## Challenge Problems Focusing on Equality and Combinatory I.ogic: livalating Automated Theorem-Proving Programs*

Larry Wos and William McCune<br>Ahamemaics and Computer Sitenee livision<br>Argonne Naiiondl l.aboratory<br>Argonne, IL outiv-ASH4

CONF-8805110--2
[2E:88 010057


#### Abstract

In this paper, we offer a set of problemis for evaluating the power of athomated theorem-proving progroms and the potentiat of new ideas. Since the problems published in the proceedings of the lirst CaDE conlerence difecharen76] proved to be so useful, and since researchers are now liar mote disposed to implementing and testing their ideas, a new set of problems to complement those that have been whety studied is in order. In general, the new problems provile a far greater challenge for an automated theorem-proving program than those in the first set do. Indeed, to our kiowledge, ive of the six prohlems we propose for stady have never been proved with a theorene-proving program. For eict problem, we give a set of sacments that can easily be trapstald into a standard set of clauses. We also state each problem in its mathematical and logical form. In matmy cases, we also provide a proof of the theorem from which a problem is taken so that one can measure a programes progress in its attempt to solve the problem. Trwo of the deorems we discuss arie of especial interest in that they answer questions that had been open conceming the constructibitity of two types of ambinator. We also include a brief description of a new strategy for restricting the application of paranodutation. All of the problems we propose for stady emphasize the role of equality. This paper is tuto atal in nature.


## 1. Introduction

To estimate the possible value and power of an automated theorem-proving progiam or of a new approach, one needs various test problems. One cannot simply make stiverse computations in the abstract about CPU cycles, conclusions drawn and discarded, conclusions drawn and retained, and such. Rather, one must attempt to solve probiems from various areas-mathematies and logic, for example-with one's program or with the new approach. After all, the value of a discovery, such as an inference rule or strategy, rests mainly with its effectiveness fur problen solving.

To determine how well a given program is doing in its attempt to prove some given theoren or solve some sperified problem, one ustally requires access to a proof or sotution to measure the program's progress. For, without knowing what the answer is, how can one estimate how close the program is to solving the assigned problem? Therefore, to facilitate and encourage the needed experimentation, we ofler in this paper various test problems, and for each we include a solution for measuring progress. All of the problems we present emphasize the role of equality.

Each problemy focuses on a theorem taken from combinatory logic. In general, the problems we propose for study are far more challenging than those ustally used for evaluating a theorem-proving program or a new concept. As evidence of their difficutty, for alniost all of them, from what we know, no proof las ever been ohtained with a theorem-proxing program. These problems are net only lard for a computer progran to solve, but, in many cases, also hard for a person to solve. fadeed, one nf the theorems ([heorem C3) we include answers a (fuestion that hatd been open, a question that concerns the constructibility of a particular type of combinator. Theorem C3 is also of interest in that it illustrates the excelient meld between autonated theoren proving and combinatory fogic, for its proof depends on various properties of unitication.

For each problem, we shall first state it as a logician would. To make the presentation seff-sufficient, we shall, where necessanty, give the needed background. Except in Section 2.1, our discussion of the reguired concepts will be iefse. In that section, we do give a tather lengthy treatment of the problem under discussion. We take this action in bart to provide a sample of how one can proceed and to focus on various strategies for restricting paramg dulation [Robinson(369]-especially for those who are new to automated theorem proving-and in part to promg $\beta$ p, a sharp increase in experinaentation in general. In particular, we include three short prools of a simple theorem (Theoren CI. I) to illustrate the role of differem strategies. We conjecture that, with the rapid growth in the interest

[^0]In atomated theorem proning, and wht the new breed of rescather who is far more excited about implementing and testags deas, the tied as cager for a set of problems that achudes some pertaps beyond the capabilty of aty progrant now in cxastore

To complement the mathematical and hogical statement of a problem, we shall give as sed of statements -

 we give for each problern will make it possimbe to map the problem acombingly.

In all cases, we shall supply a mathematical proxf, an outhe of such a proot, or a proof in abbreviated clanse notation-- sometimes, more than one of the three. Since almost all of the prohlems we pose have the propery that no perxit, as lar as we kow, hats ever heen obtained with a theorempowing program, we inclade mo statistics
 any statisties obdaned by a researcher who is successfal in sulving one of the posed problems--it the sulation is - bbaned with a program. Such statistics provide an important measure of a problem's ditheulty and of a program's
 and experiments and published in the tirse CADt: conterence prexedings - have proved most uselul.

In addition to our primary goal of encouraging rescarchers to test and evaluate programs, we have the secondary goal of causing whers su supply various problems tor this purpose. Alhough all tarlier attempt bo stiatiatate such contributions cleaty did not succed, the changes evidenced in the past fonr years may be of sulficome magni-
 time is the luture a database of test problems, including those presented in this paper and collers we use fer staty. Thas databatie will be accessibie by electronic masi.

We focus on prohicms heavily emphasizing equality in part becamse of the importance of this relation fo sor many possible applications of antomated theorem proving, and in part becanse of a view we have concerning the history of automatted tieore!n proving. In particular, were we sipping brandy and having a pleasant conversation with friends, we whuld suggest that atomated theorem !roving would have progressed tar more rapidly had it not then tur the dominant practice of treating equality as just another relation. Specilically, motia relatively recently, a large fraction of the discussion, research, and experimentation fiensing on problems in which equality-from the viewpoint of mathematics and logic-naturall: platys vital roke was in terms of the so-called P-lommation. For example, to avoid the obstales presented by direedy coping with equaliny, the axiom of left identity an a group was almost always represented as

$$
P(c, x, x)
$$

rather than as

$$
f(e, x)=x
$$

which is unfohatate. Pertaps this practice is justificd by the fact that the fieth had been in existence for only a few years; on the other hand, perhaps researchers should thave been mory aggressive. Now, at any rate, we recommend thas, when the equatity relation naturally dominates the description of a problem domain, the P-formulation be a voided where possible.

With this irtroduction in hand, let us now turn to a brief discussion of notation, and then to the field of combinatory logic from which we have taken the problems. Combinatory logic, one of the deepest acas of mathematics and logic, offers many probleins to test-ardi perhaps surpass-a theorem-jroving program's capaci:y lo solve problems. This field also offers many opportunities to use such a program to answer varions cirrently open aucstions, and chatlenges one to formbiale new approaches and strategies. With regard to the former, we include problems taken from our satcessfin attack on some of those phestions. To illustrate the hatter, we inchude a briel discussion of a new strategy which was formatated to increase the effectivaness of our programs when used lor stutying various types ot combinators. The object of the new stategy is io shatply restriet the application of patamodulation. Since the strategy did in lace prove very useful for our studies in combinatory logic, it or a variant of it might be of use for studies of other fields of mathematics or logic.

## 2. Combinatory i.rgic

Before we di;cuss the first problem, tet us supply the necded backgromad, beginning with notation. in all of the problems we utler, as commented earlier, we heavily emphasipe equatity and eqnatity-oriented notation. Because we wish to ennhasize that the equality relation is treated as a buith-in relation, we write $=0$ or $\neq$ beiween the argurnents of a literal, lather than using a predicate such as lioUAL or $\neg$ E()UAL followed by its two arguments.


 buil int. Nevertheles: we stongly recombend that, if panable, the prohems be comsidered wathe the extended


 athen the probleats.





 chasity, we shall hist some of the se afell que itums.

Combmatory hegic can he vicwed as an alternative foundation for mathematics - Which was Curry's
 as set theory th the sense that essentally all of mathentatics can fee embedded in ot On the other hand, any computable functon can tee expressed in combmatory logic, and the hegic can be used as an athernative bs the Toring
 the absuact motem ot applying one tumbon to another.

For a more formal definition, we can torrow from Barendregt who defines combinatory logic as a system satistying the combimators $S$ amd $k$ (detined shortly) with $S$ and $K$ as as constants, and satisfying reflexivity, symmetry, transitivity, and wo equality substitution axioms for the functon that exists impticity for applying one com-
 order predicate caleulas, this logic is clataly within the province of antomated theorem-proving. Eyen farther, atheugh one can charly operate within ordinary tirst-order predicate calleulus and rely on inference rules such as hyperresohntion and UR-resolution, we recommend that one tustead stmbly combinatory logie within the extended
 ence rule for building in equality.) Theretore, to study the entire logic, we need only choose an appropriate function symbel, such as a wind tor "apply", and suppty the axion for rellexivity and those for the combinators $S$ and $k$.

$$
\begin{aligned}
& x=x \\
& a(a(a(S, x), y), z)=a(a(x, x), a(y, z)) \\
& a(a(K, x), y)=x
\end{aligned}
$$

Even though one can study all of combinatory logic in krms of $S$ and $K$, one caln also study the lield or subsets of it by choosing other combinators to replace $S$ and $K$. Indeed, our focus will shatt from one set of combinators to amother, depending on the type of problem to be studied. For eacin combinator of interest, we supply an eguation that gives the behavior of the combinator. In such an equation, the combinator appears as a constant. Strictly speaking, a combinator is a memter of a class of objects that exhibits the tehavior given by its equation. 1:or example, were we being more rigorous, we would sity that if the combinator E satisfies

$$
(E x) y=x
$$

for all combinators $x$ and $y$, then we would say that $E$ is a $K$ since $K$ satisfies

$$
(K x) y=x
$$

which we stated earlier in clamse form. Therefore, when a problem asks for the construction of a combinator E from a sed ${ }^{\prime}$ 'of combinators, the object is of find an expression it terms of the elements of P that exhibits the behavior that $E$ does. The solvability of such problems is one of the reasons that the system consisting of $S$ and $K$ alone is stadied, for one can always succeed in binding the required exprescion. Formally, one seys that the set consisting of $S$ and $K$ alone is complete. One can fina other complete secs of combinators by reading one of the gencrat texts on combinatory logic (Curry 58 , Curry 72, Smullyan 85 , Barendregi811.

To complete the background-especially for those who are new to antomated theorem proving-we point out that, if one follows our recommendation of using paramodutation as the inferene rale, one will directly cacomer the impressive obstacle of coping with equality-oriented reasoning. Overcoming the diffeufties inherem when

 aphlication of paramodulaton anclude allowing or peventing paramodulation from a variable, inh a van able, frem
 comang the relative position within a statement. Sime the advantages and disadvantages vary wadely deperding
 staced in increasing the interest in the corresponding reseateh.

### 2.1. Probicm 1

For the tirst problen in this section, we focus on one of the interesting properties, the weak fraid point pro-
 Raymond Smullyandescrves eredit as the me wintroduce and den study his property. His book Vo Mink a Monk-
 need the fullowing detinition.
 all combinators $x$ there exists a combinator $y$ such that $y=x y$.

For this paper, we can only give the following small hint atout why the weak tixed poin property and the lo-be-detined strong lixed point property ate of interest. Gö̈lel's self referential sentence and Klene s recursion theorem can be interpreted ats applications or tixed point combinators |barendregi8l|. Also, fixed point combinators were known as paradoxical combinators in the carly days of combinatory lagic, becamse the Russell Parabox and other paradoxes can tre formolated in terms of fixed proint combinators.

Fo stady a combinator of the type in which we are interested in here, an equation giving the behavior of the combinator is required. We restrici ume attention to combinators that are called proper, one smeh that the left side of tsequation is lefi associated and consists of the combinator followed by some nomempty list of distinct variathes, and the right side consists of some or ath of the variables that oceur on the left side. Fior example, the combinator $S$ is detimed with the equalion
$((S x) y) z=(x /)(y z)$,
whith explains why we cam, when studying $S$, use the second clatise of de four clauses given catier, where the lanctuna is given explicitly to show that one combinator is being applied another.

Theorem CI. The weak fixed point property holds for the set $P$ gonsisting of the combinators $S$ and $K$ atone. where $(f=x) y k=(x),(y z)$ and $(x, x) y=x$.

Froblem I asks for a proof of Theorem C1. The following, clatses, in abbreviated notation, characterize this problen. (In contrast, combinatory logie deres not explicidly employ a funcion symbul such as a and observes the convention that all expressions are left assodiated unless other vise taklicated.)

```
\(x=x\)
\(a(a(a(S, x), y), z)=a(a(:, i), a(y, z))\)
\(a(a(K, x), y)=x\)
\(y \neq a(t, y)\)
```

If one assigne a chosen automated theorem-proving program the task of tinding a proof for some specific theorem-in particular, for Ttieorem Cl-with the object of testing and evaluating the program, some means must exist for measuring the program's progress. The most whious means-and perhaps the only significant onefocuses on what percentage of a prosel has treen found by the program. One must, therefore, have a proul in hand, or be able to complete a proof by usiag whatever infonmation the program has fomm. To meet this regtirement for Theorem Cl, we shall, as promised earlier, supply our own prosif. Before we give dat prool, let us fixus on shine sumpler problems to provide additomal mformanon that might prove useful for altacking theorem Cit in varions ways-Problem I admits a number of distinct solatoons-and, even more, migh jrove useful for formalaing general strategies. These simpler problems illustrate some of the interesting aspects of the coupling of strategy and inference rule. Exh of the smpler problems focuses on proving Theoren Cl. , but proving it urder diflerent restrictions.

Theoremi ('I.1. The weak lixed peint preperty holds for die set P consisting of the combinators $\mathrm{S}, \mathrm{B}, \mathrm{C}$, and 1, where $((S x) y) z=(x z)(y z),((B x) y) z=x(y z),((C x) y) z=(x /))$, and $\mid x=x$.





 large tracton of the logic, one shouk expee to emenoter varions hatards when fousing on such a sef. Amomg the





The fullowing six clatuses can be used.

```
(1) }x=
(2) a(ala(S,x),y),0)=a(al(x,<,al(y,z)
(3) a(a(at(1,x),y),8)=a(x,a(y,0))
(+) atalac(0, (,y,d)=ata(x,a,y)
(b) a(1,x)=x
(t) }y\not=a(t,y
```

From this sel of chasis, we can yuichly and casily gave three proods of Theorem Cl. L. Each of the proofs samsties some given restrictan on paranodutation, and corresponds wone of the simple problems we prombsed 0

 recommendations tor its use - in particalar, paramodulation both from and into variables oceurs. As a form of compensition, we do not allow paramodulaton from the left side of any equality, and only terms in negative clanses are athowed to be tate lerms. In other words, from a technical viewpoin, we plate clanse ( 6 ) only in the set of suppot and reguive every paramodulation to tex related to what is called in combinatory logic an expansion. For the lirst proot, therefore, the stategy consists of using se of support ad restricting paramodufation en expansions into ferms contured to de second atrgunsent of an hicyatity.

## 1'roof 1 of Theortm Cl.

(i) $\mathrm{x}=\mathrm{x}$
(2) $a(a(a(S, x), y), d)=a(a(x, z), a(y, x))$
(3) $\mathrm{a}(\mathrm{a}(\mathrm{al}(3, x), y), 1)=\mathrm{a}(\mathrm{x}, \mathrm{a}(\mathrm{y}, \mathrm{R}))$

(5) $a(1, x)=x$
(6) $y \neq a(f, y)$
from the second argument of clause (3) into term a(t,y) of clamse ( 6 )
(7) $\mathbf{a}(y, z) \neq:(a(a)(3,1 ;, y), z)$
from the second argument of clatice (5) into the second ckeurtence of the term 2 inctase (7)

Clanse ( 8 ) and chanse (2) form a unt conflict, which can be seen by lenting the variables in clanse (2) $x^{2} x$, $u$, and $v$ in the order in which they oceur, and aplying the suhstitution a(B,i) for $x$, I for $u$, amd

 that the combinator (' plays no role th this prool.
 the defimtion of the weak fixed proint property, one can adjoin the ANSWER literat -m this case, the hteral ANSWER(y) - to the clanse eorresponding to the denial of the theorem. The answer literal will contain at eath
 Theorem Cl.t fatse. One smyty takes the argument of the ANSWI:R literal when mit comfict is lound and, taking moto account dat we began by assuming the theorem false, replaces the constant foy the variable $x$. Summarizing,

 choose the square of ( (StBx)) $)$.

 reducions in comhmatory logic. The avodance of paramodulating from and int variables is oflen cescotial for, ats
 frem terme or thta terms do be variables usually destroys the dfectiveness of a theorem-proving program. The reason tor such total destraction, for those who may be new to this aspect of the lield, is that variahles atways mify widh any chosen expresion. This property of never failing to unify woud not necessarily be so damaging if a pro-

 sccive overwhelming accham, if it ever mathe.

## Proul' 2 of Theorem C. 1.1

(1) $x=x$
(2) $a(a(a(S, x), y), x)=a(a(x, x), a(y, 1)$
(3) $a(a(a)(3, x), y), a=a(x, a(y, x))$
(4) $\left.a\left(a(a)\left(C^{\prime}, x\right), y\right), a\right)=a(a(x, a), y)$
(5) $a(1, x)=x$
(f) $y \neq a(f, y)$
from the second argument of clamse (3) into term aff,y) of clanse (6)
(7) $\mathrm{a}(\mathrm{y}, \mathrm{z}) \neq \mathrm{a}(\mathrm{a}(\mathrm{a}(\mathrm{B}, \mathrm{l}, \mathrm{y}), z)$

( 6 ) $a(v, a(1(u, v!) \neq a(a(a(S, u(3,0), n), v)$

(リ) $u(v, v) \neq a(a(a i(S, a i(13, l)), l), v)$
Clause (9) min conficts with clanse (1), and the prow is complete.
We can even get a proof that prevents paramodulation from using variables as from terms or as into ferms, and also restricts to the use of expansmons onty. However, where the lirst wo prexits fat to use C, the third proof latis to usic I.

## Praf 3 of Theorem Cl.

(1) $x=x$
(2) $a(a(a(S, x), y), z)=a(a(x, z), a(y, f))$
(3) $a(a(a(B, x, y), z)=a(x, a(y, z))$
(4) $a(a(a(C, x), y), z)=a(a(x, z), y)$
(5) $a(I, x)=x$
(6) $y \geq a(f, y)$
from the second argument of clatse (3) into term a(f,y) of clatue ( 6 )
(7) $a(y, z) \neq a(a(a(B, i), y), z)$


Clause ( 8 ) unit condlicts with clamse (?) - which can be seen by naming the variables in clanse (2) $r, u$,



An analysis of this third proxof shows that, for the $y$ that most esist for the weak fixed point property to hold
 the tirst two prools. Becanse the set of combinators consisting of $S$ and $K$ atone is complete, we could usce enther



















## A leromf of Theorem Cl


(1) $((S(B x)) L\}((S(B x))!)=x((\langle S(B x))])(S S(B x)) I))$
 Section 2.1 ) tior $\$, 13$, and 1 to the left sute of (l) to ohtain the right she. Next, ofic can prove that
(2) $($ (SK $) \mathrm{K}) \mathrm{x}=\mathrm{x}$
for all $x$, which tramanes m the stament mat (SK)K is an I, w, equivalemy, (SK)K behaves as I dees. Then one cull slow thatl
(3) $((1(S(K S)) K) x) y)=x(y z)$
 and (3) and the retmarks made comerning their meaning, we can in cllect substitule into cequaton ( 1 ) for boh 13 and I lowblilli
( $\downarrow$ ) $((S((G S(\dot{Z} S)) K) x)((S K) K)((S(1 S(K S)) K) x)((S K) K))=$

which holds for all $x$, and the presof of Theorem Cl is complete.
We can improve on the result contaned in the proot of theorem CO bresenting a simpter value fire the $y$ that must exist satnstying

$$
y=x y
$$

the equation that detines the wead fixed prom property. In particalar, if we le $y$ be the spare of
 the weak tixed pont properly. The simpler $y$ catu be fand by tak mg the tern $B x$ m the spuare of ( $S(B x)$ ) and using





 and evalationg theorem-proving progratms. However, it contrast to the treathent we have just given foblke 1 , we
 proof in logical or mathematheal terms. The copous detals we have given regardmg 'Theorem ('I I cim ke wed as
 vale an example of how one can :map a higical or mathematical pron! moctane notation.

### 2.2. Prohilem 2




 there exists a combinator $y$ such that, for all combinators $x, y, y=x(v a)$.

Theorem C2. The strong fixed point property holds for the set $P$ consisting of the combinators $B$ and $W$ alone, where $((B x) y) c=x(y a)$ and $(W x) y=(x y) y$.

To add to the bateground for studying problems in combinatory logic, mote that the presche for P of the
 can se by considering the combmator 1 . with

$$
(1 . u) v=u(v V) .
$$

noting that the expression ( $L x$ )(Lx) is a $y$ that satisfies the equation for the weak fixed poine property which estath-
 that the strong tixed peint groperty does not hold for this set $P$.

The following clauses can be used in the altempt lo hatve a theotill-praving pragram solve broblem?

```
11) }x=
(2) a(a)(arB,x),y), A)=a(x,a(y,A)
(3) a(a(W, (W),y)=a(a(x,y),y)
(4) a(y,f(y)) &a(f(y),a(y,l(y)))
```

Even though we recommend this set of clauses for studying Problem 2, we now give a proof more in the style that an algebraist might give.

## A Proul of Theorem C2

Let $N=((B((B)((R(W W)) W)) B)\rangle B)$. Since, with the following sequence of equalities, we can show that $N x=x(N x)$ for all $x$, we can set $y$ cpual to $N$ or complete our proot. To obain the sequence, we begin wilh $N x$, occasionally abbreviate ( $\mathrm{W}(B(B x)$ ) to $R$, apply the reduction corresponding o 13 or that corresponding to $W$ depending on the leading symbol of the expression under consideration, and substitue from an internedate result to deduce the limal step.

$$
\begin{aligned}
& \left.N_{x}=((B((B((B C W W)) W)) B)) B\right) x=((B((B(W W)) W)) B)(B x)= \\
& ((B(W W)) W)(B(B x))=(W W)(W(B(B x)))= \\
& (W(W(B(B x)))(W(B(B x)))=((W(B(B x)))(W(B(B x))))(W(B(B x)))=(R R) R= \\
& (((B(B x)) R) R) R=((B x)(R R)) R=x((K R) R)=x(N x)
\end{aligned}
$$

Here we have an example of how automated theorem proving differs sharply from mathematics. Specifically, a theorem-proving program has no way to magically olfier an expression, such as $N$, for use in completing a pronof. Tile makematician, on the oher hand, witen exhibits the disarming capacity to make such oflers; the offers are based on experience, intuition, and who knows what else. This dichotomy between the approach that apparently must be taken by a theorem-proving pragram and that which is freguently taken by a mathematician is precisely why the two make a foweriul tean for solving problems and amsw:ring open ynestions. Indeed, the combinator $N$, whicl answered a duestion that was once open, is just such an cxample of elfective teamwork. This combinator was diseovered while we were studying $B$ and $W$ with the assistance of various theorem-proving prograns designed and implemented by members of wur group.

That same study also led us on formulate a new strategy, memioned earlier, for sharply restricting the application of paramokdalation. The strategy restricts paramodulation th considering an infos term only if its position vectur, to be defled immediately, consists of all I's, which we express ly saying that all paramodulation steps must sathisly the I's rule. The positun vector of a term gives the position of the term within a literal. lion example, the posmont vector $[2,3,1]$ says that the corresponding term is the lirst subterm of the third sublerm of the secomd argment. For a concrete allustratoon of the use of position vectors, the third excorrence of the constant $W$ in the equatity

$$
a(a(B, a(a(B, a(a(B, a(W, W)), W)), B)), B)=N
$$

has the position vector $\{1,1,2,1,2,2\}$. (The fixed point combinator $N$ phayed a vital role in our discovery of what turned out to be an astoundingly large finnily of combinators.) We tind this strategy of restricting into lerms to be
chosen from those whose position vector consists of all l's to be very eftective for cor staties in combinatory logic. The strategy, as we discovered some time after its formulation, liocuses on a gemeratization of what is known in combinatory logio as a hedal reduction.

### 2.3. Problem 3

For the third problem we suggest for experimentaion, we focus on theorem C3, a theorem we proved to answer a question that had been open. The question concerns the possible constructibility, from the combinators 13 and L , of a uxed point combinator. For the problem under discussion, we depart rather sharply from our usual practice of tocusing on proof by contradiction by suggesting instead that an atomated theorem-provitig progratm be used to tind a model pertinent to Theorem C3. It the progran succeeds in finding such a model, then, in a sense that will become ohvions upon reading the statement of 'Theorem C'3 which we give inmediaiely, the program will have found a proof of that theorem.
 alone, where $((B x) y) z=x(y z)$ and $(L x) y=x(y y)$ Equivalently, from $B$ and $L$ alone, one cammot comstract a $Q$ such that $Q x=x(Q x)$ tor all $x$.

## A Proof of Theorem C3

Assume, by way of contradiction, that the strong fixed point property holds for $B$ and $L$. Then there exists a combimator Q , which is consurucd from B and L alone, such that, for an arbitary combinator $f, \mathrm{Ql}=\mathrm{l}(\mathrm{Ql})$. (We use the constant $f$ rather than F to be consistent with our notational convention when tenying some theorem is true.) By the Church-Rosser property for combinatory logic, here exists a combinator Es sheh that Qf rednces to E and $f(Q 1)$ also reduces to $E$. (The reductions that are used are paramodulations from the left sides of B and L .) Since $\mathrm{P}(\mathrm{QD}$ ) rediuces to E. and since the lirst occurrence of $f$ cannot le allected by any redaction with B or L , E must be of the form IT for some combinator F . Therefore, Qf reduces to IT for that same T. The combination Qf obviously has the form $C D$, where $C$ contuins no occurrences of $f$. Let us consider a one-step reduction of $C D$, and show by case analysis that the resule $C^{\prime \prime} D^{\prime}$ is such that $C^{\prime}$ contains no occurrences of $f$.

Case 1. The reduction involves $C$ only or $D$ only. Obvious.
Case 2. The reduction is with $B$ and involves both $C$ and $D$. Then $C$ must unify with ( $B x$ )y, $D$ must unify with $z, C^{\prime}$ must be the inage of $x_{1}$ and $D^{\prime}$ must be the image of $y z$. Therefore, $C^{\prime}$ must be a subterm ot $C$, which innplies that $C^{2}$ contains no occurrences of $f$.

Case 3. The reluction is with 1 . and involves both $C$ and $D$. Then $C$ must urify with $L x, D$ must mify with $y$, $C^{\prime \prime}$ must be the image of $x$, and $D^{\prime}$ must be the image of $y y$. Therelore, $C^{\prime}$ must be a sabtern of $C$, which implies that $\mathrm{C}^{\prime}$ contains no securrences of $f$.

We can conclude, therefore, that, regardless of the mmber of rednctions we apply starting with $\mathrm{CD}=\mathrm{Qf}$, we can never obtain a combinator of the form $C^{*} D^{*}$ with $C^{*}$ containing an occurrence of $f$. In particular, we can never reduce Qf to $\mathbb{I T}^{T r}$, and we have arrived at a contradiction. In other words, the strong fixed point property lials to hold for the set $P$ consisting of $B$ and $L$ alone.

The object of Problem 3 is 0 find a model that satisfies $B$ and $L$ but fails to satisfy the strong fixed point property. Of course, such a model woud show that indeed the strong fixed point property does not hold for the set consisting of $B$ and $L$ alone. Problem 3 hats added interest since, as far as we know, no one has yet succeeded in linding such a model-in other words, Problem 3 is an open problem. Ol course, since we have just proved 'theorem C3, a model with the desired properties must exist. Before we had proved Theoren C3, as commented earlier, the question focusing on the constructibitity of a tixed point combinator from B and L , alone was open.

An alternative to Problem 3 asks for an automated theorem-proving program to find a proof of Theorean C. 3 directly, starting with its denial and proceediag in the standard fashion in our fieh. Such an achievement would be of great interest sime the proon we give is ontside first-order predicate calculus. However, varions researshers in the field have discussed the possibility of using an amtomated theorem-proving proseram to prove theorems of this type-theorems whose proof depends on properties of unitication, athd tivorems about unitication.

### 2.4. Problem 4

For Problem 4, we focus un one of the systems of combinators that is known to be comptete. As commented etulier, the set $P$ consisting of the combinators $S$ and $K$ is one ol those systems-given a combinator $E$ and an effuation that characterizes its behavior, one can constract from $S$ and $K$ alone a combmator that behaves as $L$ : does. For



 analy ring the mincations upon which the prove mests.

The object of Problem 4 is to constrme from $S$ and $K$ abone, by following the stamdand appoach mantomated theorem proving rather dan by applying the well-kmown agormba for such comstmetions, a combinanor that behaves as the combinator $U$ dows, where the eynation

$$
(U x) y=y((x x) y)
$$

gives the behavior of $U$ for all $x$ atm all $\because$. The idea is fo proced as we illustrated in Section 2.1 and extract the constrexion from a proni by contradiction. One can use the following chanes.
(1) $x=x$
(2) $a(a(a(S, S, x), y), x)=a(a(x, x), a(y, z))$
(3) $a(a t(K, x), y)=x$
$(f) a(a(x, 1(x)), g(\pi)) \neq a(g(2), a(a(f(x), f(x)), g(x)))$
Similar to our carlier approach, we shall simply give $w$ w answers lo Problem $A$, rather than giving a proof relying on these four clanses. If one aftixes the variables $x$ and $y$ to either of the following expressions, and if one then reduces with $S$ and $K$, one can see that both expressions do indeed behave like $U$.
$((S((S S K S)) K))((S(K(S((S((S K) K)((S K) K)))) K))$
$((S(K(S((S K) K))))((S((S K) K))((S K) K)))$
The first of the two expressions can be found with the algorithm for using S and K for such constructions; the second can be found by noting that the combination $L O$ behaves like $U$, and then reducing a combinator that behaves tike LO, where $(\mathrm{L} x) \mathrm{y}=\mathrm{x}(\mathrm{yy})$ and $(\mathrm{Ox}) \mathrm{y}=\mathrm{y}(\mathrm{xy})$. Question: Is there a combinator, expressed purely in lerms of $S$ and $K$, containing fewer than 1.3 symhols that satisties tite equation for U"?

### 2.5. Problem 5

Problem 5 focoses on the combinators $S$ and $W$.
$((S x) y) z=(x z)(y \%)$
$(W x) y=(x y) y$
Problem 5, as with Problem 3, has the object of finding a model. The model one is seeking must satisty $S$ and $W$ and fail to satisty the weak tixed point property. The following clauses can be used to scarch for such a model.
(1) $x=x$
(2) $a(a(a(S, x), y) ; x)=a(a(x, z), a(y, z))$
(3) $a(a(W, x), y)=a(a(x, y), y)$
(4) $y \neq a(f, y)$

Rather that giving a complete proof of the theorem that corresponds to Problen 6, we are content with the following culline. To see that the set consisting of $S$ and $W$ alone deses not satisfy the weak fixed point property, we again rely on the Chureh-Rosser property for combinatory logic. In particular, if the weak fixed point property does hold, then three must exist an $E$ and a $T$ such that both $T$ and $\mathrm{I}^{\prime}{ }^{\prime}$ reduce on $E$, where $f$ is an arbitrary combinator. The
 the maber of heating fs m ' 1 . Theretiore, even with differem reduction paths, no expression can exist such that


Both the proot we have just outhed and the result comerning $S$ atod $W$, as far ats we know, represent a new result in combinatory logic.

### 2.6. Problem 6

Problent 6 focuses on the combinators $S$ and $K$.

```
((S:) y)z = (x%)(yz)
(kx)y=x
```



(1) $\mathrm{x}=\mathrm{x}$
(2) $a(a(a)(S, x), y!, x)=a(a(x, 1) a t y, 1)$
(3) $a(0,1(k, n, y)=x$
(4) $a(y, l(y)) \neq a(l(y), a(y, f(y)))$
 binator than the one we hist third. For readabili'y, we use abbreviated notation with the fullowing abheviatots.

$$
\begin{aligned}
& 1=(S K) K \\
& M=(S V) 1 \\
& B=(S(K S)) K \\
& W=(S S)(K I)
\end{aligned}
$$

Here are the three solutions.

$$
((S(K((S I)))))((S(K W)) B))
$$

```
((S(KM))((SB))(KM))
```

$((S(S(((S S) I) W))) B)$

## 3. Conclusions

One of the most important activities in automated theorem proving is that of experimenting with rinious prohlems taken from mathematies and logic. Experimentation is essentially the only way to measure the power of an antomated theorem-proving program or the value of a new idea for increasing that power. In this paper, for stech experiments, we focused on problems taken from combinatory logic, a field that is unusually amenable watack with a theorem-proving program. Other areas from which problems can prolitably be taken include rimg theory (associative and nonassociative), latice theory, and the algebra blegular expressions. We also have ineluded various open questions since such questions of en promote and provoke experimentation. Our emphasis hronghouthis paper is on equality. Coping effectively with dee equality relation is still one of the major obstacles in the tield of athomated theorem proving.

## References

[Barendregl81] Barendregt, H. P., The Lambda Calculus: It's Syntax and Semambes, North-flulland, Amsterdam (1981).
[Curry58] Curry, H. B. and Feys, R., Combinatory Logic I, Non.h-Fluland, Amsterdam (1958),
[Curry72] Curry, H. B., Hindley, J. R., and Seldin, J. P., Combinatory Logic II, North-I lolland, Amsterdam (1972).
[McCharen76] Mcharen, J., Overbeek, R., and Wos, L., "Problems and experiments for and with attiomated theorem proving programs", IEEE Transactions on Computers C-25, pp. 773-782 (1976).
'RobinsonG691 Robinson, G., and Wos, L., "Paramodulation and theorem-proving in lirst-order theories wilh
 burgh (1969).

Smmallyax5| Smullyan, R., To Mock a Mockinglerd, Alfred A. Knopl', New York (l985).

## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government, Neither the United States Government nor any agency thereof, tor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeriess, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.


[^0]:    *This work was supported by the Apphied Mathematical Selenees subprogram of the office of Einergy Research, U.S. Deparment of E:ner-
    

