ISAR: An Interactive System for Algebraic Implementation Proofs

Bernhard Bauer, Rolf Hennicker
Inst. fiir Informatik, Ludwig-Maximilians Universitit Miinchen, Leopoldstr. 11 b, D-8000 Miinchen

1 Basic concepts

Formal implementation notions are a necessary prerequisite for proving the correctness of
software development steps. In order to be useful in practice formal implementation con-
cepts should be supplied by appropriate proof methods and, even more important, by tools
providing mechanical support for correctness proofs. In the following an interactive sys-
tem, called ISAR, is described which provides an environment for proofs of algebraic
implementation relations based on behavioural semantics of equational algebraic specifica-
tions. For the basic notions of algebraic specifications, such as signature X, term algebra
Wx(X), ground term algebra Wy etc. we refer to [2]. Then a behavioural specification SP =
{Z, Obs, E) consists of a signature X = (S, F), a subset Obs ¢ S of observable sorts and a set
E of axioms (here equations t = r with terms t, r € Wx(X)).

The definition of our implementation concept is based on the assumption that from the
software user's point of view a software product is a correct implementation if it satisfies
the desired input/output behaviour. Hence a behavioural specification SP1 = (Z1, Obsl,
E1) is called behavioural implementation of SP = (X, Obs, E) if SP1 respects the observa-
ble properties of SP. A precise formal definition of this intuitive notion on the model level
is given in [4]. Since we are interested in automatic implementation proofs we will present
here only the following proof theoretic characterization for behavioural implementations
(cf. [4]) which is the theoretical basis of the ISAR-system. The characterization uses the
notion of observable Z-context which is any term c{zg] of observable sort sg € Obs over
the signature Z of SP which contains a distinguished variable zg of some sort s € S. The
application of a context c[zg] to a term t of sort s is defined by the substitution of zg by t. It
is denoted by c[t].

Proof theoretic characterization of behavioural implementations
Let SP1 = (Z1,0bsl,El) and SP = (Z, Obs, E) be behavioural specifications such that
% < X1 and Obs ¢ Obsl. SP1 is a behavioural implementation of SP if and only if for all
observable Z-contexts c[zg] the following property P(c[zg]) is valid:

P(clzg]) = true ¢ for all axioms (t =1) € E and for all ground substitutions : X - Wy
the following holds: if t is of sort s then E1 I— o(c[t]) = o(c[r]).

The usual subterm ordering defines a Noetherian relation on the set of observable £-con-
texts and therefore we can use structural induction for showing the validity of P(c[zg]) for
all observable Z-contexts c[zg). The automatization of such induction proofs over the struc-
ture of contexts (also called context induction) is the basic principle of the ISAR-system.

2 Proof of Correct Implementation Steps by the ISAR-System

The input of the ISAR-system is the description of an implementation step consisting of
three parts: an abstract specification SP = (Z, Obs, E) to be implemented, a concrete speci-
fication SP-C = (Z-C, Obs-C, E-C) used as a basis for the implementation and a construc-
tion of the implementation. The implementation construction can be defined by some
enrichment and/or renaming of SP-C. For instance the following implementation step per-
forms first a renaming of SP-C w.r.l. a signature morphism ¢: Z-C — X and then an enrich-
ment A = <Z', Obs’, E'> of the renamed version of SP-C:

implemantation step SP_by SP-C = SP is implemented by SP-C
via renaming ¢, enrichment A endimplstep

452

Such an implementation step is called correct if the normalization of enrich (rename SP-C
by 6) by A =4, (6(2-C) U I, 6(Obs-C) L Obs', 6(E-C) U E) is a behavioural implemen-
tation of SP. The correctness of implementation steps when performing first an enrichment
and then a renaming can be defined analogously.
The normalization of the construction of the implementation is computed by the normalizer
module of the ISAR-system (cf. section 3). Since the normalizer can also be used for flatten-
ing arbitrary behavioural specifications which are structured by enrichment, renaming and
even combination of specifications the abstract specification SP and the concrete specifica-
tion SP-C can be structured specifications as well. As an example we consider an imple-
mentation step which implements a specification SET of finite sets over arbitrary elements
on top of a specification LIST of finite lists of elements. For more complicated non-standard
examples which, for lack of space, cannot presented here we refer 1o {1] where e.g. the
implementation of stacks by arrays with pointers is proved (using an auxiliary function iter-
ated-pop which defines an iteration of pop operations) and the proof of an implementation
of an abstract specification of an imperative programming language by a state-oriented
specification of the language is demonstrated. (In the following the variables occurring in
the axioms are generated and typed by the system if an implementation step is displayed.)
implementation step SET_by_LIST =
spec SET = enrich ELEM by
sorts set
observable sorts bool, elem
functions emptyset: -> set,
add : elem, set -> set,
.is_in . : elem, set -> bool
axioms (1) (X32 is_in emptyset) = false,
(2) (X33 is_in add(X34, X35)) = (eq_elem(X33, X34} or (X33 is_in X35)},
(3) add(X36, add(X37, X38)) = add(X37, add(X36, X38)),
(4) add(X39, add(X39, X40)) = add(}{39, X40) endspec
is implemented by

spec LIST = enrich ELEM by
sorts list
observable sorts bool, elem
functions emptylist; -> list,
append : elem, list -> list,
.1s_in . : elem, list -> bool
axioms (1)(X28is_inemptylist) =false,
(2)(X29is_in append(X30, X31))=(eq_elem{X29, X30) or (X29is_in X31})endspec

via renaming {set/list], enrichment functions emptyset: -> set,
add : elem, set -> set
axioms emptyset = emptylist,
add(X41, X42) = append(X41, X42) endimplstep

Now the correctness of the implementation step SET_by_LIST can be proved by the [SAR-
system using the principle of context induction. The underlying algorithm of the context
induction prover of the ISAR-system is described in [5]. For lack of space we do not present
here the complete session of the implementation proof but we show the summary of the
proof which can be displayed at the end of the session. Thereby any equation occurring as a
proof obligation which has been deduced from the axioms of the implementing specifica-
tion is marked by the comment "* proved”. For the proof of equations the ISAR-system is
connected to the TIP-system which is an inductive theorem prover {(cf. [3]).

sexpks CONTEXT-INDUCTION #skdds
Observable Sorts of SET: bool, elem
ss% BASE OF THE CONTEXT INDUCTION FOR CONTEXTS OF SORTS: bool, elem

453

* DEPTH: 0
* PROOF OBLIGATIONS:
X32 is_in emptyset = false * proved
X33 is_in add(X34, X35) = eq_elem(X33, X34) or X33 1s_in X35 * proved
=+* CONTEXT INDUCTION STEP FOR CONTEXTS OF SORTS: bool, elem
Selected function: . is_in . : elem, set -> bool
* SELECTED CONTEXT: X84 is_in z_set
*2+ BASE OF THE CONTEXT INDUCTION FOR CONTEXTS OF SORT: set
* DEPTH: 1
* PROOF OBLIGATIONS:
X84 is_in add(X36, add(X37, X38)) =~ X84 is_in add(X37, add(X36, X38)) * proved
X84 is_in add(X39, add(X39, X40)) = X84 is_in add(X39, X40) * proved
»%# CONTEXT INDUCTION STEP FOE CONTEXTS OF SORT: set
Selected function: add ; elem, set -> set
* ADDITIONAL HYPOTHESIS OF THE CONTEXT-INDUCTION:
%84 is_in constant]_set = X84 is_in constantZ_set
% PROOF OBLIGATIONS:
X84 is_in add(X363, constantl_set) = X84 is_in add(X363, constant2_set) * proved
% END OF THE IMPLEMENTATION PROOF: ALL PROOF GBLIGATIONS PROVED *

3 The Structure of the ISAR-System

The ISAR-system is connected to the TIP-system which verifies all proof obligations gen-

erated by the ISAR-system. The main modules of the ISAR-system are

» ascanner and parser with a mixfix-parser for the syntactical analysis of the specifica-
tions and implementation steps,

 anormalizer for flattening structured specifications,

« acontext induction prover which is the heart of the system for proving the correctness
of implementation steps,

» acontext generator to produce automatically coniexis for context induction steps (the
selection of an appropriate context which is general enough for successful termination
of implementation proofs has then to be done by the user),

- a TIP-interface for the exchange of informations between the ISAR and the TIP-system

» the proof-modules of the TIP-system for the verification of the proof obligations.

Scanner and Mammoduie with Context Induc- TIP
Parser Command Interpreter tion Prover Interface
and Command Parser L
Mixfix Context TiP
Parser Normalizer Generator Prover
References

1. B. Bauer: Ein interaktives System fiir algebraische Implementierungsbeweise. Diplomarbeit,
Fakultit fiir Mathematik und Informatik, Universitiit Passau, 1992

2. H. Ehrig, B. Mahr, Fundamentals of aigebraic specification 1, EATCS Monographs on Theor.
Comp. Science 6, Springer, Berlin, 1985,

3. U. Fraus, H. HuBmann: An inductive theorem prover based on narrowing. Proc. LPAR '92, Logic
Programming and Automated Reasoning, Lecture Notes in Artificial Intelligence, Springer, 1992,

4. R. Hennicker: Context induction: a proof principle for behavioural abstractions and algebraic
implementations. Formal Aspects of Computing, 3 (4), 1991.

5. R. Hennicker: A semi-algorithm for algebraic implementation proofs. Technical Report MIP-
9108, Univ. Passau, 1991. Ext. version to appear in: Theoretical Computer Science, 104, 1993.

