S ami K. In parliculai,
we amUi construct iwu comhinalois that, respectively, ai l like H ami I, 01 two that, respectively, act like H and <.'.
One would itien use cdher value of y IIHHUI hy proving theorem (.M.I, Inn replace [lie appropriate conihinaiois hy
the corresponding expressions in terms purely of S anil K. However, tins indued palli is uo( what we have in mind
when we suggest proving Theoicm C'l as the first pruhlein posed in ilus paper. I lial indirect palli depends on cither
making a good guess about which oilier sets of combinalois are (sulticiciuly) complete - lor example, the set con-
sisting of S, H, C\ and I—or making a good guess ahoul which sets have the weak fixed point properly. Because we
had found ihe two given values of v in other studies, we were able to pursue the indirect path to proving I hcorein
C'l quickly and easily with ihe program ITI \ Hut that is not the objective of Problem 1. Instead, we suggest that the
theorem-proving program one is evaluating should attempt to prove Theorem C'l directly—using as axioms dial for
S, that for K, and thai for rellexivily— by simply denying that die weak lixed point properly holds lor the set I* con-
sisting of S and K alone. Our attempt to obtain :.i computer prool ot Theorem C'l along the iliieci path of inquiry
laded, which is one reason why we consider I'lohlem I lo Iv an interesting challenge.

Since we are suggesting problems as challenges for various iheorei,. proving programs ralher than lor

theorem-proving people, we shall complete a proof of I lieorem (i father than assigning that task to the researcher.

We shall use Theorem C'l I in our proof despite the preceding renuuks. We take this action to increase the likeli-

hood ol independent and uninlluenced experimentation and, as one might suspect, because ot certain pedagogical

considerations. We shall employ algebraic noiaiion ralher than clause notation loi this pnxif.

A l'roof ofTht'oirm Cl

l-'rom Proof 1 of Theorem C'l, i, one can conclude thai

(1) US(Bx) | lK(SU<*nn = x<US<,UxMI)<<.S(»x)m>

is Uue lor all x. One uin check this equality hy simply applying the equations (given as clauses (2), (1), and (r>) in

Section 2.1) for S, li , and 1 to the left side of t 1) to ohuiiu the right side. Next, one can prove dial

(2) l(SK')K)x = x

for all t, which translates ID the statement that (SK)K is an 1, or , equivaleutly, (SK)K behaves as 1 iloes. Then one

can show that

U) (i('(.S<KS)iK)x)y)/ = x(y/)

lor all x, y, and z. liquation (.1) says that (S(KS^)K is a il, t>r, equivalently, behaves like Li. Because of equations' (2)

and (V) and the remarks made concerning their meaning, we can in elfeel substitute into equation (I) lor both H and

1 lo obtain

(4) U S ( U S < K S ) ) K ) X ) ) ( ( S K ) K M ( . ( S ( ( ( S ( K S ) ) K ) X ' ) ) ( ( S K ) K ) ) =
x(((S((.(S(KS))K)x)H(SK)K))USiil.S(KS))K).x))i(SK)Ki)),

which holds for all x, and the proof of Theorem C'l is complete.

We can improve on the result contained in the proof of Theorem C'l hy presenting a simpler value for the y
that must exist satisfying

y = * y .
the equation that defines the weak fixed point property. In particular, if we let y Iw the square of
(S(S(Kx)))((SK)K), we can apply the equations for S and loi K. and show that this y also satisfies llie equation for
the weak lixed point prujieriy. The simpler y can IK found by taking the term llx in the square of (S(Hx)il and using
equation (.1) lo write B in terms of S and K, then reducing both occurrences ol the replaced term with S, and finally
using equation (2) lo write I in terms ol S and K. We therelore have two solutions to Problem I, and could even
ol-.Min a third hy focusing on the cube ot SR'(Hx)). In the context of Problem 1 and ILS given solutions, we can
immediately pose one of the promised open questions. Does the second soli,lion contain the shortest expression lor
a y satisfying the weak fixed point propeity, where y is expressed purely in terms ol S and K7

Having finished with Problem I, we can turn in the next section to the second problem we suggest for testing
and evaluating theorem-proving programs. However, in contrast lo the trealiuc.nl we have. |ust given 1'iobleni 1, we
shall lie lar brieler Irom here on, conlinmg ihe discussion in most cases to tlie statement ol the problem and a short
proof m logical or mathematical terms. The copious details we have given regarding Theorem ( . ' I I can be used as
a guide for interpreting the clauses obtained when attempting to solve later problems. They are included also to pro-
vide an example of how one can map a logical or mathematical prool inio clause notation.
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2.2. P rob lem 2

The second problem we pose asks one lo use an automated theorem-proving piograiis lo lind a pivol oi

Theorem C'2, which we stale alter introducing another new concept. 1'or tins piohtcm, we need the dclimtiou ol llie

sui'iii; Jut'd point [m>perty.

Definition. If P is a given set ol combmators, then the siron^ fixed point property holds for P if and only if
there exists a combinator v such that, tor all comhiualurs x, yx = x{yx\.

Thettrvm C2. The strong fixed point properly holds for the set P consisting of the comhinalors R anil \V
alone, where (tBx'ly)/. = x(yx) and (Wx)y = (xy)y.

To add lo ihe background for studying problems in comhinalory logic, note that the presence lor I' of the
strong tixed jxiinl properly implies the presence of the weak li?ed point property, The converse, is not irue, as one
can sec by considering the combmalor 1. with

(l.u)v = u(vv),

noting that the expression (Lx)(Lx) is a y that satisfies the equation for the weak fixed point property which estab-
lishes lhal the weak lixed point property holds lor the set P consisting ol I. alone, and using Theorem C3 to show
that the strong fued point property does not hold for this set P.

The following clauses can be used in the attempt to have a theorem-proving program solve Problem 2.

II) x = x
(2) a(a(a(B,x),yh/) = a(x,a(y,/H
(3) a(a(VV,x),y) = a(a(x.y),y)
14) a(y,f(y))^a(f(y),a(y.f(y)))

Even though we recommend this set of clauses for studying Problem 2, we now give a proof more in the style lhal
an algebraist might give.

A Proof of Theorem C2

Lei N = ((B((B((B(WW)|W})li))B). Since, with the following sequence of equalities, we can show that Nx = x(Nx)
for all.«, we can set y equal lo N lo complete our proof. To obtain the sequence, we begin with Nx, occasionally
abbreviate (W(B(Bx))) to K, apply the reduction corresponding lo H or that corresponding to W depending on the
leading symbol ol the expression under consideration, and substitute from an intermediate result to deduce the linal
step,

Nx .= ((BUB((B(\VW))W))B)")B)x - ((B((B(\VW))\V))B)(Iix) =
((B(WW))W)(U(Bx)) = (W\V)(W(B<.LU))) =
(W(W(B(Bx))))(W(B(Bx))) = aW(B(Bx)))(W(B(Bx))))(W(B(Bx))) = (RR)R =
(((U(Bx))R)K)K = ((Bx)(RR))R = x((RR)R) = x(Nx)

Here we have an example of how automated theorem proving differs sharply from mathematics. Specifically.
a theorem-proving program has no way to magically oiler an expression, such as N, lor use in completing a proof.
The mathematician, on the oilier hand, often exhibits the disarming capacity to make such offers; the offers are
based on experience, intuition, and who knows what else. This dichotomy between the approach that apparently
must be taken by a theorem-proving program and that which is frequently taken by a mathematician is precisely
why the two make a powerful team lor solving problems and answering open questions. Indeed, the combinalor N,
which answered a question dial was once open, is just such an example of ellective teamwork. This combinalor
was discovered while we were studying B and W with the assistance of various theorem-proving programs designed
and implemented by members of our group.

That same study also led us to formulaic a new strategy, mentioned earlier, for sharply restricting the applica-
tion of paramodulalion. The strategy restricts parainodulatiou to considering an tnto term only if its position vector,
lo be defined immediately, consists of all I "s, which we express by saying that all pan>.modulation steps must satisfy
the l's rule. 'Hie position vector of a term gives the position ol the term within a literal, lor example, the position
vector 12,3,11 says that the corresponding term is the lirst suhlenn of the third suhlerm of the second argument, lor
a concrete illustration of the use of |X)silion vectors, the third occurrence of the constant W in the equality

a(a(B,a(a(B,a(a(B,a(W,W)),W/),B)),B) = N

has the position vector [1,1,2,1,2,2]. (The fixed point combinator N played a vital role in our discovery of whal
turned out to be an astoundingly large family of coinbinators.) We find this strategy of restricting into terms lo be
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chosen from those whose position vector consists of all I's to be very effective for our studies in eombinatory logic.
The strategy, as we discovered some time after its formulation, focuses on a generalization of whal is known in
combinatory logic as a head reduction.

2.3. Problem 3

For the third problem we suggest for experimentation, we focus on theorem C.I, a theorem we proved to
answer a question that had been open. The question concerns the possible conslnietibiliiy, from the combiiuiiors U
ami L, of a tixed point combinaior. For the problem under discussion, we depart rather sharply from our usual prac-
tice of focusing on proof by contradiction by suggesting instead that an automated theorem-proving program be
used to find a model pertinent to Theorem C3. If the program succeeds in finding such a model, then, in a sense thai
will become obvious upon reading the statement of Theorem C3 which we give immediately, the program will have
found a proof of that theorem.

Theorem C3. The strong fixed point property fails to hold for the set P consisting of the comhinaiors 11 anil L
alone, where ((Bx)y)z = x(yz) and (Lx)y = x(yy) iiquivalently, from 11 and L alone, one cannot construct a Q such
that Qx = x(Qx) lor all JC.

A Proof of Theorem C3

Assume, by way of contradiction, that the strong Axed point properly holds for B and L. Then there exists a cotnbi-
nator Q, which is constructed from B and L alone, such that, for an arbitrary combinator/, Qf = f(QQ. (We use the
constant/rather than F to be consistent with our notaiional convention when denying some theorem is true.) By the
Church-Rosser property for combinatory logic, there exists a combinutor li such that Qf reduces to E and f(Q0 also
reduces to E. (The reductions that are used are paramodulations from the left sides of B and L.) Since f(Qf) reduces
to E, and since the first occurrence of/cunnoi tw affected by any reduction with B or L, E must be of the form IT
for some combinator T. Therefore, Qf reduces to IT for that same T. The combination Qf obviously has the form
CD, where C contains no occurrences off. Let us consider a one-step reduction of CD, and show by case analysis
that tiie result C D ' is such that C contains no occurrences of/.

Case 1. The reduction involves C only or D only. Obvious.

Case 2. The reduction is with B and involves both C and D. Then C must unify with (Bx)y, D must unify
with z, C must be the image of x, and D' must be the image of yz. Therefore, C must be a subterm of C, which
implies that C contains no occurrences of/.

Case 3. The reduction is with L and involves both C and D. Then C must unify with Lx, D must unify with y,
C must be the image of JC, and D' must be the image of yy. Therefore, C must be a subierin of C, which implies
that C contains no occurrences of/.

We can conclude, therefore, that, regardless of the number of reductions we apply starling wiih CD = Qf, we
can never obtain a combinator of the form C*D* with C* containing an occurrence off. In particular, we can never
reduce Qf to IT, and we have arrived at a contradiction. In other words, the strong fixed point property fails lo hold
for the set P consisting of B and L alone.

The object of Problem 3 is in find a model that satisfies B and L but fails lo satisfy the strong fixed point pro-
perty. Of course, such a model would show that indeed the strong fixed point properly does not hold for the set con-
sisting of B and L alone. Problem 3 hits added interest since, as far as we know, no one has yet succeeded in finding
such a model—in other words, Problem 3 is an open problem. Of course, since we have just proved Theorem C3, a
model with the desired properties must exist. Before we had proved Theorem C3, as commented earlier, the ques-
tion focusing on the consiructibiliiy of a lixed point combinaior from B and L alone was open.

An alternative to Problem 3 asks for an automated theorem-proving program to find a proof of Theorem C3
directly, starling with its denial and proceeding in the standard fashion in our field. Such an achievement would be
of great inleresl since the proof we give is outside first-order predicate calculus. However, various researchers in
ihe field have discussed ihe possibility of using an automated theorem-proving program to prove theorems of ihis
lyi>e—theorems whose proof dejtends on properties of unification, and theorems about unification.

2.4. Problem 4

For Problem 4, we focus on one of the systems of combinalors thai is known to be complete. As commented
earlier, ihe set P consisting of the combinalors S and K is one of those systems—given a combinator \l and an equa-
tion that characterizes ils behavior, one can construct from S and K alone a combinaior that behaves as li does. For
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such a construction, one can apply the well-known algorithm found in Smullyau's book. Alternatively as is sum -
dani in our f ie ld- one could have a theorem-proving program attempt such a i nnMiiiction by denying ili.it any
expression exists satisfying the equation given for the conihiuaiur I'- under study. II the piogram succeed-; with tins
apj)roach, then - a s occuued in the vanous pi oofs ol Theorem ( ' I . I the dcsiied construction is obtained by
analyzing ihc umUcations upon which the prool icsts.

The object of Problem 4 is to construct From S and K alone, by following the standard approach in automated
theorem proving rattier than by applying the well-known algorithm lor such constructions, a comhinaior thai
behaves as the combinaior U does, where the equation

gives the behavior of U for all x and all v, ' the idea is to proceed as we illustrated in Section 1!.I and extract the con-
struction from a proof by contradiction. One can use the following clauses.

(1) x = x
(2) ataCaiS.x),)-),/1) = a(a(x,z) ,a(y, /»

(.3) aUHK,x).y^ = x
(4) )̂

Similar to our earlier approach, we shall simply give two answers to Problem -1, Mlher than giving a proof
relying on these four clauses. If one affixes the variables x and y to either of the following expressions, and if one
then reduces with S and K, one can see that both expressions do indeed behave like U.

(<S((S(KS))K))ttS(K(S((StlSK)K)((SK)K))))K))

«S(K(Sl(SK)K))))((S((SK)K))((SK)K)))

Tlie first of the two expressions can be found with the algorithm for using S ami K for such constructions; the
second can be found by noting thai the combination LO behaves like U, and then reducing u combinator that
behaves like LO, where (Lx)y = x(yy) and (Ox)y = y(xy). Question: Is there a comhiiuttor, expressed purely in
terms of S and K, containing fewer than 13 symbols that satisfies the equation for U'.'

2.5. Problem 5

Problem 5 focuses on the combinators S anil \V.

((Sx)y)/. = (xz)(yz)

(Wx)y = (xy)y

Problem 5, as with Problem 3, has the object of finding a model. The model one is seeking must satisfy S and W
and fail to saiisly the weak fixed point property. The following clauses can he used to search for such a model.

(1) x = x
(2) a(a(a(S,x),y),z) = a(a(x,z),a(y,z))
(3) a(a(W,x),y) = a(a(x,y),y)
(-1) y * a(f.y)

Rather than giving a complete proof of the theorem that corresponds to Problem 6, we are content with the
following outline. To see that the set consisting of S and \V alone does not satisfy the weak fixed point properly, we
again rely on the Clnirch-Rosser properly for coinbiiuitory logic. In particular, if the weak fixed point property does
hold, then three must exist an E and a T such that both T and IT reduce to Ii, where/ is an arbitrary combinator. The
number of leading/1 s in T is one less than the number in IT. 1'ach so-called reduction wiih S or W does not increase
the number ul leading/s in T. Therefore, even with different reduction paths, no expression can exist such that
both T and IT reduce to il, which contradicLs the existence of I;, and the proof outline is complete.

Both the proof we have just outlined and the result concerning S ami W, as far as we know, represent a new
result in coinbinatory logic.

2.6. Problem 6

Problem 6 focuses on the combinators S and K.

((S-)y)z = (xz)(yz)
(Kx)y = x
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The ubjvxl ui I 'toblem !> is 10 prove thai the strong Ihed point property holils t'oi the set P unis'iMing oi S ami K
alone. An appropriate conibinator can be found by otiUiining a riTuiniiiin ol llie Inllowinj! t l;iii.-.es

(1) .\ = x
(2) a(a(a(S,x),y'),/) = a(a(x,/).at.y./)>

(4) a(y,r(y))^a(l(y),a(y,f(y)))

We give, ihree fixed point coinhinators thai are in elTeci solutions to Problem fi. NVe know of no shorter com-
binator tlian ihe one we list third. I-or readahili'y, we use abbreviated notation wiili the following abbreviations.

1 = (SK)K
M = ($1)1
B = (.S(K.S))K
W = (SS)(K1)

Here are the three solutions.

((S(KM)X(SBXKM)))

3, Conclusions

One of ihe. most intporuint activities in automated theorem proving is that of experimenting wilti various prob-
lems Uiken from mathematics and logic. Experimentation i:. essentially the only way to measure the power of an
automated theorem-proving program or the. value of a new idea for increasing that power. In this paper, for such
experiments, we focused on problems taken from combinatory logic, a field that is unusually amenable to attack
with a theorem-proving program. Oilier areas from which problems can profitably be taken include ring theory
(associative and nonassociative), lattice theory, and the algebra of regular expressions. We also have included vari-
ous open questions since such questions often promote and provoke experimentation. Our emphasis throughout this
paper is on equality. Coping effectively witli die equality relation is still one of the major obstacles in ihe tield of
automated theorem proving.
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