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Abstract In this paper, we offzr a set of problenis for evaluating the power of automated theorem-proving pro-
arzms and the potential of new ideas. Since the problems published in the proceedings of the fisst CADE conler-
ence [MeClaren76] proved  be se uselul, and since researchers are now far more disposed to implementing and
testing their ideas, a new set of problems 1o complement those that have been widely studied is in order. In general,
the new problems provide a tar greater challenge for an automated theorem-proving program than those in the first
set du. Indeed, 10 our knowledge, tive of the six problems we propose for sty have never been proved with o
theorem-proving program. For each problem, we give a sct o sistements thit can casity be transtaled into a stan-
dard set of clauses, We also state cach problem in its mathematical and logical toro. T many cases, we also pro-
vide a proof of the theorem from which a problem is taken so that one can measure & Progran's progress in s

atlempl 1o solve the problem. Two of the theorems we discuss are ol especial interest in that they answer questions

that had bezn open conceming the constructibitity of two types of combinator. We also include a brie! description

of a new strategy for restricting the applicatin, of paramodulation. A1l of the problems we propose for study

emphasize the role of equality. This paper is wtoaal in nature.

1. Introduction

Te estimate the possible value and power of an automaled theorem-proving program or of a new approach,
one needs various est peoblems. Oue cannot simply make diverse computations in the abstract about CPU cycles,
conclusions drawn and discarded, conclusions drawn and retained, and such. Rather, one must aitempt 10 solve
prob.ems from various arcas—mathematics and logic, for example—with one’s program or with the new appeouach.

After all, the value of a discovery, such as an inference rule or strategy, rests mainly with its elfectiveness for prob-
lem solving,

To determine haw well a given program is doing in its attempt 10 prove seme given theorem or solve some
specified problem, one usually requires access w0 a proof of solution to measure ihe prograin’s progress. For,
without knowing what the answer s, how can one estitnate how close the program is to solving the assigned prob-
tem? Therefore, to facilitate and encourage the needed experimentation, we olfer in this paper various test prob-
lems, and for each we include @ sotution for measuring progress.  All of the problems we present emphasize the role
of equality,

Each problem focuses on a thearem taken from combinatory logic. In general, the problems we propose for
study ars far more challenging than those usually used for evatuating a theorem-proving program or a new concept,
As evidence of their ditficulty, for alnsost all of them, from what we know, no proof has-ever been obtained with a
theorem-preving program. These problems are nct only haed for a computer progriun 10 solve, but, in many cases,
also hard for a persou to solve. fadeed, one of the theorems (Theorem C3) we include angwers a question Usizt had
been open, a question that concemns the constructibility of a particalar type ol combinator. Theorem C3 is also of

interest in ihat it illustrates the excelient meld between automated theoren proving and combinatory togic, for its
proof depends on various properties o unification.

For each problem, we shall first state it as a logician would. To make the presentation self-sufficient, we
shall, where necessary, give the needed background. Except in Section 2.1, our discussion of the required concepts
will be igive. In that section, we do give a ather lengthy treatment of the problem under discussion. We take this
action in part 10 provide a sample of how one can proceed wnd Lo focus on various stritegies for restricting param \’._ RN
dulaton [RobinsonGéY}—especially for those who are new 10 automated theorem proving—and in part to prom )] i '13'
a sharp increase i experinqentation in general. In particular, we include three short proofs of a sieple theorem’ Fite )
(Theorem C1.1) 10 tllustrate the role of different strategics. We conjecture that, with the rapid growth in the interest
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it antomated theorem proving, and with the new breed ot rescarcher wha is fur mare excited about implementing
and testutig wdeas, the tichd s caged for aset ot problems that icludes some perhaps heyond the capabihity ol aay
PIOLEANL BOW 1R CAstence.

To complement the mathematical and logical statement of a problem, we shall give a set of stitenmients —
abbreviated clauses -t can be used o subiut the problem for dttack by o theorem-proving progrun, 1 the para-
digr on waich a particular prograo is based does notrely or on the use of clses, the nutthematical description that
we give for each preblem will make it possible e map the problem accondingly.

In all cases, we shall supply o mathematical proof, an outline of such a proot, or a proof in abbreviated clanse
oGO — somietimes, more than one of the three, Since almost alt of the problems we pose have the property that
no proot, as far as ae know, has ever been obtained with a theorem-proving program, we include no statistics
obtained frem an attempt w obtain a solution with one of our programs. We woaid, of course, be very interested in
any statistics oblained by a rescarcher who is successtul i solving one ol the posed problems—il the solution s
abtained with a program. Such statistics provide an imporant measure of a problem’s ditticulty and of » program’s
chicctiveness. As an example, the statisties found in the carlier paper {MeCharen76]-—that focusing on problems
and experiments and published in the first CADE conference proceedings—have proved most uselul,

In addition o our primary goal ol encouraging rescarchers to test and evaluate programs, we have the secon-
dary goat of causing others to supply various problems tor this purpose. Although an earlier attempt 1o stisalale
such contributions ¢leaiy did not suceeed, the changes evidenced in the past four years may be of sulficient magni-
tude that this pew aitempt will in fact succeed. Consistent with owr staied goals, we plan 1o make avarlable some
time in the Tutore a database of test problems, including those presented e tus paper and others we use for siudy,
This database will be accessibie by electronic mail.

We focus on probiems heavily emphasizing equality in part becanse of the timpartance of this relation to so
many possible applicatons of automaied theorem proving, and in part because of a view we have coucerning the
history of automated tiicoresn proving. In particulur, were we sipping brandy and having a pleasant conversation
with friends, we would suggest that automated theorem proving would have progressed tur more rapidly had it not
been tor the dominant practice of treating equality as just another relation, Specitically, untid relatively recently, a
large fraction of the discussion, research, and experinentation focusing on problems in which equality—from the
viewpoint of mathematics and logic—naturally plays & vitsl rofe wis i terms ol the so-called P-tormutation, For
example, w avoid the obstacles presented by direetly coping with equaiy, the axiom ol left ideniily ina group was
almost always represented as

P(e.x.x)
rather thun as
flex)=x

which is unfuounate. Perhiaps this practice is justificd by the fact that the ficld had been in exigtence for only a few
years; on the other hand, perhaps rescarchers should have been more aggressive. Now, al any rale, we reconmend

that, when the equatity refation naturally dominates the description of a problem domain, the P-formulation be
avoided where possible.

With this irtroduction in hand, let us now turn to a brief discussion of notation, and then to the field of combi-
natory logic trom which we have taken the problems. Combinatory logic, one of the deepest arcas of mathematics
and logic, offers many problems 10 test—and perhaps surpass—a theorem-proving program’s capicity 1o
problems. This ficld also offers many opportunities to use such a program (0 answer varicns currently open ijues-
tions, and challenges une w tormuiate sew approaches and strategics. With regard 1o the former, we inctude prob-
lems taken from our successful attack on some of those questions, To illustrae the fatter, we include a Yriel discus-
sion of a new strategy which was formulated 10 increase the effectiveness of our programs when used lor studying
various types of combinators. ‘The object of the new strategy is to sharply restrict the application of pasanodulation.
Since the swrategy Jid in Tact prove very useful for our studies in combinatory logic, it or a variant of it mighit be of
use for studies of othier fields of mathemades or logic.

solve

2. Combinatory Lrgic

Before we discuss the first problem, et us supply the needed background, beginning with notation. in all of
the problems we otfer, as commented earlier, we heavily emphasize equality and zquality-oriented rotaticn.
Because we wisk o eninhasize that the equality relation is treated as a built-in reliation, we write = or # between the
arguinents of a literal, vather than using a predicate sach as EGUAL or ~EQUAL followed by its two arguments.
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1 other words, we do not precisely present clutses o chataclenze cach probiem but, instead, use abbreviaed
Ciatses, which we simply vall clinses. Uine can, ot course, stk he problems we preseat witlin ordosary st
order predicate caleutus, which 1s obviously necessares it anc's provias Lcds the faalty tor reanng cquality as
bl i, Neverthelesy  we strongly recommend that, 18 possible, the prohlems be considered within the extended
nest veder predicate caleulus where equality does not require anvionitizaiion. 1t one chooses 1o lollow our recom-
mendation, then one muost of course mctude refexvity as an sxiom i paramodulation i the infereace rale o be
wsedd. We m fact did ese parenodulation beavily moous studies of combiatory dope, the tield from wlnch we have
taken the problems,

Cowbinatory logic [Curry S8, Canry 72, SmullyanB8 S Buarendregt® s partculacdy sigaificant tor mathematios
and logic beciuse s cancerned witlt the most tundamental daspects of both fickds, This ficld s also ol potentiad
mterest W automated theorein proving because it challenges the researcher 1o formualate new stiategies to control the
reasoning teeded o salve problems tovusing on comtnnators and thew vanoos properties. I addiwn, combinatory
fogic utlers one the muigumg opportunity vf atlemipting o answer a menter ol cusiently open guestions, many ol
which are amengble W attack with a theorem-proving program playmg the tole of research assistant. To pugue vue’s
cutiosity, we shalt List some of these apen questions.

Combinaory logic can he viewed as an alternative foundation for sathematics —which was Curry's
proposal —or viewed as a programming fanguage. On the one band, the Togic olters the same generality and power
as set theory W the sense that esseantially all of mathenatics can be embedded inat, Onthe other hand, any comput-
able functhion can be expressed in combunatory logic, and the logic can be used as an alicenative w the Turing
machine. In fact, combinators have been used as the basts Tor the design of computers. This logic ts concerned with
the abstrict noeon ot applying one tunction o another.

For @ more formal definition, we can borrow from Barendregt who defines combinitory logic as a system
satistying the combinators § wad K (detined shortly) with S and K as as constants, and satislying retlexivity, sym-
melry, transitivity, and two equality substitution axioms foc the tunction that exists inplicitly for applying one com-
brator w0 anuther. In other words, since the majority of combmatory fogic can be studied stricity witlun the tirst-
order predicate caleulus, this logwe is clearly within the province of autonated theorem-proving. Lven farther,
atthiough one can clearly operate within ordinary tirst-order predicate caleulus and rely on inference rules such ay
hyperresolution and UR-resolution, we recomumend that one istead stndy combinatory fogic within the extended
calculus and use paramodulation as the inference rule, (OF course, one might prefer w rely on an aliernative nfer-
ence rule for building m equahty.) Theretore, to study the entire logic, we need only choose an appropriate function
symbol, such as a w stand tor apply ™, and suppty the axion tor reflexivity and those tor the combinators S wd K,

X=X
ala(atS x) yre) = acdx, ) ly 2 )
ala(K,x)y) = x

Even though one can study all of combinatory logic in terms of S and K, one can also study the tield or sub-
sets of 1t by choosing other combinators w replace S and K. Indeed, our focus will shilt from one set ol combinators
o another, depending on the type ol problem 1o be studied. For eachi combinatar of interest, we supply an equation
that gives the behavior of the combirator. In such an equation, the combinator appears as a constant, Strictly
speaking, a combinator is a menber of a class of objects that exhibits the behavior given by its equation, For exam-
ple, were we being mare rigorous, we would say that if the combinator £ satisties

(Ex)y =x
tor alt combinutors x and y, then we would say that E is a K since K satisfies
(Kx)y =x,

which we stated earlier in clause form. ‘Therefore, when a problem asks for the construction of a combinator E from
a set P of combinators, the object is 10 find an expression i erms of the elements of P that exbibits the behavior that
E does. The solvability of such probl:ms is one of the reasons that the system consisting of S and K alone is stu-
died, tor one can always succeed in dinding the regnired expression, Formally, one seys that the set consisting ol $
and K alone is complere. One can find other complete seis of combinators by reading one of the general texts on
combinatory logic |CaerySK Curry 72, Smuilyan® S, Barendregt81},

To complete the background—especially for those who are new 10 automated theorem proving—we point out
that, if one follows our recommendation of using paramodulation as the inference rule, one will direetly encounter
the umpressive obstacle of coping with equality-oricnted reasoning,  Overcoming the ditficulties inherent when
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cquattity plays a vital role i one ol the most important rescarch weas m the fickd, whicle s one reason for tlustrating
cwath thieee proots ot Theerem CLL e wse of ditterent restonction sirategies. The strategies for conttolhing the
apphication of paramodulation include allowing or preventimy paramodubuion froeea varable, o vatiable, from
the tett side of an equaldity, from the right side of an equabty, and oo terms satslying some given condition con-
cernting their relative position within g statement. Since the advantages and disadvantages vary widely depending
an which combunation of strategies is employed, by discussing s aspect m the context ol ditferent proots, we tiay
suceceed mnereasing the interest in the corresponding resewch.

2.1, Problem

For the tirst problen in this section, we focus on one of the interesting properties, the weak fivid point pro-
perry, that s sometines present and sometimes absent for sume given set i ol combinators, From what we can tell,
Riymand Snullyin deserves credit as the one w sntrodnee and then study this property. His hook To Mock a Mock-
enybird |Smullyan®3) s an excellent source for probleiny and open questions, and a delight o read. We theretore
need the following detinition,

Definition. 11 P1s a given set ol combinators, then the weak fived point propers holds for P and only it tor
all combinators x there eaists @ combinator y such that y = xy.

For this paper, we can only give the following small hint &bout why the weak fixed point property and the to-
be-detined strong tixed point property are of interest. Gadel's self-referential sentence and Kleene's recursion
thearest can be interpreted as applications of fixed point combinators {Barendregt8 1), Aldso, tixed point combinators
were known as paradoxical combinators in the carly days oi combinatory lagic, becaose the Rassell Paradox and
other paradoxes can be furmulated m erms of fixed point combinators,

7o study a combinator of the type in which we are interested in here, an equation giving the bebavior of the
combinalor is required. We restrict our attention (o combinators that are catled proper, one such that the lefu side of
s equation is teft associated and consists of the combinator tollowed by some nonempty list of distinct variables,
and the right side consists of some or all ot the variables that oceur on the fett side. FFor example, the combinmar §
15 detined with the equation

((Sx)y)z = (x2)(yz),

which exphains why we can, when studying S, use the second clanse of :he four clauses given eailier, where the
tunction g 1s given explicitly o show that one combinator is being appiied 1 another,

Theorem CI. The weak fixed point proparty holds for the set P consisting of the combinators S and K alone,
where (WSx)yhz = (a2d)yz) and (Kx)y = x.

Froblem 1 asks for a proof of Theorem C1. The following clauses, in abbreviated notation, characterize this
problem. {!n contrast, combinatory logie does not expheily employ a function symbol such as ¢ and observes the
conveniion that all expressions are lett assecuated unless otheryise ulicated.)

X=X

aata(S.x),y).2) = alal~ o) aly,7))
afa{l x)y)=x

y #«xly)

If one assigns a chosen automated thearem-proving program the task of finding a proof for some specific
theorem—in particular, for Theorem Cl—with the object of testing and evaluating the program, some means nust
exist for measuring the program’s progress. The most obvious means—and perhaps the only significant one—
fucuses an what percentage of a prool has been found by the progaun, One must, therefore, have a prouf in hand,
ur be able to complete a proot” by using whatever informuation the program has found. To mieet this requirement for
Theorem C1, we shall, as promised caclier, suppiy our own proot. Belore we give that proof, let us fucus on some
sunpler problems o provide wdditional information that might prove useful for attacking Theorem C1 in various
ways— Problem 1 adunts a number of distinet solations—and, even more, might prove useful for formutating gen-
crul strategies. These simpler problems illustraw some ol the interesting aspects of the coupling of steategy and

nference rule. Fack of the simpler problenis focuses on proving Theorem CH.1, but proving it ussder difterent res-
inetions,

Theorem L1 The weak lixed point preperty holds for the set P consisting of the combinators S, B, C, and
L, where ({5x)y)e = (xz)(yz), ((Bx)y)e = x(yz), ((Cx)y)z = (x2)y, and Ix = x.
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Ax part of the hackeround, one muehe ind W wieresting wd usefud oaote that, just as § and K form a com-
plet: set ol comhmators tor combinatory togic, S, B3, CLoand U lormn a complete set tor that part ol the tope known as
non-clinumaning. A combinator s son chnnnating if all o the vanables that appear on the lett side ol s equation
abo appear at least oice on the nght swdes o other words, from the set consstitg of 5, B, CLand 1 ane can con-
stiucC a combinator ol any desired type trom these lour combrors providing, o course, that the combimator o be
constracted s non-chintmatng. Natwrally, when a given set ob combinators is complete for the entire logic or Tor
large traction of the logic, one should expect o encounter varions hazards when tocusing on such @ set. Among the
ubstactes vne encouiers are the propensity for requiring the nse of lung expressions w complete a desired construc-
o, the need o strongly consider pernutting paramoduliiion from a varable, and the need w strongly consuder per-
mithng paramodulation e a varizble, Bach of the simpler problems easing on proving Theorem CLIL which we
discuss on the path o giviag a proat tor Thearem C1lustrates some of these ditficubues.

The following six chuses can be used.

(1 x=x

) alaialS xayhe = alalx, 2y 20
() adaG By y) ) =alx,aly,2))

(4 alatC ay sy = walx sy

(3 atlxy==x

() y #alty)

Front this sct ol clhwses, we can guickly and casily give three prools of Theorem CL L Each of the proots
satislies some given restnetion on paramodulation, and corresponds to one of the simple problems we pronused o
examne. We wnchude all three proots w illustrate the use of different strategies thit one might consider using in
other studies. Nev» that, e the liest of the three, we use parimodaianon in a fashion that is contrary 10 our usnal
recommendations tor its use—in particutar, paramodulation both from and inte variables occurs. As a form of com-
pensation, we do net atlow paramodulanon from the eft side ol any equality, and only erms in negative clanses ase
aowed o be sate lerms. o other words, from a techaical viewpoint, we place clause (6) only in the set of support
and require every paramodufation w be related w what is called in combinatoey logic an expansion. For the first
proot, theretore, the strateiy consists oF using set of support and restricting paramodulation  expansions into terms
contied o the second arguient of an meguecly,

PProof 1 of Theorem C1.1
(1) x=x
(2) alaalS,x).yhe) = alalx,z) aly,7))
(3 a@@aiB.x).y).72) = a(x,aly,2))
(4) a@la(Cxlyhg) = ala(x,z1.y)
(5) a(l,x)=x
16) y«ally)

from the secomd argument of clause (3) into term a(ly) of clause (60)
(7) a(y,z) = a(at3,5,y).2)

from the second argument of clause (5) into the second occurreuce of the term 2 clause (7)
(¥) aty,z) = ala(aB 1 y)all,2)n

Clause (8) and clause (2) form a unit conflict, which can be seen by letting the variabies in clause (2) be x,
u, and v an the order in which they occur, and applying the substitution a(B,0 lor x, 1 tor u, and
atalS.af B0 Tor vy, and 20 Therctore, a contradicion s obtained, and ihe proof is complete.

Proof 1 shows that indeed the weak fixed point property holds tor the set P eonsisting of §, 8, C, and I Note'
thit the combinator C pliys no role i tas proof,

To use the proof of Theorem C1.1 10 ebtain the value for the exsstentially quantified variable y than oecurs in
the defintion of the weak fixed point property, one can adjoin the ANSWER literal —in this case, the hteral
ANSWER(y) - 10 the clause corresponding 1o the denial of the theorem. The answer literal will contain at each
pntan the proof the current wstantiauon of the universally quanuficd variable y that exists because of assunung
Theorem CLL fatse. Cne suuply takes the argument of the ANSWER literal when unit conflics is found and, tking
mto account that we began by sssuming the theorem false, replaces the constant f by the variabl: x. Summarizing,
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an examinatuon ol the unitication that establisties unit contlicy, the negaton of twe conclusion of heorem Ci 1, and
the path that leads o the unit conthet shows thai, tor the cxastentally quantiticd y that one Iv seckiny, one cian
chiouse the square ol (5B,

As we see o the second proof we give shortly, we can avoid paramadulation from and ino vinables if we
allow paramedulation from the fett sudes of the vanwoas Causes - allow parsmodulanons related 1o whid are called
reductiony i combmatory logic. The avoidance of paramoduolating froon and inre variables is olten essential tor, as
is knewn o those how have experimented with pacamodiilation or other approaches w building in equalivy, allowing
from terms or tta terms 10 be variables usually destroys the etfectiveness ol a theoren-proving progrun, Fhe rea-
sunt for such totald destruction, for those who may be new o this aspect of the field, is that variables always unify
with any chosen expression, This propeety of never failing (o unity would not necessarily be so damaging il a pro-
gram could separate the needed deductons from the imnceded, bat no one has come close at this point o tme o
discovenmyg a strategy that produces anything resembling such a separation, Such a discovery wouid deserve and
receive overwhelining acclomm, i it s ever nude.

Proof 2 of Theorem (11

(1) x=x

(23 afada(S,xy e = adalx,2)u{y.2 )
(3) atatatB x),v) 2
(4) aat(Cx)y)2) = afalx2)y)
(5) all,x)=x

ih) y=alfy)

from the second argument of clanse (3) into erm alf,y) of claase (6}
(N aly.z) # ata@aB hy)2)

from the second argument of clause (2V into term ata(a(3,D,y),2) of clause (7)
(&) alv,alu,v)) 2 alalaSa(B3,0)).v)

from the first argunent of clause (59 into term afu,vy of clause (8)
(V) alv.v) & atalaS.ai3,n),bwvy

Clause (9) unit conflicts with clause (1), and the proof s complete.

We can even get a proof that prevents parinodulation from using variables as from terms or as into terms,

and also restricts it ta the use of expansions only. However, where the first two proots finl w use C, the third proof
fads w use L

Praul 3 of Theorem C1.1
() x=x
(2) ala(a(S,x).y)2) = ala(x,2)a(y.2))
(3) a(@(a(B,x)y),2) = a(x,aly,z))
(4) ala(wC.x).¥),2) = a(aix,2)y)
(3) atlx)=x
6) y2uty)

from the second argument of claese (3) into erm a(f,y) of clause (6)
(7Y aly,2) # ala(a(B 1).y),2)

from the second argument of clause (4) into werm aGa(agB .0, v).2) of clse £7)
(B) atey) & atafa(Call,N),y)2)

Clause (8) unit conflicts with clause (2)—which can be seen by naming the variables in clause (2) «, u,
and v, and by osubstitoting a(CalBF) Tor x, aSaCaB) for w v, oand oy, and
a(alS,a(Ca(B.))aS,a(Ca(B,1)) 1or z—and the prool s complete,

An analysis of ths third proof shows that, for the y that must exist for the weak fixed point property o hold
for Theorem CLT, une can choovse the cabe of S(C(Bx)) 10 contrast o the syaare of ((SCBExNT which was found in
the first twa prools. Becanse the set ol combinators consising of $ and K alone is complete, we could use enher
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value of v 1o lead us to a proat of Theorem C1 by expressing certain combinators wnterms of S and Ko T particutas,
we could construct wo combinators that, respectively, act bke Boand 1 or two that, respectively, act ke Boand C.
One would then use cibier value of v tound by proviag Theorenn G but replace thie sppropriate combaators by
the corresponding expressions in terms pueely of 8 and Ko However, tus imdurect path s not what we have in nond
whett we suggpest proving Theorem CLas the fiest problem posed i s paper. "Hhat mdirect path depends oneither
making a goud guess about which other sets of combinators e (sutticientdy) complete - for example, the set con-
sisting of' §, B, C, and I—or making a good guess about which sets have the weak tixed point property. Becuanse we
had tugnd the two given vatues of ¥ in other stadies, we were able 10 pursue the indirect path to proving ‘Theorem
C1 quickly and casily with the program FUP. Bt that is not the objective of Problem 1o Instead, we supgest that the
theorem-proving program ane s evaduating should atempt w prove Theorem C1directly—using as anioms that for
S, that for K, and that for relfexivity-—by suuply denying that the weak tixed point propenty hotds for the set P con-
sisting ol 8 and K alone, Qur attempt w obtain a computer proot ot Theorem C1atong the disect path of inquiry
Laled, which i one reason why we consuder Problem b o be anomteresting chudlenye,

Since we are suggesting problems as challenges for various theorer.-proving programs rather than for
theorer-proving people, we shall complete a proad of ‘Theorem C1rather thin assigning that task o the rescarcher,
We stall use Theorem C L inour proof despite the preceding remarhs, We tbe this action o nereise the hkeh-
houd of independent and uninfluenced experimentation and, as one tght suspect, becanse of cenain pedagopical
considerations. We shall employ ateebraic noation rather than ¢lause notation tor thas proot,

A PProof of Theorem Cl
From Proot 1 of Thearaws CL i, one can conclude that
(D) ESExHHECEBRNTY = x(ESBAaNHES B0

is true for alt x. One can check this equatity by simply applying the equations (given as clauses (2), (3), and (5) in
Scetion 2.1) for 5, 13, and Lo the left side of () to obtin the night side. Next, one can prove tha
(2) (SKIK)x =X

for all r, which transkites 1o the statement that (SKIK s an 1 or, equivadently, (SKIK behaves as Tdoes, Then one
can show that

{3 (WUSIKSNK My = alys)

tor all x, y, and z. Eguation (3) siys that (SERSHK is a B, or, equavalently, behaves ke B. Because of equations (2)

and (3) and the retarks made concermng their meaning, we can n etiect substitute into equation (1) for both B and
1o oblun

(4) (SESIRSNKIIONUS KK DHSHHSIKSNK DHSKIK ) =
XUCSUSIRS YRS KR DISIUSIKS KOS KR,

which holds for al! ¢, and the prool of Theorem C1 s complete.

We can tmprove on the result contained in the proot of Theorem C1hy presenting a simpler value for the y
thal must exist salistying

y =Ry,

the equation that defines the weak fixed point propenty. T particalar, i we fet y be the square of
(SSRx)MNUSKIK), we can apply (he equations for S and for K and show that this y also satisfies the equation for
the weak tixed potnt property. The simpler y can be taund by wking the ieom Bxon the square of (S(Bx)1 and using
equatiun (31 1o write B i enms af' § and K| then redacing both occuerences ot the replaced eem with §, and linadly
using equaton (2 o write bancterms of S and Ko We therelore have twa solutions W Problem 1) and coild even
ol a thurd by focusimg on the cube of S(C(Bx)). In the conteat of Problem Uand s given solutions, we can
nnmediately pose one ol the prosmsed open questions, BGoes the second soliion contin the shortest expression tor
Ay sutistymy the weak fixed pownt property, where y s exvpressed purely wwerms ol S and K

Having finishied with Problem 1, we can turn in the next sectian o the second problem we sugpest for testing
and evaluaung theorem-proving programs.  However, i contrast o the treatment we bave ust given Problem 1, we
shall be Far bricter from here o, confimng the discussion i most cises (o the staterient of the problem ad @ shon
prout m logecal or wathematical terms. The coprous details we have given regarding ‘Theorem CLL can I sed as
a gnde for anterpreung the clauses obtained when attempting o solve Lier problems, They are included also to pro-
vide an exampte of how one can map a togical or mathematical prool o clause notation,
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2.2, Probfem 2

The second problem we pose wsks one 0 use an awomated theorem-proving progra o ind i proot of
Theorem C2, which we state atter introducing another new concept. Far this prablem, we need the debimion ot the
strony fueed potnt property.

Delinition. 10 P s g griven set at combinators, then the strony fived point property holds for Pl and only il
there exists a combinator v such that, for all combinators x, va = x(vx).

Theorem €2, The strong tixed point property holds for the set P oeonsisting of the combinators B and W
alone, where ((Bx)y)e = a(yz) and (Wx)y = (xydy.

Tu add 10 the background tor studying problems in combinatory logic, note that the presence for P ol the
strong fixed point property implies the presence of the weak Tived pont property, The converse s not e, as one
cun see by considening the combnnator {2 with

(L.uv = u(vv),

noting that the expression (Lx)Lx) is a y that satisfics the equation for the weak fixed point praperty which estab-
Lishes that the weak tixed point property holds for the set Poeonsisung of Loalone, and using Theotem C3 o show
thiat the strong fixed point property does not hold for this set P,

The following clauses can be used i the attempt o have @ theorem-proving program solve Problem 2.
) x=x
(2) afaB x)yha = alxa(y, /N
(3) a@a(W.x)y) = a(aix.y)y)
(4) a(y.fy)) « alfty)aty.Ky))

Even though we recommend this set of ¢lauses for studying Problem 2, we now give a proof more in the style that
an algebraist might give.

A Prouf of Theorem C2

Let N = ((BUB(B(WWHWHENBR)Y. Since, with the following sequence of equalities, we can show that Nx = x(Nx)
tor all x, we can set y cqual w N ta complete our proot. To obtain the sequence, we begin with Nx, occasionally
abbreviate (WB(Bx))) 0 R, apply the reduction corresponding 1o B or that correspondiug o W depending on the
feading symbol ol the expression under considerition, and substitute trom an intermediate result o deduce the linat
step.

Nx = (BUBUBWWHWHBNB)X = (BEBWWHWHR(LI) =

(B(WW))W ) B(13x)) = (WWHWB(Bx))) =

(W{W(BEx)MWB(BX)) = (WBB)NWBBONHWIB(Bx)) = (RR)R =

(((B(Bx))RIR)R = ((BxHRRNR = x((RR)R) = x(Nx)

ticre we have an exaraple of how automated theorem proving differs sharply from mathematics. Specifically,
a theorem-proving program has no way 10 magicatly olfer an e¢xpression, such as N, for use in completing a proof.
‘Tie mathematician, on the other hand, often exhibits the disarming capacity 1o make such offers; the oflers are
based on expericace, inwition, and who knows what else. This dichowmy between the approach that apparently
st be tken by a theorem-proving program and that which is frequentty taken by a mathematician is precisely
why the two make a powerlul team for solving problems and answaring open guestions.  Indeed, the combinator N,
which answered a tuestion that was once open, is just such an example of effective teamwork. This combinator
wits discovered while we were studying B and W with the assistance ol various thearesn-proving programs designed
and implemcented by members of our group.

That same study also fed us © formulate a new strategy, mentioned earlier, for sharply restricting the applica-
tion of pararmodalation. The strategy restricts paramodulaton o considering an iaio term only if its position vector,
 be defined immediately, consists of all 1's, which we express by saying that all paramodufation steps must satisly
the 's rule. The positon vector of a term gives the position of the tenn within a Literal. Fos example, the position
vector [ 2,3,1] says that the corresponding term is the lirst subterm of the third subterm of the second argument. For
a conerete Mlustraton of the use of position vectors, the third veenrrence of the constant W in the equatity

a(a(B.ata(B atBalW W) W))L,B).B)=N

has the position vector [1,1,2,1,2.2). (The fixed point combinator N played a vital role in our discovery of what

turned out 1o be an astoundingly large finily of combinators.) We find this strategy ol restricting into terms 10 be
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chusen from those whose position vector consists of all s o be very eftective for our studies in combinatory logic.
The strategy, as we discovered some time alter its formulation, focuses on a generalization of what is known in
combinatory logic as a head reduction.

20, Problem 3

For the third problem we suggest for experimentation, we locus on theorem C3, a theorem we proved o
answer a question that had been open, The question concerns the possible constructibility, from the combinators B
and L, of a ted point combinator. For the problem under discussion, we depart rather sharply from our usual prac-
tice of focusing on proof by contradiciion by suggesting instead that an automated theorem-proving program he
used o tind a model pertingnt o Theorem C3. 1 the program succeeds in finding such a model, then, ina sense that
will become obvious upon reading the statement ot Theorem C3 wihich we give inmediaiely, the program will have
tound g proof of that theorem.

Theorem C3. The streng fixed point property fails to hold for the set P consisting of the combinators B and L
alone, where ((Bx)y)z = x(y2) and (Lx)y = x(yy). Equivalently, from B and L alone, one cannot construct a Q such
that Qx = x(Qx) tor all x.

A Proof of Theorem C3

Assume, by way of contradiction, that the strong fixed point property holds for B and L. Then there exists a combi-
nator Q, which is constructed from B and L alone, such that, Yor an arbitrary combinator £, QF = [{QI). (We use the
constant f rather than F o be consistent with our notational convention when denying some theorem is true.) By the
Church-Rosser property for combinatory logic, there exists a combinator E such that Qf reduces to E and £(Q1) also
reduces to E. (The reductions that are used are paramodulations from the lelt sides of B and L.) Since {(Q) reduces
to E, and since the lirst occurrence of fcannot be allected by any reduction with 3 or L, E must be of the form (T
tor some combinator T. Therefore, QI reduces to IT for that same T. The combination QI obviously has the form
CD, where C contains no occurrences of f. Let us consider a one-step reduction of CD, and show by case analysis
thar the result C'D” is such that C* contiins no occurrences of f.
Case 1. The reduction involves C only or D only. Obvious.

Case 2. The reduction is with B and involves both C and . Then C must unily with (Bx)y, D must unily
with z, C’ must be the inage of x, and D’ must be the image of yz. Therefore, ¢’ must be a subterm ol C, which
unplies that C” contains no uceurrences ¢f £

Case 3. The reduction is with L. and involves both C and D. Then C must unify with Lx, D must unify with y,

C* nust be the image of x, and D* must be the image of yy. ‘Therelore, C must be a subterm of C, which imiplies
that C* contains no oecurrences ol f.

We can conclude, therefore, that, regardless of the number of reductions we apply starting with CD = Qf, we
can ncver obtain a-combinator of the form C*D* with C* contuining an occurrence of f. In particular, we can never
reduce QF to 1T, and we have arrived at a contradiction. In other words, the strong fixed point property ails to hold
for the set P consisting of B and L alone.

The object of Problem 3 is to find a model that satisfies B and L but fails to satisfy the strong fixed point pro-
perty. Of course, such 2 model would show that indeed the strong fixed point property does not hold for the set con-
sisting of B and L alone. Problem 3 has added interest since, as fur as we know, no one has yet succeeded in linding
such a model—in other words, Problem 3 is an open problem. Ol course, since we have just proved Theorem C3, a
model with the desired propertics must exist. Before we had proved Thearen C3, as commented carlier, the ques-
tion focusing on the constructibility of a tixed point combinator frowm B and L alone was open,

An alternative o Problem 3 asks for an awomiated theorem-proving program to find a proof of Theorem C3
directly, starting with its denial and proceeding in the standard fashion in our ficld. Such an achievement would be
of great interest since the proof we give is outside first-order predicate calculus. However, various rescarchers in
the ficld have discussed the possibility of using an automated theorem-proving proaram to prove theorems of this
type-—theorems whose proof depends on properties of unitication, and theorems aboat unification,

24. Problem 4
Far Problem 4, we focus on one ol the systems of combinators that is known to be complete. As commented

earlier, the set P consisting of the combinators $ and K is one ol those systems—given a combinator E and an equa-
tion that characterizes its behavior, one can construct from S and K atone a combimanor that behaves as B does. For
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such a construction, one can apply the well-known wgorithm Tound i Smallyan’s book, Alternatively - as iy stan-
dard in our field=-one coutd have a theorew-proving program attempt such o consirucnion by denving that any
cxpression exists satisfying the equation given tor the comboater 15 under stady. 1 the progrun succeeds with this
approach, then ~as occunied inthe vanous prools of Theorem CHL - the desaed construction is obtained by
analy zing the unincations upon which the proul rests,

The object af Problem 4 is to construet frony S and K alone, by Tollowing the standard upproach i automated
theorem proving rather than by applying the well-known algorithng tor such constrnctions, a combinator tha
behaves as the combinator U does, where the equation

(UN)y = Y((x0)y)
gives the behavior of U for allcand all ¥, "The ideais o proceed as we dlustrated m Section 200 and extract the con-
struction from a proof by contradiction. One can use the [ollowing clises,

(1N x=x

() ata(adS,x),y).2) = ala(x,2)aly, 7))

3y ata K, x),y) = x

(4) atalz (e} £ alel) a0V rneam

Similar to our carlier approach, we shall simply give two answers o Problem 4, ~ather than givieg a proof
relying on these four clauses. I one aftixes the variables x and y to either of the following expressions, and 1 one
then reduces with S and K, one can see that both expressions du indeed behave like UL

USUSIRS KNSR USIS KIK)SKYRNNKY)
(SKEWSKIKNMNSUSKKN(SKIKN

The first of the two expressions can be found with the algorithm for using S and K for such constructions; the
second can be found by noting that the combination LO behaves like U, and ihen reducing a combinator thut
behaves like LO, where (Lx)y = x(yy) and (Ox)y = y(xy). Question: s there a combinator, expressed purely in
terms of S and K, containing fewer than 13 symbols that satislies the equation for U?

2.5, Problem S
Problemn 5 focuses on the combinators S and W,
((Sx)y)z = (x2)(yz)

(Wx)y = (xyly

Problem 5, as with Problemn 3, has the object of finding a model. The mode! one iy secking must satisty S and W
and tail 1o satisly the weak fixed point property. The Tollowing clauses can be used o scarch for such a model.

M x=x

(2) ata(a(S,x).y).2) = a(a(x,2),uly,2)

() a@(W,x).y) = a(alx,y).y)

) y=aly)

Rather than giving & complete proof of the theorem that corresponds to Problem 6, we are content with the
following cutline. To see that the set consisting of § and W alone does not sasisfy the weank tixed point property, we
again rely on the Church-Rosser property for combinatory logic. In particular, if the weak fixed point property does
hold, then three must exist an E and a T such that both T and 1 reduce o B, where /s an arbitrary combinator, ‘The
number of lkeading £5in is one less than the number in FTL Each so-called reduction with S or W does not increase
the number of leading £s m T Theretore, even with differem seduction paths, no expression can exist such that
both 't and T reduce © it, which contriadicts the existence of 1, and the prool outling is complete.

Both the prool we have just outlined and the result concerning S and W, as [ar as we know, represent i new
result in combinatory logic,

2.6. Problem 6

Problem 6 focuses on the combinators S and K.

((S=)y)z = (xa)yr)
(Kx)y =x
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The object ul Problem & is w prove that the strong fixed potnt propeny holds Tor e set P oeonsisting of S and K
alone. An appropriate combinator can be fourd by ottning a relutition ol the following chaaes

(H a=x

2 aala(S,x0,y 000 = aladx,ay o)

3) alalk b y)y =1

() aly,ty)r # all(y)aty. ()

Wi give three fixed point combinators that are in effect solutions w Problem 6. We know of no shorier com-

binator than the one we list thind. bor readabiliry, we use sbbreviated notation with the following abbreviations.

1= (SK)K

M = (S

B = (S(KSHK

W = (SSHKD
Here are the three solutions.

((SIKUSDHHNUSIKW)BY)

((S(KNMD((SBYKM)))

((SSUSSHIHWINB)Y

3, Conclusions

One of the most important activities in awtomated theorem proving is that of experimenting with varivus prob-
lems taken from mathematics and logic, Experimentation s essentially the only way 1o measure the power of an
antomated theorem-proving program or the value of a new idea for increasing that power. In this paper, for such
experiments, we focused on problems taken from combinatory logic, a field that is unusually amenable w attack
with a theorem-proving program, Other arcas from which problemy can profitably be taken include ring theory
(associative and nonassociative), lattice theory, and the algebra of regutar expressions, We also have included vari-
ous open questions since such questions ofien promote and provoke experimentation. Ous emphasis thronghout tis
paper is on equality. Coping effectively with the equality relation is still one of the major obstacles in the ticld of
awtomated theorem proving.
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