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ABSTRACT: Four different semantic models are given for a simple uniform programming 
language, containing constructs for parallel composition, global nondeterminism and com­
munication: linear semantics, failure semantics, readiness semantics, and branching 
semantics. The mathematical framework used consists of complete metric spaces. All 
models and operators are given as fixed points of suitably defined contractions. This allows 
for a uniform presentation and an easy comparison of these models. It is shown that the 
latter three semantics all are correct and that the failure semantics is fully abstract with 
respect to the linear semantics. Although these results are not new, we believe the unifor­
mity of the way they are presented here to be of some interest. 
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1. INTRODUCTION 

The semantics of a uniform programming language e is studied, containing the following con­
structs: atomic actions, which are left uninterpreted and which can be either internal or commun­
ications; sequential composition, global nondetenninism and parallel composition; and recursion, 
modeled via the simultaneous declaration of statement variables. In the context of complete 
metric spaces, which is the mathematical framework we adopt, this language (and others similar 
to it) is treated in [BKMOZ86] and [BMOZ88]. There, an operational semantics 0 and a denota­
tional semantics 6j) for e are presented together with a proof of the correctness of 6D with respect 
to 0. In [KR88], this proof is simplified: For the denotational semantics an alternative formula­
tion is given, based on the same transition relation which was used for the definition of 0. Then 
the correctness is proved by showing that both this alternative denotational semantics and 0 are a 
fixed point of the same contraction, which by Banach's theorem has a unique fixed point. 

In this paper, we shall introduce, again in a metric setting, two other semantics for e, which 
essentially are the well known readiness semantics ([OH86]) and failure semantics ([BHR84]). 
For both models, two alternative definitions will be given: an operational one, which is based on 
a transition relation for e, and a compositional one, using explicit semantic operators. These 
differently defined models are shown to be equivalent along the lines of [KR88]. Then the readi­
ness and failure semantics are related to 0 and 6D: they are less distinctive than 6D is but are (still) 
correct with respect to 0. The importance of the failure model lies in the fact that it is fully 
abstract with respect to (9, that is, it makes just enough distinctions in order to be correct (and 
thus compositional) with respect to 19. This fact is proved along the lines of the proof of a similar 
statement in [BK087]. 
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2. A SIMPLE LANGUAGE 

For the definition of ewe introduce a (possibly infinite) set of elementary actions (a,bE)A. 
(Throughout this paper, the notation (x,y E )X is used for the introduction of a set X ranged over 
by typical elements x andy.) We assume that A is partioned into A =JU C, where (cE)C is the 
set of communication actions and I (disjoint from C) is the set of internal actions. Similarly to 
CCS ([Mil80]) and CSP ([Ho85]), we assume given a bijection-: c~c, which satisfies -o-=idc. 

It yields, for every cEC, a matching communication c. In I, we have a special element 7 denot­
ing successful communication. Further, let (x E)Stmv be the set of statement variables. 

DEFINITION 2.1 (Syntax for e): The set of statements (s,t E)e is defined by 

s::= als1;s2ls1 +s2ls1lls2Jx. 

A statement is of one of five forms: an elementary action a EA, which is either internal (a EI) 

or a communication action (a EC); the sequential composition of statements s1 and s2 ; the non­
deterministic choices 1 +s2, also called global nondeterminism; the parallel composition s1 lls2, 
which will be modeled by the arbitrary interleaving (or shuffle) of the elementary actions of s1 

and s2; and finally a statement variable x, which will be bound to a statement with the use of 
so-called: 

DEFINITION 2.2 (Declarations): The set of declarations (8E)Jl is given by 

with n;;;;.O, x;EStmv, and g;Eeg, the set of guarded statements which is defined below. We 
require all variables x; to be different. We shall sometimes write x<==s E8 if there exists an 
iE{l, ... ,n} withx;=xands;=s. 

DEFINITION 2.3 (Guarded statements): The set (gE)eg of guarded statements is given by 

where sEt 

It will be useful to have the languages e and e,g contain a special element E, called the empty 
statement. We shall still write e and r:,g for eu {E} and e_g U {E}. Note that syntactic constructs 
like s ;E or Ells are not in e or e,g. 

A statement g is guarded if all occurrences of statement variables x in g are preceded by some 
guarded statement g', which by definition has to start with an elementary action. This require­
ment corresponds to the usual Greibach condition in formal language theory. 

In e, recursion is modeled via the simultaneous declaration of statement variables rather than 
using the µ-formalism, which allows nested constructs like: µx[a; µy[x ;b + c ;y ]]. This limitation 
is not essential for what follows and entails a considerably more concise semantic treatment of 
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the language t 
In the next section, we shall define a number of operational semantic models for e which all are 

based on the same transition relation for e, which we introduce next. 

DEFINITION 2.4 (Transition relation fore) 

For every declaration oE~ we define a transition relation: 

-8_,. c;;; f::XAXe. 

For (s, a, s') E -o~ we shall write 

Now let -8~ be given as the smallest relation satisfying 

(1) a-g~ E 

(2) ifs -g~ s' I E, 

s+s-g~ s'J E 

s+s-g~s'IE 

sllS-g_,. s'llsl s 

sils -g._.,. siis' Is 

x -g._.,. s' I E, if x<;=s Eo 

(3) ifs-~~ s'J E and t-S~ t', 

then slit - a._..,. s'llt' I t'. 

(Here one should read "if s_,.sJ\s2 then t_,.t1lt2" as: "if s_,.s1 then t_,.t1" and "if s~s2 then 
t_,.tz".) We shall drop the o labels on the arrows whenever they do not play a role or it is clear 
from the context which declaration is meant. 

This transition relation gives a first operational interpretation oft Intuitively, s -g~s' tells us 
that s can do the elementary action a as a first step, resulting in the statement s'. In general, we 
are interested in (possibly infinite) sequences of transitions. We give a few examples: 

x -g._.,. x -g-+ · · ·, with x<;=a;x Eo 

ciic -g~ c -§~ E 

cllc -s~ E. 

We introduce an abbreviation which will be of use in many definitions. 
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DEFINITION 2.5 (Initial steps): For sEe and oEb. we define: 

Jnit(sXo) ={a: 3s'Ee[s -g~ s'l}. 

3. FOUR OPERATIONAL MODELS 

In this section, we introduce four different semantic models for e. They are called operational 
because their definitions are based on the transition relation given in definition 2.4. The models 

vary from a semantics (9 which yields sets of streams (or traces) as meanings, containing no 

branching structure at all, via the familiar ready and failure semantics, to a semantics fJB, which 

yields tree-like, completely branching structures. (In subsection 3.5, we have collected some 

examples illustrating the different semantic models.) 

3.1 Linear Semantics 
We start with the definition of a semantic function fJ which is called linear, because it yields 

sets of non-branching streams as the meaning of a statement: 

DEFINITION 3.1. (6) 

Let (p, q E )P = <?P( I§° ), the set of subsets of I§° ; here, the set ( w E )Ig'l is defined as 

1r = 1 00 ur·a 
(with / 00 =I"' UJ*), containing all finite and infinite words (or streams) over the alphabet I as 
well as the set of finite words over I ending in a, which is a special symbol not in A that denotes 

deadlock. We de.fine a semantic function 

as follows. Lets El: and OE!l. We put 

w E e[s](o) 

if and only if one of the following conditions is satisfied: 

(1) there exist a1, ... ,an in I and S], ... ,Sn in e such that 

(2) there exist a], ... 'an in I and s 1, ... 'Sn in e, with Sn =/=E, such that 

(3) there exist an infinite sequence a 1, a2 , ... in I and an infinite sequences 1, s2 , ... in e such 
that 
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A word w E tl[s ]( 8) can be an element of r, indicating a finite, normally terminating computa­
tion starting in s; secondly, if w EI* ·{3} it indicates that the computation first preforms the 
actions in w and next reaches a point (indicated by the statement sn) from which only single­
sided communication actions are possible: this is a situation of deadlock and thus w is followed 
by a; finally, w can be in I"', reflecting an infinite computation of s. 

We can make P into a complete metric space by defining a suitable distance function on it. 
This will enable us to give a fixed point characterization of S, which will be of use when relating 
tJ to other semantic models. 

DEFINITION 3.2 (Semantic domain PL) 

We supply the set Jff' with the usual metric dL, which is given by: 

{
0 if W1 =w2 

dL(w1,w2) = 2-n th . o efW!se, 

where n =max{ k: w 1 [k ]=w 2[k]} (with w[k J denoting the prefix of w oflength k). Next we put 

(p,qE) P1, = <fncMff' ), 

the set of all non-empty and closed subsets of !ff, which we supply with the Hausdorff metric 
dpL =(dL)H, induced by dL (see definition A.6(d)). Since (!ff', dL) is a complete metric space, so 

is (PL, dpJ. Sometimes we will use AL to denote the set J'f. 

(In this semantic domain we use the power set of closed subsets. For some technical reason, we 
shall sometimes use compact subsets (which are also closed).) 

DEFINITION 3.3 (Alternative definition of 6) 
Let <l>L: (e,.._,.A~PL)~ (e,....,.Ci~h) be defined as follows. Let FEe~A~PL, s Ef:., and llEA. We 
set: <I>L(F)(E)(ll)={€}; if s=f=.E we put 

{
{o} if Init(s)(ll)<;;;,C 

<l>L(F)(s)(o) = U {a·F(s')(S): s-g~ s' /\a El} otherwise. 

We define: 

It is straightforward to prove that <I>L(F)(s)(ll) is a closed set and that <I>L is contracting. 

Next, we show that 6L equals tl: 

THEOREM 3.4 tlL = tl 

PRooF: Sillce <I>L is a contraction and since contractions have unique fixed points, the result is 
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immediate from the observation that also(') is a fixed point of <PL, which is proved by the follow­

ing argument. Let see and Beil. From the fact that there are only a finite number of transi­

tions possible from an arbitrary statement it follows that l'l[s](o) is compact and hence closed: It 

is straightforward to show that in (')[s](o) every sequence has a converging subsequence. Thus e 
is an element of the domain of ct>L, that is: 6E ~ti.~PL· Now let w Elf. For w =£ and w =a 
we have: w E 6[sI(o) #w E tl>L(l'l)(s)(o). Otherwise: 

w E 6[s ](o) # [definition 6] 

Thus 6=tl>L(6). 

3a el3s' Ee3w' elf 

[s -s~ s' /\ w'=a·w' /\ w'el'l[s'](o)] 

# [definition ct>L] 

wetl>L(l'l)(s)(o). 

The definition of eL as a fixed point of ct>L required the addition of some (metric) structure to 

the set qf(Igo ). For this we are rewarded with a concise definition on the one hand and an easy 

tool for comparing eL to other models, Banach's theorem, that is, on the other. 

3.2. Branching semantics 
We follow [BK.MOZ86] in introducing a branching time semantics for e. First we have to define 

a suitable semantic universe. It is obtained as a solution of the following domain equation: 

P~{po}Uqfco(A XP). (*) 

Such a solution we call a domain, and its elements are called processes. We can read the equation 

as follows: a process p EP is either p0 , the so-called nil process indicating termination, or it is a 

(compact) set X of pairs <a,q >, where a is the first action taken and q is the resumption, 
describing the rest of p's actions. If X is the empty set, it indicates deadlock (as does a in the 

operational semantics). For reasons of cardinality, (*) has no solution when we take all subsets, 

rather than all compact subsets of A XP. Moreover, we should be more precise about the metrics 

involved. We should have written (*) like this: 

DEFINITION 3.5 (Semantic universe PB) 

Let (PB,dB) be a complete metric space satisfying the following reflexive domain equation: 

P~{po}Uqfc0(A Xid'!z(P)), 

where, for any positive real number c, idc maps a metric space (M,d) onto (M,d') with 
d'(x,y)=c·d(x,y), and U denotes the disjoint union. (For a formal definition of the metric on P 
we refer the reader to the appendix (definition A.6).) Typical elements of PB are p and q. 

We shall not go into the details of solving this equation. In [BZ82] it was first described how 
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to solve this type of equations in a metric setting. In [AR88] this approach is reformulated and 
extended in a category-theoretic setting. 

Examples of processes are 

pi = {<a, {<bi.po>, <b2,po> }>} 

p2 ={<a, {<b1,po>}>, <a, {<b2,po>}>}. 

Using this process domain PB, we introduce a second semantic model for L. 

DEFINITION 3.6 (0s) 

Let Ills: (lf'...-?D.~PB)~(e,._,,t;.4pB) be defined as follows. Let FE~A4PB, sEI; and ilEtl.. If 
s =Ewe put $B(F)(s)(il)=po. Otherwise: 

IPB(F)(s)(B) = {<a, F(s')(il)>: s-g4 s'}. 

Now we put: 

eB = Fixed Point (lllB). 

In defining 0B, we follow [KR88], where (a variant of) 0B was used as an intermediate model 
between an operational and a denotational semantics. 

Note that 0B does not signal deadlock explicitly, whereas 0L does by using a. However, the 
information about possible deadlocks is present in 0B[s](il), because it gives the complete branch­

ing structure of all possible transition sequences starting in s. In subsection 3.5, it shown how to 
abstract from this branching structure and to translate it into an explicit representation of 

deadlock by the application of some abstraction operator. 

Further, we observe that 0B is much more distinctive than fJL is, precisely because of the preser­

vation of branching information. This is easily illustrated: We have, for a, b 1, b2 El: 

as opposed to 

with p 1 and p 2 as defined above. 

We finish this subsection with a reference to [BK87], where a comparison is made between PB 

and models based on process graphs. 
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3.3. Readiness semantics 
Next, we introduce a semantics 0R which is based on the notion of ready sets, introduced in 

[OH86]. It is intermediate between 0L and 0B in the sense that it makes more distinctions than 
0L and less distinctions than 08 makes. Moreover, unlike 0L it does not yield only streams but 

contains already some branching information (but less than is present in 0B): Instead of using a 

single symbol to denote all possible deadlock situations, in 0R this information is refined by 

yielding in case of deadlock the set of all single-sided communication actions that could have 

been taken next (if only a matching communication partner for one of these were to be offered in 
parallel). 

The formal definition of 0R can be given similarly to definition 3.1, using sequences of transi­

tions. We leave such a formulation to the enthusiastic reader and continue with a fixed point 

definition in the style of definitions 3.3 and 3.6. First, we introduce a complete metric space of 

ready sets: 

DEFINITION 3.7 (Ready domain PR): Let (wE)AR be given by 

AR= A 00 UA*·'!Jl(C) 

= A*UA"'UA*·'!Jl(C). 

Elements of A 00 are indicated by w. Elements of A*· '!Jl(C) will be denoted by (w,X) (rather than 

w·X) and are called ready pairs. The set AR is supplied with the usual metric dR (see definition 

3.2), in the definition of which '!J'(C), the set of all subsets of C, is regarded as an alphabet. Next 

we define 

the set of non-empty compact subsets of AR, which we supply with dpR =(dR)H, the Hausdorff 

metric induced by dR. We have that (PR,dPR) is a complete metric space. The elements of PR 

are called ready sets. 

DEFINITION 3.8 (0R) 

We define a mapping IPR:(~A~PR)~(~il~PR). Let FEhA~PR, sEi:, and BEA. We put 

$R(F)(E)(ll)={€}. Otherwise: 

<l>R(F)(s)(ll) == U {a·F(s')(8): s-g~ s'} U {(€, Jnit(s)(8)): Init(s)(llKC}. 

(Herea·Visdefinedbya·V = {a·w: wEV} U {(a·w,X):(w,X)EV}.) Now we set 

f!R = Fixed Point (<l>R). 

We observe that 0RKs](ll) contains streams which are words over A rather than over I only. In 

other words, single-sided communication actions are visible. Further, as is indicated above, 

deadlock information in eR[s](ll) is represented by ready pairs (w,X), which are interpreted as 
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follows: After performing the actions in w, the computation has reached a point from which it 

can only perform communication actions; these are listed in X. 

3.4. Failure semantics 

The fourth model We introduce for f is a semantics 0F which is based on failure sets, as intro­

duced in [BHR84]. It is, like 0B, more distinctive than 0L but less than '9R is. Instead of ready 

pairs the function eF yields failure pairs (w,X), which are again elements of A•. 01(C), but now 

have a different interpretation: The set X is called a refusal set and contains those communication 

actions (but not necessarily all) that are to be refused, even if a matching communication would 

be offered in parallel. The complete metric space of failure sets is given in: 

DEFINITION 3.9 (Failure domain PF) 

Let ('ITE}AF=AR, which was given in definition 3.7. As a metric on AF we take dF=dR. We set: 

(p,qE) PF = {V: Vr:;;;,AF/\ Vis closed in (AF,dF)/\ Vis downward closed}, 

where 

V is downward closed <=> 

'VweA* 'VX, X'e'il'(C) [(w,X)EV /\ X'r:;;;,X =? (w,X')EV). 

The pair (PF,dpF) (with dpF =(dF)H) is a complete metric space. Elements of PF are called 

failure sets. 

DEFINITION 3.10 (0F) 

Let <PF: (h6.-tPF)-t(hll-tPF) be given as follows. Let Gehl:i.-tPF, see, and Ilea. We 

put <llF(G)(E)(ll)={t:}. If s=/=E, then: 

<llF(G)(s)(ll) = U {a·F(s')(ll): s-S~ s'} 

u {(t:,X): Xr:;;;,C-lnit(s)(o) A. Jnit(s)(ll)r:;;;,C}. 

(Here - indicates the set-theoretic difference.) We define: 

f!F = Fixed Point(lf>F). 

The fact that 0F is less distinctive than 0R is caused by the taking of the downward closure of 

C -lnit(s)(o) in the definition of f!F above. In a moment (in subsection 3.5) we shall see some 

examples illustrating the difference between f!F and SR· 

A model isomorphic to eF could be obtained in term of ready sets only by taking the upward 
closure, which could be defined similarly to the downward closure, of the ready sets in 0R[s](ll). 

Nevertheless, the separate notion of refusal sets has been introduced, because taking the down­

ward closure of a refusal set can be nicely explained in intuitive terms: If, at a certain moment in 
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a computation, a set of communications may be refused, then every subset of that set may be 
refused as well. 

3.5. Some examples 

Consider the following statements in e (with a,b El, CJ,CJ eC): 

s2 = (a;b;c1) + (a;b;(c1 +c2)) + (a;b;c2) 

s3 = (a;b;c1) + (a;b;c2) 

s4 = a;((b;c1) + (b;c2)). 

We list the meaning of these statements according to the different semantic functions. (We omit 

the 8 arguments because these do not matter here, a convention we shall use whenever we see the 

opportunity for doing so without causing confusion.) 

(1) 

(2) 

(3) 

e:Hs 1] = {abo} 

0F[s1] :::: {abc1, abc2} U {(ab, X): X ~C-{ CJ c2}} 

0Rls1] = {abci. abc2, (ab, {cl> c2})} 

09[s1] ={<a, {<b, {<ci.po>, <c2,po>}>}>} 

0L[s2] :::: 0L[s1] 

0F[s2] = {abc1,abc2} U {ab,X): X~C-{c1}} U {(ab,X): X~C-{c2}} 

0R[i) = {abci, abc1, (ab, {c1 }), (ab, { C2}), (ab, {CJ, C2})} 

09[s2] = {<a, { <b, { <c1>po> }> }>, 

<a, { <b, { <ci.po>, <c2,po> }> }>, 

<a, { <b, { <c2,po> }> }>} 

eL[s3] = eL[s2] = 0ds1J 

0F[S3] = 0F[s2] 

0R[s3] = {abc1, abc2, (ab, {c1 }), (ab, {c2})} 

09[s3) = {<a, { <b, { <ci,po> }> }>, <a, { <b, { <c2,po> }> }>} 
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0L[s4] = 0ds3] = l9ds2] = 0L[si] 

l9F[s4] = 0FKs3] = l9p[s2] 

0R[s4] = l9R[s3] 

t'.ls[s4] = {<a, { <b, { <c1,po> }>, <b, { <c2,po> }> }>} 

We see that from eL to GB the semantics get more distinctive. 

3. 6. Relating the different operational models 
We can compare our four operational semantics via some abstraction operators which connect 

their respective domains: 

DEFINITION 3.11 (Abstraction operators): We define three mappings 

a.R ap aL 

Pn ~PR ~ PF -? PL 

as follows: 

(1) aR: Pn-PR: We put a.R(po)= {€},and aR(0) = {(€,0)}. Otherwise: 

aR(p) = LJ{a·(a.R(p')): <a,p'>Ep} U {(€,{c: 3p'EPs [<c,p'>Ep]}):p<;:CXPn} 

aF(p) = {w: wEp} U {(w,Y): 3XE'8'(C) [Y<:C-X /\ (w,X)Ep]} 

(3) <X-L: Pp-PL: 

aL(p) = {w: WEpn/ 00 } u {w·3: WEI*/\ 3XE0>(C) [(w,X)Ep]}. 

The definition of the first operator, a.R, is self-referential since aR(p') occurs in the definition of 
a.R(p ). It can, however, be correctly defined as the fixed point of the following contraction: 

8: (Ps~1 PR)~(Pn- 1 PR) 

(where Ps-1 PR is the set of non-expansive (see definition AJ(c)) functions from Ps to PR), 
which is given by: 

8(j)(p) = U{a·(j(p')): <a,p'>Ep} U {(€,{c: 3p'EPn[<c,p'>Epl}):p<;:CXPn}, 

for fEPs- 1 PR and p EPs. We observe (without proof) that 6(j)(p) is a compact set and that(} 
is indeed contracting. Now we can talce aR =Fixed Point(8). 

The mapping aR yields, for a given process pEPs, all its paths (or streams), and translates the 
deadlock information which p contains into ready pairs: if p <: C XPn, that is, if p contains only 
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pairs with a communication action as the first component, then we have a deadlock situation 

since, according to our operational intuition, no single-sided communications are allowed. There­

fore, a.R delivers in that case the ready pair (t:,{c: 3p'ePB [<c,p'>ep]}). 
The operator a.F translates ready pairs (w,X) into the downward closure of a corresponding 

failure pair (w,C -X): 

a.F({(w,X)}) = {(w, Y): YkC-X}. 

Finally, the mapping a.L distracts from a failure set p ePF those streams that contain only 

internal actions, and maps failure pairs (w,X) (with we!*) onto words w·o: The deadlock infor­

mation represented by the set X is replaced by the symbol a. 
With these mappings we can easily formulate the precise relationship between our operational 

models: 

THEOREM 3.12 

The following rectangle commutes, which is indicated by the symbol * : 

il>a 
ht:.~PB ~ hA~PB 

a.Ri *1 ia.R 
i!>R 

hA~PR ~ hA~PR 

ad *2 ia.F 
i!>F 

ht:.~PF 4 f:.rif:,.4pF 

ad *3 ia.L 
i!>L 

f:.rlf:,.4pL 4 ht:.~PL 

(where the operators a are extended to sets of functions in the obvious way; for instance, 

a.R: (f:.riA4PB)~(hA~PR) 

is defined by 

PRooF: We only show *1, the other cases being similar. We prove, for all Fee,...c.A~PB, see, 
and 8eA: 

For s=j=E we have: 

cI>R(aR(F))(s)(8) = U {a·(aR(F)(s)(8)): s-g~ s'} U {(t:, /nit(s)): Init(s)kC} 

= aR({ <a, F(s')(8)>: s -S~s'}) 
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4. THREE COMPOSITIONAL MODELS 

We proceed with the introduction of three semantic models in a compositional way: 

DEFINITION 4.l (Compositionality) 

Let 01L:~S be an arbitrary model for e, with S an arbitrary set. We call ')1L compositional (with 
respect toe) if there exist operators ;<!llL, +'!lt, and 1101C: sxs.....,,s such that 

\fs,t Ee ['01l(s opt) = ~s) opGJTL ~t)}, 

for op=;, +,II. 

In section 6, a relation between compositionality and the notion of a congruence relation is 
given (theorem 6.3). The models to be defined in this section, which will be called Cs, CR and 
Cp, turn out to be equal to 0s, 0R, and 0p, respectively, as will be proved in the next section. 
Therefore, their definitions can be seen as alternative characterizations of the operational models. 
We do not give a compositional version of 0L since this is impossible (see the remark following 
theorem 6.4). 

DEFINITION 4.2 (Cs, CR, Cp) 

Let A. be a label ranging over the set { B, R, F}. We define three compositional models for e as 
follows. Let o E !:l. Then: 

(l) 8s[E](o) =po 

eR[E](o) = 8p[E](o) = {{} 

(2) 8s[a](8) = {<a,po>} 

{
{a} ifaE/ 

8R[a](ll) = {a,((,{a})} ifaEC 

{
{a} if a El 

Gr[a](8) = {a} u {(£,X): X<;;;C-{a}} ifaEC 

(3) G/\[s op t](o) = G>Js](8) o/·G>..[t](o) 

with op ranging over the set { ;, +, II} and the operator op>.. as given in definition 4.4 below. 

(4) G>..[x](o) = t\[g](o), for x<i==gEo. 
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The above definitions need some justification, since ~ cannot be defined by a simple induction 

on the syntactic complexity of statements, as is apparent from clause (4) above. We give a for­

mally correct definition of 8s; the definitions of 8R and 8F can be treated similarly. (The occu­

pied or impatient reader may wish to skip this part and continue with definition 4.4; it is not cru­

cial for the understanding of the rest of the paper.) 

We give 8s as the unique fixed point of a contraction 

which is defined as follows. Let Fe~t::..~Ps. We define 'if.ls(F) in two stages: first for all geeg 

and next for arbitrary sin f(;;;!fg). We follow the inductive structure of eg; let 8e!::.., then: 

i's(F)(E)(8) =Po 

'f.ls(F)(a)(8) = {<a,po>} 

'f.ls(F)(g;s)(8) = 'f.!B(F)(g)(8);s F(s)(8) 

i's(F)(g1 +g2)(8) = '11B(F)(g1)(8)+B 'l's(F)(g2)(8) 

'l's(F)(gtilg2)(8) = 'l'B(F)(g1)(8)llB 'l's(F)(g2)(8). 

Next, we extend this definition to e, following the inductive structure of e. We formulate the 

only new case: We have to add a clause for statement variables. Suppose x~ge8. Then: 

'11s(F)(x)(8) = 'l's(F)(g)(8). 

This is well defined, since geeg and 'l'B(F) is already defined on e,g_ Now we can take es as the 

fixed point of 'I's as soon as we shall have verified that 'I's is a contraction: 

PROOF: We prove that 'I's is contracting by showing, for all F1,F2 e~!J.~Ps, s e!J., that: 

I 
dp8 ('f.!B(F1)(s)(8), '1's(F2)(s)(8)).;;; 2"d~a~p8 (F1, F2). (*) 

Let F 1 and F2 be in fr.+!J.~Ps. The proof falls apart into two parts: first geeg is treated, next 

see. For e,g we only consider the most interesting case: suppose geeg-{E}, see and 8e!J., 

such that (*) holds for g. The following argument shows that we also have (*) for g ;s: 

dp9 ('•lts(F1 )(g ;s)(8), 'f.!B(F2)(g ;s)(8)) 

= dp8 ('if.ls(F1)(g)(8);BF1 (s )(8), 'l's(F 2)(g)(8);s F 2(s)(8)) 

.:;;;; ( by lemma 4.5 (2), below ] 

1 
max{dp8 ('f.ls(F1)(g)(8), 'if.ls(F2)(g)(8)), 2"dp8 (F1(s)(8), F2(s)(8))} 



.;;;; [ induction hypothesis for g } 

1 
Td~ll.-->P.(FJ, F2). 
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The other operators, + and II can be treated similarly. Once the proof has been given for eg, it 
can be easily extended toe by adding the following proof for xEStmv. Suppose x<e=gEo, with 
gEeg. Then: 

which concludes the proof. 

Next, we introduce the semantic operators. 

DEFINITION 4.4 (Semantic operators) 

.;;;; [ induction, since g E f',g ] 

I 
2'd ~!J.__,p8 (F1,F 2), 

0 

Let A range over {B,R,F} and op over {;,+,II}. We define semantic operators 
o/': PA. XPx~PA.. 
(I) opB: PBX PB~PB 

po;Bq = q 

p;Bq = { <a,p';Bq>: <a,p'>Ep }, for p=f:=po 

po +Bq = q+Bpo = q 

p+Bq = pUq (set theoretic union) for p,qEpn-{po} 

pllBq = plJ...Bq u qlLBp u pj0q, 

where poiLBq = q 

p[LBq = {<a,p'llBq>: <a,p'>Ep}, for p#po 

pjBq= { <,.,p'llBq'>: <c,p'> Ep /\ <c, q'>Eq} 

(lL is called the left-merge operator and I is called the communication merge); 
(2) opR: PRXPR~PR 

p;Rq = {a·(p0 ;Rq): Pa=f::.0} U {(€,X): (€,X)Ep} 

U (if €Ep then q else 0 fi) 

where Pa= {'1T: 11'EAR /\ a·'1TEp}, for a EA, 

with a·w, for w EA 00 , as usual and a·(w,X)=(a·w,X); 
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(note that this definition is equivalent to 

p+Rq = ((pUq)n(A 00 U{(w,X): w:t£})) u {(£,XUY): (£,X)Ep I\ (t:,Y)Eq}); 

p llRq = p [LRq u qll Rp u PIRq up# Rq, 

wherep tLRq = LJ{a·(pa11Rq):pa=r1:0} U (ift:Ep thenq else 0 fi) 

PIRq = LJ{T·(pclJRqc):pc=r1:0=r1:qc} 

p#Rq = {(t:,XUY): (t:,X)Ep I\ (t:,Y)Eq I\ XnY=0} 

(here Y={c:ceY}); 

(3) opF: PFXPr~PF 

p;Fq = p;Rq 

p+Fq = {a-pa:Pa=r1:0} U {a·qa: aa=r1:0} U {(t:,X): (t:,X)epnq} 

pllF q = p[L_Fq u qtLFp u PIF q u p#F q 

where plLFq = plLRq 

PIF q = PIRq 

p#Fq = {(t:,X): 3(t:,Z1)Ep3(t:,Z2)Eq 

[(C-Z1)n(C-Z2) = 0 /\Xt;;;Z1nZ2]}. 

By now, it will not come as a complete surprise that those operators above that are introduced 

by a self-referential definition (like ;8 and 11 8 ) can be formally defined as the fixed point of a 

suitably defined contraction (cf. the remark following definition 3.11). 

The intuitive interpretation of the operators op 8 is straightforward. Let us explain briefly the 

operators opR and opF. 

The definition of ;R implies that for all w, w'eA*, XE'iP(C), and qePR: 

((w,X)};Rq = {(w,X)} and {w};R{(w',X)} = {(w·w', X)}, 

just as one would expect. The process p + R q can deadlock in its first step only if both p and q 
can deadlock immediately, that is, if both contain a ready pair of the form (t:,X). In all subse­

quent steps, p + R q behaves like p U q. In the definition of p llR q, the interleaving of actions of p 
and q is represented by pll Rq and qll Rp. The communication between p and q are presented in 

PIRq. Finally, p#Rq describes the immediate deadlock behavior of pllRq: if (t:,X)Ep and 

(t:,Y)Eq we include the ready pair (t:,XUY) inpllRq·only if XnY=0. If XnY:;60, then a 

communication between p and q is possible and hence the process pllRq cannot deadlock 
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immediately. 

The definition of p +Fq is like p +Rq but for the difference that a failure pair (t:,X) is included 
only when (E,X)Ep and (€,X)Eq: The communications that the process p+Fq can refuse are 
those that can be refused by both p and q. Note that the downward dosedness of p +F q follows 
from the downward dosedness of p and q. The definition of p# F q is very similar top# Rq. We 
observe that p# F q is downward closed by definition. The following alternative definition of 
p# F q, which is simpler, would not do: 

since it is not downward closed. 
The next lemma, which can be easily verified, states some useful (with respect to, e.g., theorem 

4.3) properties of the semantic operators: 

LEMMA 4.5 
(1) For AE {B, R, F} and opE{;, +,II}: o/· is non-expansive (see definition A.3(c)). 

(2) For p,p'EPB-{po} and q, q'EPB: 

dp.(p;Bq,p';Bq')..:; max{dp/p,p'), +·dpB(q,q')}. 

For AE{R, F},p,p'EPJ.. with Hip and £'1.p', and q, q'EPJ..: 

1 
dp,_ (p;J..q,p';J..q')..:; max{dp,_ (p,p'), 2·dp, (q,q')}. 

We conclude this section by stating some properties of eR and eF, which can be easily verified 
with induction on the complexity of statements. They are of use when comparing eR and eF 
with f!R and 0p (section 5). 

LEMMA 4.6 

(1) VXE'!P(C) VsEe V8E!::.. [(i:,X)E8R[s](8) # X=lnit(s)(8)] 

(2) VXE'iP(C) VsEe 'V8El:l [(€,X)EeF[s](8) # X<;;;C-lnit(s)(S) /\ lnit(s)(o)<;;;C] 

(3) vx, YE '!P(C) VsEe W3ED. [(€,X)E8p[s](o) /\ (€, Y)E8F[s](o) 

~(€,XU Y)EeF[s](8)] 

(lnit(s)(o) was introduced in definition 2.5.) 

Note that property (3) does not hold for arbitrary pairs (w,X) and (w, Y) with w EA· and w~. 
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5. SEMANTIC EQUIVALENCE 

In this section, we compare the operational models ~ and the compositional models e,.. We 
shall prove that~=<?,., for AE{B, R, F}. It is a corollary of the following 

THEOREM 5.1 For AE{B, R, F}: cI>;i.(<?,_) = e,. 

PROOF. Recall that 4>x is the defining contraction for ~ as given in definitions 3.6, 3.8 and 3.10 
for ;\=B, R, and F, respectively. The theorem is proved by induction on the complexity of state­
ments, first in e_g and then in e. In part (I) and (2) below, the 8 arguments have been omitted. 

Part (1): It is obvious that 4>;i.(<?,.)(E)=<?,.(E). For a EA we have: 

cI>B(eBXa) = { <a,po>} = ~[a] 

ct>R(eRXa) = {a} = eR[a], if a El 

ct>R(~Xa) = {a,(€,{a})} = eR[a], if a EC. 

Similarly for ;\=F. 

Part (2): Suppose we have cI>;i.(<?,.)(s)=e,.[s] and 4>;i.(e,.)(t)=<?,.[t], for AE{B, R, F}. We shall 
treat some typical cases: 

4>B(eBxs ;t) = {<a, eB[s';t]>: S -a~s'} 

= {<a, eB(s'];BeB[t)>: s -a~s'} 

= {<a, eB[s']>: s-a~s'};BeB[t] 

= 4>B(8B)(s);B<Mt] 

= [ induction ] 

eB[s];BeB[t] 

= eB[s ;t] 

cl>R(eR)(s+t)= LJ{a·eR[s']: s+t-a~s'} U {(£,/nit(s+t)): lnit(s+t)~C} 

= [ by properties of ~ ] 

U {a·eR[s']: s-a~s'} U U {a·eR[t']: t-a~t'} u 

{(€,lnit(s)U lnit(t)): lnit(s)<;;,C /\ lnit(t)<;;,C} 

= [ definition + R ] 

U { a·eR[s'); s -a~s'} U {(f,/nit(s)): lnit(s) <;;, C} 
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+R 

U { a·C:Ht']; t -a~t'} U {(E, Init(t)): Init(t)i;;;,C} 

= [ definition !J.>R ] 

<PR(eR)(s) +R<PR(eR)(t) 

= [ induction ] 

<'.Ms] +ReR[t] 

= eR[s +t] 

<PF(eF)(sllt) = U {a-(eF[s'llt]): s-a~s'} u 

U {a-(eF[sllt']): t-a~t'} u 

U {r·(eF[s'llt']): s-c~s' /\ t-c~t'} u 

{(€,X): Xc;(C-Jnit(sllt)) /\ lnit(sllt)CC} 

= U{a'(eF[s']llFeF[t]): s-a~s'} u 

U{a·(eF[s]llFeF[t']): t-a~t'} u 

U {r·(eF[s']llFeF[t']): s-c~s' /\ t-c~t'} u 

{(E,X): Xc;(e-Jnit(sllt)) /\ Init(sllt)c;:C} 

= [definition <PF; Init(sllt)c;C => Init(sllt)=lnit(s)Ulnit(t)] 

<PF(eF)(s)lLFCMt] u 

<PF(eF}(t)lLFeF[s] u 

<I>F(eF)(s)IF<I>F(eF)(t) u 

{(€,X): Xc;(C-Jnit(s))n(C-Init(t)) /\ Init(s)c;:C /\ Init(t)c;C} 

= [ induction ] 

(eF[s]lLFeF[t]) U (eF[t]lLFeF[s]) U (eF[s]IF8F[t]) U 

{(t:,X): Xc;(C-Jnit(s))n(C-Init(t)) /\ Init(s)c;;;,,C /\ Init(t)c;C} 

= [ lemma 4.6 (2) ] 

(eF[s]lLFeF[t]) u eF[t]lLFeF[sB) u (eF[sWCMt]) u 

{(t:,X): 3(t:,Z 1)E8F[s] 3(E,Z2)E(Mt] 

[(C-Z1)n(C-Z2)= 0 /\ XCZ1 nz2]} 
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= I definition # F ] 

(eFMtLFeF[t]) u (8p[t]lLFtHsH u (eF[sWeF[t]) u 

(eF[s] # F G'F[t]) 

= eF[sD11FeF[t] 

= <:Msllt] 

Part (3): Part (l) and (2) suffice to show: <P;;.(9.)(g)=9.[g] for all gEEg. To deal with the entire 

language e, we have to treat one other case: Let fi E Ll., x E Stmw; suppose x <=g E 8. Then 

<l>;;.('3;;.)(x)(8) = [definition -{)__,. ] 

<P;;. ( t\ )(g )( 8) 

= [ induction ] 

81>Jg](8) 

= 9.[x](8). 

Since the functions <I>;;. are contractions, the following corollary is immediate: 

COROLLARY 5.2: For f.E{B, R, F}: 0;;. = e1.. 

6. CORRECTNESS AND FULL ABSTRACTION 

0 

In this section we show that 0£, 0R and 0B are correct with respect to -L• the equivalence rela­

tion on e induced by 0L, and that 0F is moreover fully abstract with respect to -L· We start by 

giving another characterization of the notion of compositionality (see definition 4.1 ). To this end, 

we first introduce two definitions. 

DEFINITION 6.1 

Let ~: ~S be a model for e, with S an arbitrary set. Then ~induces an equivalence relation 

'llL~exeon Eas follows. For all s,tEE: 

DEFINITION 6.2 (Congruence relation) 

Let -~exe be an equivalence relation on e. We say that - respects the operator op (where op 

ranges again over { ;, +, 11} if 
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Vs, s', t, t' Ee [(s=S' /\ t=t') :;. {sop 1)-(s' opt')]. 

(We also say that _ is substitutive with respect to op.) lf = respects all of ; , +, and II, it is 

called a congruence relation on e. (Another term for this: = is substitutive for e.) 

The following theorem is immediate: 

THEOREM 6.3: ~ is compositional for e ~ =".nl is a congruence on e. 

From ~ =~, for AE {B, R, F}, it follows that 0B, GR and 0F are compositional. ln other 
words: 

THEOREM 6.4: Let -;x. denote -e,.for AE{B, R, F}. We have: 

;x. is a congruence relation on f. 

This does not hold for -L (= -01): Consider the statements s 1 =c, s 2 =c and t =c; then 

which is straightforward from the definition of 0L. Intuitively, this can be explained by the 

observation that fJL makes too many identifications (like fHc]=fJL[c]={a}) in order to yield a 

congruence relation. In contrast, Gn, GR and GF all make more distinctions, and, according to 

theorem 6.4, enough to obtain a congruence relation. 

The question of full abstraction, for which we shall give a formal definition in a moment, is 

essentially the problem of finding, for a given equivalence relation - on e, a model ~ of f that 

makes precisely enough distinctions in order to yield a congruence relation =~ which is con­

tained in =· In other words, =~ should be the largest congruence relation that is contained in 
-. Such a model will be called fully abstract with respect to -· 

With the above in mind, we next give for an arbitrary equivalence relation on e a characteriza­

tion of the greatest congruence it contains. For this purpose, we use the notion of contexts: 

DEFINITION 6.5 (Contexts) 

The set of contexts ( C E )Cont is given by 

Here O denotes a so-called hole. Typical elements of Cont will also be indicated by C(-). Con­

texts can be interpreted as functions from f to f: Given a context CO and a statements Ee, a 

new statement C(s) is obtained by syntactically substituting s in all the holes occurring in ~-). 

DEFINITION 6.6 

Let - ~ex e be an equivalence relation. We define a relation =c on e by putting for s, t Ef: 



The following theorem is straightforward: 

THEOREM 6.7: 

(1) --c is a congruence relation on e 
(2) --cc_ 
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(3) For every congruence relation =' on e: _, (;; = => _, (;; --c 

PROOF: We only prove (3). Let_,(;;= be a congruence relation on e. One shows, by induction 

on the complexity of statements that for alls and tin e with s='t: 

'VC(·)ECont [C(s)='C(t)]; 

since =' i;;;; = this implies: 

'VC(·)ECont [C(s)=C(t)], 

thus s--ct. 

We see that _c is the largest congruence contained in . 

Now we come to the formal definition of full abstraction: 

DEFINITION 6.8 (Correctness and full abstraction) 

Let GJR,:~S be a model for e, with S an arbitrary set. Then: 

(1) ~is called correct (or fully adequate) with respect to_ if 

(2) ~is called complete with respect to - if 

(3) ~is called fully abstract with respect to = if it is both correct and complete: 

We have that 68 , GR and fJF all are correct with respect to =L· It is an immediate consequence 

of theorem 6.4 and the following theorem: 

THEOREM 6.9: B ~ =R ~ -F ~ -L 

PROOF. We have the following implications, of which the premisses were stated in theorem 3.12: 

0R = Cl.R 0 0B => =s i;;;; -R 

f)F = Cl.£0 f)R => -R i;;;; =F 

f)L = Cl.Lof!p => =F i;;;; =L· 
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The =I= signs are valid by the examples given in subsection 3.5. 

COROLLARY 6.10 

The models 19B, eR and eF are correct with respect to =L: 

- c; - c; - c; -c ( c - ) =B =;'= =R =r =F =t= =L =I= =L · 

It turns out that =p==i; in other words: l9p is fully abstract with respect to -L· We shall 
show this along the lines of the proof of a similar statement that was given in [BK087]. The fol­
lowing definition facilitates the formulation of the proof. 

DEFINITION 6.11 (w, w ): We define two mappings: 

-: A* _,,J* and ':A* _,,e. 

Let w EA•, say w =a 1 · · · an. We set: 

-(w) = w (notation) 

·(w) = w (notation) 

Where {a; I , ••• , a;k } = c n {a j, ..• , an} (with j j < • • • <ik) and for all } ~j ~n ; 

(If Cn{a1, ... ,an}= 0 we define w=E.) 

We give a few examples: 

if w=c, then; W=T, w=c; 

The definition is motivated by the following: 

LEMMA 6.12: Let w=a1 ···an ands=a1; ···;an. Then 

19dsllwD = w. 

THEOREM 6.13: l9p is fully abstract with .respect to =L, that is: =F = -1. 
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PRooF. We already know that =F c; =i· We prove that =i c; =F by showing, for alls, tee: 

";!C(·)eCont [edC(s)) = edC(t)]] 

=> ep[s] = t:)p[t]. 

Suppose that (*) holds for s, t Et We prove: 

(1) ";/weA 00 [weep[s] =>weep[/]) 

(2) Vw EA *";!Xe'iP(C) [(w,X)eeF[s] => (w,X)e0F[t]]. 

(*) 

From these properties and the symmetry of their proofs with respect to s and t, the theorem fol­

lows. 

We prove (1): Suppose wE0F[s], with wEA"', say w=a1a2 · · ·. (The case that weA* is 

similar.) We show for all N EN: 

d{w,Sp[t]) ..;;; 2-N 

(where d(w, SF[t])=infw'eMrJ {dAw(w, w')}). Because 0p[t] is closed it then follows that 

W E('Jp[t]. 

Let NeN and let w1 =a1 · · · aN. We show: 

there exist statements s 1 , ••• , SN such that 

wherea1' ... aN'=w1. By choosing W2 in SdsN] we have: w1·W2E0dsllw1]. 

Because of (*) we also have w1·W2EB£[t[!wi]. This implies the existence of statements 

t 1 , ••. , tN such that 

and such that w1·w2E!9dt]. Hence: d(w, eFM)..;;; 2-N. 

Next, we prove (2): Let weA* and Xe'iP(C), and suppose (w,X)e~lp[s]. We show that 

(w,X)E!9p[t]. A first observation is that eF[t] must at least contain some failure pair (w, Y), 

since 

(w, X)E!9p[s] => 

(w, X)eep[sllw] => 

w·aet:Jdsllw] => (because(*)) 

w·aet:Jdt!lw] => (because 0L=cxL 0 0F) 



3YE<!P(C) [(w, Y)E0p[tllw]] =;> 

3YE<!P(C) [(w, Y)E0p[tU 
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Now we distinguish between two cases. First, suppose 

Consider a ready pair (w,Y)EGR[t]. Since XnY=0 we have: Xi;:;;C-Y. Because 
(w, Y)E0R[t] this implies (w,C-Y)E('.)p[t]. Thus: (w,X)Ei9p[t]. So in this case we are done. 
We finish the proof by considering the second case; suppose: 

This property ensures that the following set is non-empty: 

v = {c: cEC /\ 3yE<!P(C) [(w, Y)E0R[t] /\ cEXn Y]}. 

It is finite (since Vi;:;; U { Y: (w, Y)E6R[t]}, which is finite); say V= { c 1, ••• , Ck}. Now define the 
following statement: 

We have the following implications, of which the ones marked (A) and (B) are proved below: 

(w,X)E0p[s] =} 

(w,X)E6p[sllw] ""'(A) 

w·3E0L[sil(w;u)] =}(because(*)) 

w·3E0L[tll(w;u)] =} (B) 

(w,X)E0p[tllwD =} 

(w,X)E6p[t]. 

So we are done if we can convince the reader of the validity of the implications marked by (A) 
and (B). We try to do so, first for (A). 

Suppose (w,X)E0p[sllw] and let w=a1 ... an and w=a1' ... an'· Then there exist state­

ments s 1, ••• ,sn such that 

and 

Jnit(sn)r;;,_C /\ Xi;:;; C-Init(sn)· 
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Because Vc;X we have Init(sn)n V= 0. Thus Init(snllu) ~C, which implies 

w·oE0L[s!l(w;u)]. 

Finally, we prove (B). Suppose w·oEl9L[tli(w;u)] and, again, let w=a1 ···an and 

w=a1' ... an'· Then there exist statements t1, ... ,tn such that 

tll(w;u) -a1'~ · · · -an'-'Jo tnllu 

and Jnit(tnlluH;;;C. The latter implies Init(tn)r;;,C and Init(tn)n V= 0 (since V=Init(u)). 

Because 

tllw -a1'-'Jo · · · -an'-'Jo tn 

we have (w, Init(tn))E19R[tllw], and thus (w, C - Init(tn))E0F[tllw ]. Because Init(tn) n V= 0 we 
have, by the definition of V, that Init(tn)nX= 0, which yields the desired result: 

(w,X)El9p[tllwl o 

7. RELATED WORK 

Operational and denotational semantics of simple programming languages like e are, in a 
metric setting, extensively studied in [BMOZ88] and [BK.MOZ86]. The problem of solving 
reflexive domain equations, like the one used for PB (definition 3.5), over a category of complete 
metric spaces was first tackled in [BZ82] and is further explored for a wider class of equations in 
[AR88]. The technique of defining semantic models and operators as fixed points of contractions 
and the full exploration of this method with respect to the comparison of different models was 
introduced in [KR88]. Many application can be found in [BM88]. For readiness semantics we 
refer to [OH86]. Failure semantics was introduced in [BHR84]. In [De85], operational and deno­
tational semantics of CCS and CSP like languages are studied, in which the notion of testing 
equivalences plays a key role. In the context of ACP (Algebra of Communicating Processes), a 
complete axiomatization for finite processes with communication (and without silent move) is 
given in (BK087], for readiness and failure semantics; moreover, the fact that failure semantics 
induces the largest trace respecting congruence is proved there. For a treatment of full abstrac­
tion in the setting of partial orderings see [HP79]. In [Mu85], the question of semantic 
equivalence and full abstraction is tackled with the help of so-called inclusive predicates, again in 
an order-theoretic framework. In [St86], the general question concerning the existence of fully 
abstract models is treated in an algebraic context. In [AP86], an example is given of a language 
for which no fully abstract model exists. 
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9. APPENDIX: MATHEMATICAL DEFINITIONS 

DEFINITION A.I (Metric space) 

A metric space is a pair (M,d) with M a non-empty set and d a mapping d:M XM .....,.[O, I] (a 

metric or distance) that satisfies the following properties: 

(a) \tx,y EM [d(x,y)=O # x =y] 

(b) \tx,yEM[d(x,y)=d(Y,x)] 

(c) \tx,y,z EM [d(x,y)~d(x,z)+d(z,y)]. 

We call (M,d) an ultra-metric space if the following stronger version of property (c) is satisfied: 

(c') \tx,y,z EM [d(x,y)~max{ d(x,z),d(z,y)} ]. 

Please note that we consider only metric spaces with bounded diameter: the distance between two 
points never exceeds l. 

EXAMPLES A. l.l 

(a) Let A be an arbitrary set. The discrete metric dA on A is defined as follows. Let x,y EA, then 

fO ifx=y 
dA(x,y) = l l if x*y. 

(b) Let A be an alphabet, and let A 00 =A· UA w denote the set of all finite and infinite words 
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over A. Let, for x EA 00 , x(n) denote the prefix of x of length n, in case length(x)~n, and x 
otherwise. We put 

d(x,y)=rsup{n Jx(n)=y(n)}, 

with the convention that T 00 =O. Then (A 00 ,d) is a metric space. 

DEFINITION A.2 

Let (M,d) be a metric space, let (x;); be a sequence in M. 

(a) We say that (x;); is a Cauchy sequence whenever we have: 

V't:>O 3NEN 'Vn,m>N [d(x,,,xm)<E]. 

(b) Let x EM. We say that (x;); converges to x and call x the limit of (x;); whenever we have: 
V'E>O 3NEN V'n>N [d(x,xn)<t:). 

Such a sequence we call convergent. Notation: lim;_. 00 x;=x. 

(c) The metric space (M,d) is called complete whenever each Cauchy sequence converges to an 
element of M. 

DEFINITION A.3 

Let (M i,di),(M2,d2) be metric spaces. 
(a) We say that (M 1,d1) and (M2,d2) are isometric if there exists a bijection f:M 1 ~M2 such 

that: 

'r/x,y EM 1 [d2(/(x),f(y))=d 1 (x,y)]. We then write M 1 ~M2· When f is not a bijection (but 
only an injection), we call it an isometric embedding. 

(b) Let/:M 1 ~M2 be a function. We call/ continuous whenever for each sequence (x;); with 

limit x in M 1 we have that lim;_.00/(x;)=j(x). 
(c) Let A ~O. With M 1_.,.AM2 we denote the set of functions f from M 1 to M 2 that satisfy the 

following property: 

'Vx,y EM I [d2(/(x),/ (Y)).;;;A ·d 1 (x,y)]. 

Functions fin M 1 ~1 M 2 we call non-expansive, functions fin M 1 _.,.'M2 with 0.;;;€<1 we 

call contracting. 

PROPOSITION A.4 

(a) Let (M 1,d1 ),(M2,d2) be metric spaces. For every A ;;;.O and /EM, _.,.AM 2 we have: f is con­
tinuous. 

(b) (Banach's fixed-point theorem) 
Let (M,d) be a complete metric space and f :M _.,.M a contracting function. Then there exists an 

x EM such that the following holds: 
(l) f (x)=x (x is a fixed point of j), 
(2) 'rlyEM [f(Y)=y =? y =x] (x is unique), 
(3) 'r/x 0 EM [lim,,__,00J<nl(xo)=x 1 where J<n + 1l(xo}= j(j<nl(xo)) and j<0l(xo)=xo. 

DEFINITION A.5 (Compact subsets) 
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A subset X of a complete metric space (M,d) is called compact whenever each sequence in X has 

a subsequence that converges to an element of X. 

DEFINITION A.6 

Let (M,d),(M1,d1), ... ,(Mn,dn) be metric spaces. 

(a) With M 14M2 we denote the set of all continuous functions from M1 to M1. We define a 

metric dF on M 14M2 as follows. For every /1 ,f2 EM 1 .-..M 2 

For A ;;.O the set M 14A M 2 is a subset of M 14M 2, and a metric on M 1_.,AM2 can be 

obtained by taking the restriction of the corresponding dF. 

(b) With M 1 U · · · U Mn we denote the dis joint union of M 1, ... , Mn, which can be defined as 

{l}XM1 U · · · U{n}XMn. We define a metric du on Mi U · · · UMn as follows. For 

every x,yEM1U · · · UMn 

_ {d1(x,y) if x,yELJ}XM1, l~j~n 
du(x,y) - 1 otherwise. 

(c) We define a metric dp on M 1 X · · · XMn by the following clause. 

For every (x1, ... ,xn), (y1, ... ,yn)EM1 X · · · XMn 

dp((xi, ... ,Xn),(y1, ... ,yn))=max;{d;(X;,y;)}. 

(d) Let 0'nc(M)=def{XIXCM AX is compact and non-empty}. We define a metric dH on 

~nc(M), called the Hausdorff distance, as follows. For every X, Y E~nc(M) 

dH(X, Y)=max{supxex{d(x, Y)},supyeY{d(y,X)} }, 

where d(x,Z)=definfzez{d(x,z)} for every Z c;;..M, x EM. 

In 0'c0 (M)=def{X!Xc;;..MAX is compact} we also have the empty set as an element. We 

define dH on 0'c0 (M) as above but extended with the following case. If X=f= 0, then 

dH(0,X)=dH(X, 0)=1. 

(e) Let cE[O,oo). We define: idc(M,d)=(M,c·d). 

PROPOSITION A.7 

Let (M,d), (M1,d1), ... ,(Mn,dn), dF, du, dp and dH be as in definition A.6 and suppose that 

(M,d), (M1,d1), ... ,(Mn,dn) are complete. We have that 

(a) (M14M2,dF), (M14AM2,dF), 

(b) (M1U · · · UMn,du), 

(c) (M1 X · · · XMn,dp), 

(d) (0'nc(M),dH), and (~co(M),dH) 

are complete metric spaces. If (M,d) and (M;,d;) are all ultra-metric spaces these composed spaces 
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are again ultra-metric. (Strictly spoken, for the completeness of M 1-"M 2 and M 1-"A M 2 we do not 
need the completeness of MI· The same holds for the ultra-metric property.) 

The proofs of proposition A.7 (a), (b) and (c) are straightforward. Part (d) is more involved. It 
can be proved with the help of the following characterization of the completeness of the Haus­
dorff metric. 

PROPOSITION A.8 

Let (6Jc0 (M),dH) be as in definition A.6. Let (X;); be a Cauchy sequence in 6Jc0 (M). We have: 

lim;-;. 00 Xi = {lim;_.00 x;lx; EX;, (x;); a Cauchy sequence in M }. 

The proof of proposition A.8 can be found in [Mic57] as a generalization of a similar result (for 
closed subsets) in [Du66] and [En77]. 


