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Abstract 

Operational semantics provide a simple, high-level and elegant means of specifying 
interpreters for programming languages. In natural semantics, a form of operational 
semantics, programs are traditionally represented as first-order tree structures and 
reasoned about using natural deduction-like methods. Hannan and Miller combined 
these methods with higher-order representations using .\Prolog. 

In this paper we go one step further and investigate the use of the logic programming 
language Elf to represent natural semantics. Because Elf is based on the LF Logical 
Framework with dependent types, it is possible to write programs that reason about 
their own partial correctness. We illustrate these techniques by giving type checking 
rules and operational semantics for Mini-ML, a small functional language based on 
a simply typed .\-calculus with polymorphism, constants, products, conditionals, and 
recursive function definitions. We also partially internalize proofs for some meta­
theoretic properties of Mini-ML, the most difficult of which is subject reduction. 
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1 Introduction 

Operational semantics provide a simple, high-level and elegant means of specifying interpreters for 
programming languages. Natural semantics was inspired by the work of Plotkin [19] on operational 
semantics and extended by G. Kahn (12] and others. Programs are traditionally represented as 
first-order tree structures and reasoned about using natural deduction-like methods. 

This method was extended and refined by Burstall and Honsell [1] and Hannan and Miller [6, 7]. 
Using higher-order abstract synta.X, programs are represented by simply-typed A-terms and schema 
variables in inference rules become higher-order variables. Further, they applied methods for intro­
ducing and discharging assumptions (for expressing hypothetical judgments) and parameters (for 
expressing generic or universal judgments) to this setting of natural semantics. Thus it was natural 
that Hannan and Miller's implementation language was AProlog [14]. AProlog was a particularly 
appropriate tool because its embedded implication mechanism is suitable for expressing hypotheti­
cal judgments in natural deduction, and it's higher-order features make it suitable for representing 
programs in terms of higher-order abstract syntax. 

Mini-ML was introduced by Clement et al. [3] as a small programming language based on the 
simply typed A-calculus with products, conditionals, and recursive function definitions. In this 
paper we use Elf [16, 17], a logic programming language based on the LF Logical Framework [10], 
a.s an implementation language for natural semantics. Elf embodies the same features that make 
AProlog so suitable for implementing natural semantics. Additionally, the dependent types of 
LF make it possible for programs to reason about deductions of goals and subgoals, making Elf 
suitable for reasoning about the properties of an implementation within that very implementation. 
In particular, programs can express aspects of their own partial correctness proof. 

This document is intended for readers who are at least acquainted with operational semantics 
and logic programming, although some familiarity with the previous work on natural semantics, 
and the use of AProlog, is an advantage. 

The remainder of this document is organized as follows. We describe our example language 
which is based on Mini-ML (and called Mini-ML throughout), giving its concrete syntax, type 
checking rules and operational semantics. Then we introduce our implementation language Elf, 
using examples from the description of Mini-ML. Then we describe the Elf code for Mini-ML type 
inference and an implementation of the operational semantics. We then show, through a number of 
examples, how some aspects of the meta-theory of Mini-ML can be represented in Elf as judgments 
on deductions. The most complicated example in this class is the subject reduction property for 
our language. Complete listings of the Elf code discussed are given in the appendices. 

2 The Mini-ML Language 

Mini-ML [3] is a functional programming language based on a simply typed A-calculus with poly­
morphism, constants, products, conditionals, and recursive function definitions. The language we 
define here is a slight variation because patterns are replaced with explicit projections to simplify 
the presentation. The only substantial disadvantage of this is that it makes the definition of mu­
tually recursive functions a little untidy. Furthermore, we add a fixpoint operator fix to make 
it easier to describe the typing and semantics of the letrec construct, although fix need not 
necessarily be made accessible to the programmer through the concrete syntax. 

In the remainder of this section we describe the concrete syntax of our variant of Mini-ML and 
~ive the rules for typing and the operational semantics. 
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2.1 Concrete Syntax 

We use the meta-variables x, e and r, possibly subscripted, for the syntactic categories of variables, 
expressions and types, respectively. As usual, application associates to the left and type arrows 
associate to the right. Parentheses are used for disambiguation. 

e • ·= 

T • ·= 

true 
false 
if e1 then e2 else ea 
z 
s 
pred 
zerop 
< e1. e2 > 
fst e 

snd e 
lambda x . e 
el e2 
let x = e1 in e2 
letrec x = e1 in e2 
fix x . e 

X 

Bool 
Nat 
T -> T 

T * T 

The following is a Mini-ML expression implementing addition (in curried form) 

letrec add = lambda x . 
lambda y 

if (zerop x) then y 
else (s (add (pred x) y)) 

in add 

which has type Nat -> Nat -> Nat. 

2.2 Typing Rules 

In the following we give typing rules for Mini-ML. Type judgments are of the form II f- e E r 
where II is a type environment, e is a Mini-ML expression and r is a Mini-ML type. We use "," 
for environment concatenation and [ e / x] e' for the result of substituting e for x in e', renaming 
bound variables as necessary to avoid capture. Furthermore, we say that II( x) = r if the rightmost 
occurrence of x in II is assigned r. Type assignment in an environment is written as x : r. 

Harper [9) studied several formulations for the Damas-Milner fragment of ML [4), with a view 
toward their formalization in LF, and discussed their suitability for direct execution. We use a 
simpler encoding that is sufficient for our purposes. The idea for this also goes back to Hannan 
and Miller [7). 
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oLt 

oLf 

ofJf 

oLz 

of...s 

oLpred 

of..zerop 

oLpair 

oUst 

of...snd 

of Jam 

oLapp 

oflet 

ofJetrec 

oLfix 

oLvar 

IT 1- true E Bool 

IT 1- false E Bool 

IT 1- et E Bool IT 1- e2 E T IT 1- e3 E T 

n 1- if et then e2 else ea E T 

IT 1- z E Nat 

IT 1- s E Nat -> Nat 

IT 1- pred E Nat -> Nat 

IT I- zerop E Nat -> Bool 

IT 1- et E Tt IT I- e2 E T2 

n 1- < et J e2 > E Tt * T2 

n 1- e E Tt * T2 

IT 1- fst e E Tt 

n 1- e E Tt * T2 

IT 1- snd e E T2 

II , x : Tt 1- e E T2 

fl 1- lambda X e E Tt -> T2 

n 1- et E T2 -> Tt n 1- e2 E T2 

n 1- et e2 E Tt 

n 1- et E Tt II 1- [ et I X ] e2 E T2 

II 1- let x - et in e2 E T2 

n 1- fix X • et E Tt n 1- [ (fix X • et ) I X] e2 E T2 

n 1- letrec X - et in e2 E T2 

II,x:TI-eET 

fl 1- fix X • e E T 

II(x)=T 
n 1- x E T 

6 
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2.3 Operational Semantics 

As an additional notational convention here, we adopt a, possibly subscripted, for expressions that 
are the result of evaluation. Evaluation is expressed as the judgment f- e => a, where e is the 
original expression and a is the value to which it evaluates, again a Mini-ML expression. 

Note that we have chosen pred zero to be undefined, and hence there is no corresponding rule. 
Thus there are two possibilities of how an attempt to construct a deduction of f- e => a could 
fail if e is given and a unknown. We might encounter a situation where no rule is applicable (as in 
pred z => a), or we might construct an infinite tree (for non-terminating Mini-ML computations). 

eval_t 

eval_f 

eval..z 

eval..s 

evaLpred 

eval..zerop 

evaLpair 

evalJst 

eval..snd 

evaULt 

evaljf_f 

evalJam 

eval..appJam 

f- true => true 

f- false => false 

f-s=>s 

f- pred => pred 

f- zerop => zerop 

f- e1 => a1 f- e2 => a2 

f- < e1 , e2 > => < a1 , a2 > 

f- e => < al • a2 > 
f- fst e => al 

f- e => < al • a2 > 
f- snd e => Q2 

f- e1 => true f- e2 => Q 

f- if e1 then e2 else e3 => a 

f- el => false f- e3 => a 
f- if e1 then e2 else e3 => a 

f- lambda x . e => lambda x . e 
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evaLapp..s 
f- e1 => s f- e2 => a 

f- e1 e2 => s a 

eval..app...zerop_t 
f- e1 => zerop 1- e2 => z 

f- e1 e2 => true 

f- e1 => zerop f- e2 => s Q 

f- et e2 => false 
evaLa.pp...zerop_f 

f- e1 => pred f- e2 => sa 
f- e1 e2 => Q 

eval..a.pp_pred..s 

f- et => O:t f- [ a1 I x ] e2 => 0:2 
f- let x = e1 in e2 => a2 

evalJet 

evalJetrec 
f- fix x . e1 => a1 f- [ a1 I x ] e2 => a2 

eval..fix 

3 The Elf Language 

1- letrec x = e1 in e2 => a2 

1- [ ( fix x . e ) / x ] e => a 
f- fix x . e => a 

8 

Elf can be loosely described as a constraint logic programming language with higher-order unifica­
tion, implication, types, and a powerful ability to reason about deductions of its goals. A formal 
discussion of the language can be found in [16, 17], but here we take a more pragmatic approach. 
As our running example we will use parts of the abstract syntax and type inference and semantics 
for a higher-order formulation of Mini-ML, based on the syntax and rules in Section 2. However, 
detailed descriptions of these will be left to Section 4. Since there are various notions of "proof" 
necessary in the discussion of a meta-logicallanguage such as Elf, we will use the following termi­
nology. Deductions are proofs of goals as they are carried out by the Elf interpreter, derivations 
are formal proofs of judgments using a specified set of inference rules, and proofs are meta-level 
proofs establishing a property of a set of inference rules. 

The basic building block of an Elf program is a signature, that is, a sequence of constant 
declarations. Some of these declarations have the character of declarations for data constructors or 
predicates, while others have the character of declarations of inference rules or clauses. In principle, 
each declaration could be given all of those interpretations, but in practice few are meaningful. 

Using Elf's module system, one can explicitly distinguish the various roles of declarations. For 
the purposes of this paper, we will only use the Elf core language and give interpretations informally. 
Further discussion on this subject can be found in Section 8 and [17]. 

3.1 Type and Type Family Declarations 

The first kind of declaration is that of a constant type or type family. Types and type families are 
classified by kinds, the simplest of which is type. 

famdecl : := famconst : kind. 
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kind · ·= type 
type -> kind 
{ var : type } kind 

For example, we can declare the type exp of Mini-ML expressions and the type tp of Mini-ML 
types using 

exp type. 
tp type. 

This example falls under the first style of kind, which is the most common. We will consider the 
other two styles, and the types they require, later. For now, it suffices to say that we will need to 
be able to define judgments (such as 1- e E r) as types. 

3.2 Constant Declarations 

A data constructor declaration is of the form 

decl · ·= const : type. 

type : := atom 
type -> type 
{ var : type } type 

atom : := famconst obj* 

so the abstract syntax for the Mini-ML type constructors Nat and * respectively can be declared 
as 

nat tp. 
cross tp -> tp -> tp. 

and that for the Mini-ML term constructors z and < , > is 

z exp. 
pair exp -> exp -> exp. 

This example only uses the first two (simple) styles of type. The third style (dependent function 
types) will become necessary when we need to declare types that describe inference rules defining a 
judgment. Note also that the sequence of objects obj* is empty in these declarations, since tp and 
exp are simple types, and not type families. The dependent function type, { var : type } type, 
is elsewhere often written as ITvar: type. type. 

Before moving on to predicates and inference rules, let us give the definitions of objects which 
are used to represent data. For example, any object of type exp represents a Mini-ML expression, 
any object of type tp represents a Mini-ML type. 
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obj · ·= const 
var 
[ var type ] obj 
obj obj 

Juxtaposition is left-associative, so that the representation of the Mini-ML expression < z, z > 
can be written as the object pair z z of type exp. 

The square brackets denote ~-abstraction, and [var : type] obj is more traditionally written 
as ~ var : type. obj. We adopt the shorthand [ var ] and { var } for those cases of abstraction 
or quantification where we want Elf type reconstruction to fill in the details to the. right of the ": ". 
The scope of the abstraction [. .. ] and quantification { ... } extends to the end of the declaration 
or enclosing parentheses, so that the object lam [x] app s x has the same reading as lam ( [x] 
((app s) x)). 

3.3 Predicates 

Now we come to the syntax of predicate declarations. In Elf, predicates manifest themselves as 
type families and thus a type family declaration can be interpreted as a predicate declaration. For 
example, for type checking we need to declare the relation 

of : exp -> tp -> type. 

between a Mini-ML expression and its type. Again, this example does not require dependent kinds, 
which will be used later when we need predicates to include arguments that are constrained to be 
deductions. These "constraints" will be part of the declaration of a procedure. 

3.4 Rules 

Rule definitions (clauses) are nothing but constant definitions. One can think of the constant as 
naming the rule or clause. This name can then be used in the explicit construction of deductions. 

When defining rules we often use the more conspicuous left-pointing arrow. One should bear in 
mind that this has no semantic significance, and A <- Band B -> A are parsed to the same internal 
representation. The backwards arrow is left assocative and a Prolog rule p ·- q, r. would be 
represented via the type p <- q <- r. 

Let us consider a few example rules. First, the type checking rule 

of..z 
Il 1- z E Nat 

has the simple implementation 

of_z : of z nat. 

The rule has the name of ..z, and E has been replaced by the relation symbol of. The type 
environment II is represented by additional Elf rules using embedded implication, as we shall see 
later. 

To check the type of a Mini-ML pair, which has the inference rule 
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oLpair 

we need to write the following rule, which has the name oLpair, and which recursively checks the 
types of the two elements of the pair. 

of_pair : of (pair El E2) (cross Al A2) 
<- of El A1 

<- of E2 A2. 

At this stage we should point out the role of the Elf front-end in preprocessing programs before 
Elf type reconstruction. Using the above example again, this adds explicit universal quantification 
to a rule for all free named variables. That is, of _pair becomes 

of_pair : 
{E2:exp} {A2:tp} {El:exp} {Al:tp} 

of E2 A2 ->of El Al ->of (pair El E2) (cross Al A2). 

and the deduction showing that < z, z > has type Nat * Nat would be represented as (oLpair z 
nat z nat of_z of_z). It should be easy to see how this much syntax could get out of hand, so the 
usual style of programming in Elf is to omit such quantifiers whenever possible, as in Prolog. This 
causes the corresponding components of deductions to be suppressed as well. However, occasionally 
explicit quantification is needed either for embedded implication or for obtaining access to otherwise 
hidden arguments in deductions. 

The variable name convention of Elf is much like that of Prolog. Any token beginning with an 
upper case letter is automatically a variable, and if an explicit quantifier is not provided, one will be 
added by type reconstruction. Additionally, variables that are explicitly quantified need not start 
with an upper case letter. We follow the convention that bound variables which will become logic 
variables (and thus subject to instantiation) during execution of a query are written in uppercase 
and bound variables which become parameters (and thus act like constants to unification) are 
written in lowercase. 

In Elf, unlike Prolog, an underscore character does not denote an anonymous universally quan­
tified variable, although it can sometimes be used for this purpose. Instead, it describes an existen­
tially quantified anonymous variable, and type reconstruction is at liberty to replace an underscore 
with any term, depending on the available type information. Thus {x}B and {x: _}Bare fully equiv­
alent. In Prolog, since no variables are ever instantiated during parsing, this distinction does not 
arise. 

3.5 Queries 

Queries to the Elf interpreter consist of a type, possibly with free variables which act as logic 
variables. The goal is to find a term of the given type. In the most common interpretation, this 
term represents a deduction of the judgment which is represented by the type. During the solution 
of a goal, the free variables in the query are instantiated as necessary, as in Prolog. For example, 
the query 

?- of (pair z z) A. 
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would give the answer (cross nat nat) for A, and the deduction (of_pair of ..:z. of ..:z.) which 
represents a derivation that < z, z > has type Nat * Nat. As will be described in more detail 
later, the names of rules are used as constructors in assembling deductions. 

The operational model of Elf is superficially much like that of Prolog and AProlog. A com­
putation rule similar to Prolog's left-right atom selection rule is employed. Unification is modulo 
,07]-convertibility, where certain equations are postponed as constraints. A goal of the form A -> 
B is solved by adding A to the set of rules available for goal reduction. The third form (universal 
quantification) is solved by replacing 'the universally quantified variable with a new constant as in 
..\Prolog. 

In order to make this operational model work, distinctions between types and goals which are 
erased through the use of the judgments-as-types principle, must be reintroduced to some extent. 
Further discussion on this issue can be found in Section 8. 

4 An Implementation of Mini-ML in Elf 

Here we work through the implementation of Mini-ML in Elf, starting with its higher-order abstract 
syntax, a type checker, and the first of two versions of its operational (natural) semantics. 

4.1 Higher-Order Abstract Syntax 

Now we are ready to develop a scheme for expressing Mini-ML programs in Elf, using higher­
order abstract syntax. This approach was inspired by Church [2] and Martin-Lof [15] and is 
used pervasively in many applications of AProlog and Elf. In each case, a A-calculus-based meta­
language (here Elf) is used to represent expressions of the object language (here Mini-ML). This 
enables variable binding in the object language to be represented with the help of A-abstraction in 
the meta-language. This, in turn, enables substitutions in the inference rules we have seen to be 
implemented using ,8-reduction in the meta-language, which avoids, for example, the requirement 
to perform explicit a-conversion to prevent capture of bound variables. We will see many examples 
of this later on. Here we define a translation function ()+ from Mini-ML expressions and types to 
Elf expressions. 

(true)+ = true 
(false)+ false 

(if e1 then e2 else e3)+ = (if (et)+ (e2)+ (e3)+) 
(z)+ z 
(s)+ s 

(pred)+ pred 
(zerop)+ = zerop 

( < e1, e2 > )+ (pair (et)+ (e2)+) 
(fst p)+ (fst (p)+) 
(snd p)+ = (snd (p)+) 

(lambda x . e)+ = (lam [x:exp] (e)+) 
(ei e2)+ = (app (ei)+ (e2)+) 

(let x = e1 in e2)+ = (let (ei)+ ([x:exp] (e2)+)) 
(letrec x = e1 in e2)+ (letrec ([x:exp] (e1 )+) ( [x: exp] (e2)+)) 

(fix x . e)+ = (fix [x:exp] (e)+) 
(x)+ = X 
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Let us consider, for example, an expression of the form let x = e1 in e2. The variable x is 
bound in e2, but not in e1. Therefore, the representing constant let has two arguments: the first 
the representation of et, the second the representation of e2, abstracted over x. Since x can occur 
in e2 in place of an expression, its type is exp, and the type of let becomes exp -> (exp -> exp) 
-> exp. 

The representation of Mini-ML types is simpler, since it involves no variable binding constructs. 

(Bool)+ 
(Nat )+ 

(r1 * r2)+ 
(TI -> T2)+ 

bool 
nat 
(cross (rt)+ (r2)+) 
(arrow (rt)+ (r2)+) 

In the defining signature, we require no syntactic category for identifiers since all Mini-ML 
variables correspond directly to Elf variables. Thus we only need expressions ( exp in Elf) and 
types (tp in Elf, since type is a keyword). 

exp type. 

true exp. 
false exp. 
if exp -> exp -> exp -> exp. 

z exp. 
s exp. 
pred exp. 
zerop exp. 

pair exp -> exp -> exp. 
fst exp -> exp. 
snd exp -> exp. 

lam (exp -> exp) -> exp. 
a pp exp -> exp -> exp. 

let exp -> (exp -> exp) -> exp. 

letrec (exp -> exp) -> (exp -> exp) -> exp. 
fix (exp -> exp) -> exp. 

tp type. 

bool tp. 
nat tp. 
cross tp -> tp -> tp. 
arrow tp -> tp -> tp. 

The most complex constructor, letrec, warrants some special consideration. In an expression of 
the form letrec x = e1 in e2, the variable xis bound in e1 as well as e2-this is how it differs from 
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let. In the absence of pairing in Elf, the most natural representation is through a constant letrec 
with two arguments (the representations of e1 and e2), both abstracted over x. This introduces 
two abstractions whereas the concrete syntax contains only one. This means that we might have to 
o:-convert one to the other in order to obtain the concrete Mini-ML syntax for a letrec expression. 
For a more general solution in the presence of meta-language pairing, see [18]. · 

As an example of how the representation works, the addition program from section 2 would be 
expressed as: 

(letrec 
([add] (lam [x] (lam [y] 

([add] add)) 

(if (app zerop x) 

y 
(app s (app (app add (app pred x)) y)))))) 

and its type would be expressed as (arroil nat (arroil nat nat)). 

4.2 Typing Rules 

Next we describe and define a relation of between a Mini-ML expression and its type. The code is 
more or less a direct translation of the inference rules in Section 2, and is given in full in Appendix B. 
Here we will discuss the more interesting rules in some detail. First, the declaration of the predicate 
of is: 

of : exp -> tp -> type. 

That is, the first argument is a Mini-ML expression and the second argument is its Mini-ML type. 
In the previous section we saw two very simple rules for of....z and oLpair. Recall that the inference 
rules were 

oLz 

oLpair 

and the Elf code was 

of_z 
of_pair 

II f- z E Nat 

II f- e1 E Tt II f- e2 E r2 

II f- < e1 , e2 > E r 1 * r2 

of z nat. 
of (pair El E2) (cross Al A2) 

<- of El Al 
<- of E2 A2. 

Most of the other cases are just as simple. The rule for lambda illustrates universal quantification 
in a goal, as well as the use of assumptions. This technique is familiar from >.Prolog. 

of Jam 
II , x : Tt f- e E r2 

II f- lambda x . e E Tt -> T2 
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The scope of the quantifier {x: exp} below extends all the way to the end of the declaration. Thus 
this rule has one subgoal, as expected. 

of_lam : of (lam E) (arrow Al A2) 
<- {x:exp} of x Al -> of (E x) A2. 

Thus the derivation of the premiss of ofJam is represented as a function which maps expressions 
et and deductions showing that et has type Tt to derivations showing that [ et I x ] e2 has type T2. 

When this rule is used in the deduction of a goal, it replaces the parameter of the higher-order term 
with a new parameter and assumes a rule (effectively a lemma) about the typing of that variable. 
Hence, whenever the variable is encountered in subsequent type checking this assumed rule (fact) 
will be used to retrieve its type. The rule for fix 

oLfix 
II,x:rl-eEr 
II 1- fix x . e E T 

is implemented using the same technique: 

of_fix : of (fix E) A <- {x:exp} of x A -> of (E x) A. 

The rules for let and letrec illustrate the utility of higher order terms, as both of the inference 
rules require substitutions. The two are similar so we will restrict our attention to let. 

ofJet 
II 1- et E Tt II 1- [ et I x ] e2 E r2 

II 1- let x = et in e2 E r2 

One possible implementation simply uses Elf application to represent substitution: 

of_let' : of (let El E2) A2 
<- of El Al 
<- of (E2 El) A2 

There is another, equally valid pair of rules for let and letrec. These have the advantage that 
they do not require substitution the way those above do, and they are in some sense more natural. 
We include that for let here because it demonstrates some more of the expressive power of Elf. 

of_let : of (let El E2) A2 
<- of El Al 
<- {x:exp} ({A:tp} of x A <- of El A) 

-> of (E2 x) A2. 

The first condition in the body of the rule ensures that the let-bound term El is well-typed in 
isolation. The second condition uses an extension of the technique used to implement lam. The 
let-bound variable in the body is replaced by a parameter x, and a rule is assumed which ensures 
that whenever x is encountered while type-checking E2, the expression El will be type-checked in 
its place. Note that the type A of x is universally quantified within the asserted rule, so that x can 
be given different (Mini-ML) types at different occurrences in E2. 
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Both of the rules we have given for typechecking the let construct are somewhat unconventional, 
as the bound expression is type-checked every time it is encountered in the body. The more usual 
approach is to construct the type of the bound expression once and abstract over all the free 
variables remaining in the type which are not free in the current type environment. However, 
these free variables cannot be statically predetermined. Thus, if Mini-ML type unification is to 
be represented by Elf unification, such abstraction cannot be represented in Elf. Dietzen and 
Pfenning (5] show how this problem can be overcome for AProlog by adding a special construct 
called rule to the language, and a similar extension to Elf seems to be possible. For a number of 
variants of declarative presentations of the type system with explicit type schemas, see [9]. 

4.3 Natural Operational Semantics 

Sometimes the most "natural" semantics for a programming language is "nondeterministic" in the 
sense that its execution would require backtracking in our chosen implementation language. How­
ever, the corresponding "deterministic" version is usually more efficient, and probably corresponds 
more closely to practical applications. We will first give a nondeterministic (but nevertheless ex­
ecutable) semantics for Mini-ML (note the nondeterminism in the handling of if-then-else and 
application) and later (in Section 6) what we call the "algorithmic" one, which is deterministic. 
This is again a more or less direct translation of the rules given in Section 2. Again we will leave 
the full listing to Appendix C, and describe some highlights here. 

The semantics we describe here is a call-by-value semantics. This could easily be modified to 
describe call-by-name instead (see [7]). We begin with the declaration of the evaluation predicate 
neval: 

naval : exp -> exp -> type. 

The first argument is a Mini-ML expression, and the second argument is the value of that Mini-ML 
expression. To begin with a trivial example, consider the rule 

eval...z 
1-z=>z 

which can be implemented as 

neval_z naval z z. 

Again the implementation of pairs is quite simple, for example 

evaLpair 

evaLfst 

are implemented as 

neval_pair 

1- e1 => a 1 1- e2 => a2 
1- < e1 , e2 > => < a1 , a2 > 

1- e => < a 1 , a 2 > 
1- fst e => a1 

naval (pair El E2) (pair Vl V2) 



4 AN IMPLEMENTATION OF MINI-ML IN ELF 

neval_fst 

The rules 

evalJet 

evalJetrec 

<- naval El Vl 
<- naval E2 V2. 

naval (fst E) Vl 
<-naval E (pair Vl V2). 

1- e1 =? a1 1- [ a1 I x ] e2 =? a2 

1- let x = e1 in e2 =? a2 

1- fix x . e1 =? a1 1- [ a1 I x] e2 =? a2 

1- letrec x = e1 in e2 =? a2 

for let and letrec are also quite straightforward: 

naval_ let 

neval_letrec 

naval (let El E2) V2 
<- naval El Vl 
<- naval (E2 Vl) V2. 

naval (letrec El E2) V 
<- naval (fix El) Vl 
<- naval (E2 Vl) V2. 

Notice again the use of meta-level application (E2 Vl) to achieve substitution. 
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The operationally interesting aspects of naval in this case are those involving branching and 
application. For example, consider the straightforward implementation of 

evaULt 

evaUf_f 

which is 

neval_if_t 

neval_if_f 

1- e1 =? true 1- e2 =? a 
1- if e 1 then e2 else e3 

1- el =? false 1- e3 

1- if e1 then e2 else e3 

naval (if El E2 E3) V 
<- naval El true 
<- naval E2 V. 

naval (if El E2 E3) V 
<- naval El false 
<-naval E3 V. 

=? Q 

=? Q 

=?a 

Any if statement will be evaluated by first evaluating El. If it evaluates to true, E2 is evaluated 
and the result is returned through V. However, if El evaluates to false, backtracking occurs, the 
second rule is matched, and El is again evaluated. It again evaluates to false, E3 is evaluated 
and the result is returned through V. So the first source of inefficiency is that El may be evaluated 
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twice. The second is that even if El does evaluate to true and failure occurs later, the second rule 
will again be matched on backtracking and El will be re-evaluated. In addition to the inefficiency, 
clearly this behavior is very far from what one would expect in an implementation of Mini-ML. In 
Section 6 we will consider an alternative. 

The same phenomenon occurs in the rules for evaluating an application. We will just consider 
two examples, although there are five rules involved, resulting in quite substantial inefficiency. 

evaLappJam 
1- e1 => (lambda x . e~) 1- e2 => a2 

eval...app_s 

These are implemented as 

neval_app_lam 

neval_app_s 

1- e1 => s 1- e2 => a 
1- e1 e2 => s a 

neval (app El E2) V 
<- naval El (lam El') 
<- naval E2 V2 
<-naval (El' V2) V. 

neval (app El E2) (app s V) 
<- naval El s 
<- neval E2 V. 

The situation is much as in the previous example: El is being applied to E2, and El must be 
evaluated before it is uniquely determined which rule applies. Potentially, this may be done several 
times to evaluate just a single application. Again we will consider the alternative later. 

Embodied in these rules is the decision that we would like to implement a call-by-value semantics 
for Mini-ML.It would be a simple matter to rewrite the rules to implement a call-by-name discipline 
instead [6]. 

Next we will look at a sample evaluation expressed both as a derivation in our formal system 
and as an Elf deduction. The example expression is ( lambda x . lambda y . x y ) pred ( s z ) . 

(1) 1- lambda x . lambda y . x y => lambda x . lambda y . x y By neva!Jam 
(2) 1- pred => pred By nevaLpred 
(3) 1- lambda y . pred y => lambda y . pred y By neva!Jam 
(4) 1- (lambda x . lambda y . x y) pred => lambda y . pred y By nevaLappJam from 1, 2, 3 

(5) 1- s => s By nevaL.s 
(6) 1- z => z By nevaL.z 
{7) 1- sz => sz By nevaLapp..s from 5, 6 

(8) 1- ( lambda y • pred y ) ( s z ) => pred s z By nevaL.appJam from 3, 7 
{9) 1- pred ( s z ) => z By nevaLapp_pred..s from 2, 7 

(10) 1- ( lambda x . lambda y . x y ) pred ( s z ) =>z By nevaLappJam from 4, 7, 9 

By looking at the structure of the derivation we can see that the Elf deduction for the query 

?- naval (app (app (lam [x] (lam [y] (app x y))) pred) (app s z)) V. 
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to the program in Appendix C is going to be: 

10 neval_app_lam 
9 (neval_app_pred_s 
7 (neval_app_s 
6 neval_z 
5 neval_s) 
2 neval_pred) 
7 (neval_app_s 
6 neval_z 
5 neval_s) 
4 (neval_app_lam 
3 neval_lam 
2 neval_pred 
1 neval_lam) 

where we have marked individual lines of the deduction with the numbers of the corresponding 
lines in the derivation above. Note that the order of subdeductions is the opposite of what might 
be expected, due to the use of the left arrow in the formulation of the rule-an artifact that we 
will explain later. After this example it should be clear how deductions of the evaluation judgment 
can be viewed as evaluation traces. We will take advantage of this observation in later sections, 
when we would like to prove properties of Mini-ML by induction over the construction of evaluation 
traces. 

We conclude this subsection with some observations on the correctness of this Elf encoding of 
Mini-ML. They are presented without proof. Since we will need to talk about the Elf types of 
programs, we will introduce the notation IIM f- LF M : A to mean that the Elf term M has the 
Elf type A in the context IIM containing x : exp for each free variable x in M. We tacitly assume 
a-conversion in the statement of the propositions below and elsewhere in this paper. 

Proposition 1 The encoding()+ is a bijection between well-formed Mini-ML expressions and fJTJ­
equivalence classes of Elf terms E such that IIM f-LF E : exp , and also between well-formed 
Mini-ML types and fJTJ-equivalence classes of Elf terms A such that f- LF A : tp . 

Proposition 2 Let e be a well-formed Mini-ML expression and T a well-formed Mini-ML type, 
and let E and A be Elf terms such that (e)+ = E and ( T )+ = A. Then there is a bijection 
between derivations of II f- e E T and fJTJ-equivalence classes of deductions P such that 
II f-LF P ·: of E A. Here for each x : T in II there are corresponding entries x : exp and 
Px : of x ( T )+ in II. Furthermore, for a closed, well-typed e and the closed, well-typed Mini-ML 
expression a such that (a)+ = V, there is a bijection between derivations of f- e ~ a and 
deductions Q such that f-LF Q : eval E V. 

The interested reader is referred to (10] for more formal versions of propositions like the above. 
These refer to the existence of compositional bijections, which are basically those where variables 
in the object language are represented by variables in the meta-language. Furthermore, they refer 
to canonical terms, which are merely the "obvious" representatives of the fJTJ-equivalence classes 
above. The following proposition is essentially an operational version of the last proposition above, 
incorporating Elf's notion of search. 
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Proposition 3 For an Elf term E such that f-LF E : exp, let Q1 be the Elf query ?- of E T 

and Q2 be the Elf query ?- eval E V (where T and V are free and therefore interpreted as logic 
variables). Then exactly one of the following holds: 

• Q1 fails, exactly when E represents an ill-typed Mini-ML expression. 

• Q1 and Q2 both succeed. This is exactly when E is well-typed and according to the semantics 
of Mini-ML it evaluates to a Mini-ML expression given as a binding to V. 

• Q1 succeeds and Q2 fails. This is exactly when E represents a well-typed Mini-ML expression 
whose value is not defined, but which does not lead to any infinite derivations using the 
semantic rules. 

• Q1 succeeds and Q2 does not terminate. This is exactly when the represented Mini-ML ex­
pression is well-typed but at least one infinite derivation is possible. 

Note that the only finitely failed eval queries are those that result in trying to evaluate pred 
zero. 

5 Verification of a Simple Property 

In this section we will use those features of Elf that correspond to dependent types in LF to verify 
a simple property of the Mini-ML semantics presented in the previous section. The property is 
that the result of evaluation is a value, a notion yet to be defined. As usual we will just describe 
some highlights in detail here, and then present the entire program in Appendix D. 

Intuitively, a value is either a constant, an arbitrary A-abstraction (since we do not evaluate 
underneath abstractions), or a data constructor applied to values. This inductive definition can be 
formalized through the following inference rules. 

val_t 
f- true VALUE 

vaU 
f- false VALUE 

vaLz 
f- z VALUE 

vaL.s 
f- s VALUE 

vaLpred 
f- pred VALUE 

val....zerop 
f- zerop VALUE 

val_pair 
f- e1 VALUE f- e2 VALUE 

f- < e1, e2 > VALUE 

vallam 
f- (lambda x . e) VALUE 
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vaLapp_s 
1- e VALUE 

1- (se) VALUE 

Restricting our attention, for now, to the natural version, this is what we want to prove: 

Theorem 1 For closed, well-typed Mini-ML expressions e and a, if f- e =? a then f-
a VALUE. 

Proof: By induction on the structure of a derivation that e evaluates to a. For each inference 
rule of the operational semantics, we need to construct a derivation that a is a value, given (by 
induction hypothesis) that the right-hand sides of the premisses of the rules are values. 

Most cases are completely straightforward. For example, for the rule evalJam we have to show 
that lambda x . e is a value, but this follows by the rule valJam in the definition of the value 
judgment. In the rule for pairing, we simply form the derivation that < a1 , a2 > is a value by 
applying the inference rule vaLpair to the derivations that a 1 and a 2 are values, and which must 
exist by induction hypothesis. 

The cases of destructor functions require one small additional insight. Consider the rule for 
fst e, 

eval_fst 
f- e =? < a 1 , a2 > 

f- fst e =? a1 

By induction hypothesis we know that < a1 , a2 > is a value. From this we need to conclude 
that a 1 is a value. But this follows by exhaustive analysis: the only way the derivation of f­
< a1, a2 > VALUE can end is in an application of the val_pair rule. But then we have the 
derivation of 1- a 1 VALUE as a premiss and that is exactly what was needed. 0 

What we now seek is an internalization of this argument in the form of a relation. There 
are a number of ways this can be done-we will discuss two alternatives. It is important to 
remember, though, that in either case the induction cannot be internalized, and neither can the 
formal statement of the theorem itself. The goal must be to define a relation in such a way that 
the proof of the the theorem is "obvious" from its definition. We will have more to say on this 
point in each example. 

5.1 Value Deductions in Elf 

The implementation of the value judgment is straightforward. 

value exp -> type. 

val_t value true. 
val_f value false. 

val_z value z. 
val_s value s. 
val_pred value pred. 
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val_zerop value zerop. 

val_pair value El -> value E2 ->value (pair El E2). 

val_lam value (lam E). 
val_app_s value E -> value (app sE). 

As an example, consider the deduction 

(val_pair val_t (val_app_s val_z)) value (pair true (app s z)). 

which represents a derivation that 1- < true. s z > VALUE. 

5.2 Transformation of Evaluations to Value Deductions 

The basic idea in this first approach to the partial internalization of Theorem 1 is that the core of 
the proof construction is a total function, transforming evaluation deductions (or traces) into value 
deductions. This function, while not itself representable in Elf, can be written out as a relation 
(which, as usual, is implemented as a type family). From the definition of the relation it can be 
checked easily that the function is in fact total, which yields the proof of the desired theorem. 

We begin by defining the type of this desired relation between deductions. It is important, and 
a unique feature of the LF type system, that we can express that the result of evaluation is the 
same Mini-ML expression which we deduce to be a value. Here, the power of dependent types is 
fully exploited. 

vp : naval E V -> value V -> type. 

E and V are implicitly quantified, and the full type of vp would be 

vp : {E:exp} {V:exp} naval E V -> value V -> type. 

For practical purposes, it is extremely helpful that the first two arguments {E and V) can remain 
implicit. They are, of course, fully determined by the latter two arguments and would thus not 
add any new information to the clauses defining vp, only bulk to the input which quickly becomes 
unmanageable. 

First we consider a base case in the inductive proof, say nevalJam. As a reminder, we have 
from before 

neval_lam 
val_lam 

We now simply write 

vp_lam 

naval (lam E) (lam E). 
value (lam E). 

: vp (neval_lam) (val_lam). 

As one can see, the types work out: the second argument of the type ofnevaLlam and the argument 
of the type of val...lam agree. It also directly expresses our previous informal induction case. 

As the second example, let us consider pairing-a case where we make use of the induction 
hypothesis. Here we have 
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neval_pair 

val_pair 

neval (pair El E2) (pair Vl V2) 
<- neval El Vl 
<- neval E2 V2. 

value El-> value E2 ->value (pair El E2). 
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Again, then, this case is not difficult: we combine the value deductions obtained from the recursive 
calls to vp using the vaLpair inference rule: 

vp_pair : vp (neval_pair P2 P1) (val_pair VP1 VP2) 
<- vp Pl VPl 
<- vp P2 VP2. 

Note that because we used the left-arrow notation for nevaLpair, the arguments to this constructor 
appear in reverse of what might be expected. If one rewrites the declaration for nevaLpair by 
reversing the arrow 

neval_pair neval E2 V2 
-> neval El V1 
-> neval (pair El E2) (pair Vl V2). 

one can see that the deduction VP2 ofneval E2 V2 is indeed expected as the first explicit argument 
to nevaLpair. If we tried to repair this by writing 

neval_pair neval (pair El E2) (pair Vl V2) 
<- neval E2 V2 
<- neval El Vl. 

we would obtain a different operational behavior (E2 would be evaluated first). This change in 
operational behavior would be irrelevant in this case, but, of course, not acceptable in general. 

Finally, consider one of the critical cases of destructor functions. Here it will be more difficult 
to convince oneself that vp does in fact define a function. First, as a reminder, the evaluation rule 
for fst: 

neval_fst: neval (fst E) Vl <- neval E (pair Vl V2). 

We must extract the deduction that Vl is a value from the deduction that (pair Vl V2) is a value. 
This is done through matching, a technique familiar from other logic programming languages. 

vp_fst : vp (neval_fst P) VPl <- vp P (val_pair VPl VP2). 

If we want to check that vp describes a function of its first argument, we have to check that 
subgoals of the form vp P (vaLpair VPl VP2) will always succeed. This could only fail if the 
value deduction of the subgoal could end in an inference different from val_pair. By inspection of 
the rules for value, we can see that this is not possible. 

In this manner the definition of the relation can be easily completed (see Appendix D.2 for a 
complete listing). The computational content of the informal proof is fully present in our imple­
mentation, while the induction is currently left to manual inspection. One might imagine, however, 
that a simple check as required here could be automated. 
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5.3 Modified Evaluation to Generate Value Deductions 

Another approach to the partial internalization of the informal proof is to define a modified eval­
uation relation, say veval, which produces not only a value V, but also a deduction that V is a 
value. The desired theorem then follows again by inspection, where we need to check that the new 
relation succeeds for a given expression E iff evaluation of E succeeds, and that the value produced 
would be the same. The complete code for this subsection can be found in Appendix D.3. 

The type of our new veval relation needs to be something like 

veval, : exp -> exp -> value E -> type. 

so that the third argument is required to be a deduction that the expression E, from the second 
argument, is a value. However, as it is the type does not give enough information about value E: 
namely which argument it is a value-deduction of. To make this relation explicit, we use dependent 
types again. Elf allows us to give an argument a name when we declare a relation, in addition to 
doing so when we define the relation, so we have some way to refer to it when we specify properties 
of that argument. We replace the exp -> component with a corresponding { E: exp } component, 
obtaining 

veval : exp -> {E:exp} value E -> type. 

That is, the first argument is an expression, the second argument is the result of evaluating that 
expression, and the third is a deduction that the second is a value. 

Note that the first form is by no means incorrect, but the fact that our Elf program (to be 
written down below) is type-correct, would mean much less. With the refined declaration, the Elf 
type checker is required to check that the relationship between an expression and a deduction that 
it is a value is in some sense upheld by the program. 

Now let us return to the definition of veval. The base cases are simple, in that they just return 
the (atomic) deduction that the base structure is a value. For example 

veval_t : veval true true val_t. 

The deduction for pairs is a straightforward pairing of the deductions for the respective components. 

veval_pair : veval (pair El E2) (pair Vl V2) (val_pair Pl P2) 
<- veval El Vl Pl 
<- veval E2 V2 P2. 

veval_fst veval (fst E) Vl Pl 
<- veval E (pair Vl V2) (val_pair Pl P2). 

In the second case of fst, we again use matching to extract a deduction Pl that Vl is a value. 
The subcases of application are straightforward either because they produce a base deduction, 

veval_app_zerop_t : veval (app El E2) true val_t 
<- veval El zerop Pl 
<- veval E2 z P2. 

or take the deduction obtained from normalization 

veval_app_lam veval (app El E2) V P 
<- veval El (lam El,) Pl 
<- veval E2 V2 P2 
<- veval (El, V2) V P. 
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Likewise, the rules for let and letrec just return the deduction obtained by normalizing the 
body, discarding the deduction obtained by normalizing the bound term. 

veval_let 

veval_letrec 

: veval (let El E2) V P2 
<- veval El v• Pl 
<- veval (E2 V') V P2. 

veval (letrec El E2) V P2 
<- veval (fix El) v• Pl 
<- veval (E2 V') V P2. 

Now we need to consider the connection between the relation veval as defined here and Theo­
rem 1. We should start by formalizing what we claim the relation does: 

Proposition 4 For all Elf terms E and V that represent well-typed Mini-ML expressions, there 
exists a P such that 1-LF P : nev al E V if and only if there exist VP and Q such that 1-LF VP : 
veval E V Q and 1-LF Q :value V. 

Proof: The right-to-left direction is obtained trivially by erasing the third argument of occurrences 
of veval, making them occurrences of naval. The left-to-right direction is analogous to the 
induction argument in the proof of the previous theorem. 0 

Now that we have some formal understanding of what is achieved by this style of programming 
in Elf, we also need to obtain a pragmatic, or methodological, understanding of this programming 
style. In particular, we need to know just what is guaranteed when an Elf program like the above 
is found to be well-typed. Essentially, each rule corresponds to one case in the case analysis of 
an inductive correctness proof. Elf type-correctness is, at a certain level, a guarantee that these 
individual cases are correct. However, it does not guarantee that the induction argument holds 
together. Pragmatically, this means that if the correctness argument embedded in a single rule 
like those above is incorrect, Elf type inference will return an error message. Let us consider some 
examples. 

The rule vevaLt that we saw earlier asserts that that vaLt really is a deduction of (value 
true). On the other hand, vevaLpair asserts that an expression of the form (pair El E2), if it 
is indeed a value, will indeed have a value deduction of the form (vaLpair Pl P2), where Pl is 
the deduction that El is a value and P2 is the deduction that E2 is a value, if the evaluations of El 
and E2 terminate. Now consider adding some incorrect rules. For example, adding 

veval_wrong : veval X X of_t. 

will result in an Elf type error. This is because X would have to be the constant true for the rule 
to be well-typed, but X is implicitly universally (not existentially!) quantified. However, if the rule 
were 

veval_wrong : veval X _ of_t . 

the Elf front-end would have been free to replace the underscore with true, and there would not 
have been an error, resulting instead in 

veval_wrong : {X:exp} veval X true of_t. 
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The check that evaluation traces can be reconstructed from veval deductions would now fail, since 
there is no corresponding rule of type naval X true. This cannot be discovered by the Elf type 
checker, however. Similarly, the rule 

veval_bogus : veval X X Y. 

will become, after type reconstruction, the rule 

veval_bogus : {X : exp} {Y : value X} veval X X Y. 

and there is no type error. This is because the Elf front-end is at liberty to make the necessary 
restrictions on the types of quantified variables . Of course, the rule is still quite wrong, one 
problem being the the generated value deduction will not always be ground. If we were to run the 
so-augmented veval relation on something that was not a value, such as 

?- veval (app (lam [x] x) z) V P. 

the behavior would depend on the way value was interpreted. If it was defined as a dynamic 
relation (see Section 8) these rules would be used to check whether the argument was a value, and 
if appropriate, would cause backtracking, and so the program would (accidentally) run correctly. 
However, if it were defined as a static type family the rules would not be used operationally at 
run time, and a deduction obligation would remain until the end of the computation, and be printed 
as part of the answer. 

This tells us that it is worthwhile to look at the rules output by Elf upon parsing-type-checking 
alone does not guarantee program correctness, though the properties which can be guaranteed go 
well beyond what is possible in languages without dependent types. 

6 An Equivalent Algorithmic Semantics 

Here we give an equivalent formulation of the Mini-ML operational semantics which avoids back­
tracking, and hence is referred to as "algorithmic". We then discuss how this would affect the 
material of the previous section, and show that the two formulations of the semantics are equiva­
lent. 

6.1 Algorithmic Operational Semantics 

While this formulation may be semantically somewhat obscure, being deterministic it is more 
efficient and closer to a practical interpreter. For this reason it is more useful to be able to verify 
its properties, and also it is complicated enough that it has interesting properties to verify. 

The basic idea is that for those situations where the previous versions required (deep) back­
tracking based on the result of an evaluation, we compute the result in advance and then call 
another relation to handle that case, using only shallow backtracking. The full program appears 
in Appendix E. 

In addition to the basic evaluation relation, here aeval, we need to declare two new relations 
for conditionals and applications: 

aeval 
do if 
app_vals 

exp -> exp -> type . 
exp -> exp -> exp -> exp -> type. 
exp -> exp -> exp -> type. 
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so that when the appropriate branch is evaluated the deduction that the result is a value may be 
obtained as well. Of course only those aval rules that relate to conditionals or application are 
affected. 

For application it suffices to evaluate both sides, and pass both the values and the deductions 
that they are values into avapp_vals: 

avaval_app 

avapp_v_s 

: avaval (app El E2) V P 
<- avaval El Vl Pl 
<- avaval E2 V2 P2 
<- avapp_vals Vl Pl V2 P2 V P. 

avapp_vals s val_s V2 P2 (app s V2) (val_app_s P2). 

Conditionals are similar, although the deduction for the boolean term is discarded. The defini­
tion of doif merely needs to return the deduction that is produced by the call to avaval. 

aveval_if 

avdoif_t 
avdoif_f 

: aveval (if El E2 E3) V P 
<- avaval El Vl Pl 
<- avdoif Vl E2 E3 V P. 

avdoif true E2 E3 V P <- avaval E2 V P. 
avdoif false E2 E3 V P <- aveval E3 V P. 

The other cases are obvious incarnations of ideas previously discussed. We leave it to the 
interested reader to verify that this program achieves as much as the natural version. 

6.3 Equivalence of Natural and Algorithmic Evaluation 

So far we have claimed that the two formulations of evaluation are equivalent. This is expressed in 
the following proposition. 

Proposition 5 For all Elf terms E and V that represent well-typed Mini-ML expressions, there 
exists a P such that f-LF P : naval E V if and only if there exists a Q such that f-LF Q : 
aeval E V 

Proof: In each direction, by induction on the structure of deductions . 0 
We can show the equivalence by defining an Elf equality relation na thus: 

na : naval E V -> aeval E V -> type. 

where naval is the natural version of the evaluation relation, and aeval is the algorithmic version. 
That is, the first argument is a deduction corresponding to the natural semantics, and the second 
is a deduction corresponding to the algorithmic semantics. Dependent types are used to express 
that both deductions must end in the equivalent judgment of evaluation. The program we define 
will be executable in both directions. That is, it will be able to translate either kind of deduction 
into the other. 

Most of the rules are very simple, with base cases like 

na_t : na neval_t aeval_t. 

and simple recursive rules like 
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na_pair na (neval_pair P2 Pl) (aeval_pair Q2 Ql) 
<- na Pl Ql 
<- na P2 Q2. 

29 

but the rules that correspond to differences between the two semantics are slightly more interesting. 
For example, the rules dealing with application, such as 

na_app_lam : na (neval_app_lam P3 P2 Pl) 
(aeval_app (app_v_lam Q3) Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2 
<- na P3 Q3. 

are all similar, as are those dealing with conditionals, such as 

na_if_t : na (neval_if_t P2 Pl) (aeval_if (doif_t Q2) Ql) 
<- na Pl Ql 
<- na P2 Q2. 

Essentially, these rules just need to include the extra step taken in the algorithmic semantics. It is 
obvious that such a translation is total on deductions for the natural semantics. It should also be 
clear that it is total for the algorithmic case because the particular compositions of rules are the 
only ones possible. The full program appears in Appendix F. 

7 The Subject Reduction Property 

In this section we take on a more challenging task: verifying the subject reduction property for 
Mini-ML. In this context, the subject reduction property (sometimes referred to as soundness of 
the type system with respect to an operational semantics) says that if a well-typed expression e of 
type r evaluates to a then a also has type r. 

Again, there are at least two possible approaches to the internalization of this theorem. We 
will discuss them in turn, after sketching the informal proof of this theorem. 

Theorem 2 Let e and a be Mini-ML expressions and r a Mini-ML type such that 1- e E r and 
f- e => a . Then 1- a E r . 

Proof: By induction on the structure of the derivation that e evaluates to a. For each case we 
have to construct a derivation that a has type r, employing the induction hypothesis applied to 
the premisses of the derivation of 1- e => a. We consider a few typical cases. 

evaLt 
1- true => true 

In this case we have to show that for every type r and derivation of 1- true E r, there exists a 
derivation of 1- true E r. Of course, we can either use the same derivation, or use the initial 
derivation oLt. These two alternatives will lead to two different, but equivalent programs in Elf. 
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evaLpair 
1- €t => fit 1- e2 => a2 
1- < et , e2 > => < at , a2 > 
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From the induction hypothesis we conclude that every type of et is also a type of at, and every type 
of e2 is also a type of a2. A type deduction of< et, e2 > must end in the oLpair rule, where the 
premisses show that et has type Tt and e2 has type r2. Hence at also has type r 1 and a2 has type 
T2 and we can apply the typing rule oLpair to construct a deduction of 1- <fit, a2 > E r 1 * r2, 
which is what we needed to show in this case. 

The crucial and most difficult case is the let. This is because in the operational semantics rule 

evalJet 
1- et => at 1- [ at I x ] e2 => a2 

1- let x = et in e2 => a2 

et is evaluated only once, while in the type derivation (which must end in the of Jet rule) types for 
e1 might be calculated many times. 

ofJet 
l1 1- et E Tt l1 1- [ et I x ] e2 E r2 

l1 1- let x = et in e2 E T2 

Thus, in order to construct the derivation that [at I x ] e2 has type r 2 (which is necessary to 
apply the induction hypothesis to the rightmost premiss of the application of evalJet ), we need to 
transform the deduction of [ e1 I x ] e2 and substitute a fresh derivation that at has whatever type 
was inferred for et at each occurrence of x in e2. This is straightforward, but tedious. 0 

To see that the complicated substitution in the case of let is really necessary, consider the 
Mini-ML expression 

let id = (lambda x . x) in < id true , id zero > 

Here we need to assign two different types to x at the two different occurrences of id in the body 
of the let: Bool at the first occurrence, and Nat at the second occurrence. In the absence of type 
schemas, the only way this can be achieved is by explicitly type checking (lambda x . x) twice. 

Note that in the proof above we strongly rely on the fact that for each expression constructor, 
there is exactly one typing rule which applies. This is so, even though a type of an expression is 
not unique {for example, lambda x . x has type Nat -> Nat, Bool -> Bool, and infinitely many 
others). 

7.1 Transformation of Evaluation Traces and Type Deductions 

In the first partial internalization of this proof, we define a relation sr implementing the function 
which transforms an evaluation trace of 1- e => a and a type derivation of 1- e E r to a 
derivation of 1- a E r. The complete code for this relation can be found in Appendix G.l. From 
our intended functionality above, we can directly read off the appropriate type declaration for sr. 
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sr : naval E V -> of E A -> of V A -> type. 

The base case of the informal proof above is easy. In fact, there are two different realizations, 
depending on which proof variant we prefer. 

sr (neval_t) (of_t) (of_t). 
sr (neval_t) D D. 

The inductive case for pairing is similarly straightforward 

sr_neval_pair : sr (neval_pair P2 Pl) (of_pair D2 Dl) (of_pair C2 Cl) 
<- sr Pl Dl Cl 
<- sr P2 D2 C2. 

Note that this describes a total function only because there is only one typing rule for an expression 
which is a pair, namely oLpair (recall that the first two arguments to sr.nevaLpair are inputs). 

The rule for fix is interesting, because of the way the type derivation for the recursive call is 
constructed: 

sr_neval_fix sr (neval_fix P) (of_fix D) C 
<- sr P (D (fix E) (of_fix D)) C. 

As in the informal proof, the case for let is the hardest. Recall, that our formulation of the 
rule for the typing of let differed from the rule used in the presentation in Section 2. 

of_ let : of (let El E2) A2 
<- of El Al 
<- {x:exp} ({A:tp} of x A <- of El A) 

-> of (E2 x) A2. 

This will now help us in defining the auxiliary substitution predicate which performs the operation 
described in the informal proof above. This auxiliary prediate must also be directly applicable in 
the case of letrec. We have 

sbst : ({x:exp} ({A:tp} of El A -> of x A) -> of (E2 x) A2) 
-> naval El Vl 
-> of (E2 Vl) A2 
-> type. 

sr_neval_let sr (neval_let P2 Pl) (of_let D2 Dl) C 
<- sbst D2 Pl C2 
<- sr P2 C2 C. 

Assume we are given an expression let x = e1 in e2, represented as let El E2, with E2 a function 
from expressions to expressions. The first argument of sbst is a type derivation D of E2 under the 
appropriate assumption that any type of El can be used as a type of the bound variable x. The 
second argument is the evaluation trace for El. The third argument (the output) is a derivation 
showing that the result of substituting Vl for x in E2 has the same type as E2. This is achieved by 
copying D, except where the assumption about the possible types of x was used. In each of those 
places we recursively convert the evaluation trace of El to a deduction showing that Vl also must 
have type A2. In Elf, this last and critical case is expressed by 
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sbst_var sbst ([x:axp] [d:{A:tp} of EA -> of x A] d A D) P C 
<- sr P D C. 
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All other cases are mere congruence cases, descending into the subcomponents where the necessary 
substitutions might eventually be performed. An exposition of this general technique can be found 
in [13] in the context of the simply-typed A-calculus. These ideas can be applied here, too. We 
discuss a couple of cases. 

sbst_t : sbst ([x] [d] of_t) P of_t. 

In the base case, the assumption d is not used, and we simply return the deduction oLt unchanged. 
In the cases not involving binding operators, we descend into the components and reconstruct a 
deduction with the same final inference rule. 

sbst_if sbst ([x] [d] of_if (03 x d) (02 x d) (01 x d)) P 
(of_if C3 C2 Cl) 

<- sbst 01 P Cl 
<- sbst 02 P C2 
<- sbst 03 P C3. 

Any of the components might contain uses of the assumption d, which means that each subdeduction 
must explicitly be allowed to depend on x and d. This also makes the recursion possible (since the 
first argument to sbst must have this functional type). 

In the cases where a binding operator is involved, we need to make an assumption which indi­
cates how to substitute for the bound variable. In this particular application of this programming 
technique, bound variables are not affected by the sbst predicate, which means that they copy to 
themselves, expressed by the assumption (sbst ( [x] [d] d') P d') below. 

sbst_lam sbst ( [x] [d] of _lam (D x d)) P (of _lam C) 
<- {x':axp} {d':of x' A} 

sbst ( [x] [d] d') P d' 
-> sbst ([x] [d] D x d x' d') 

P (C x' d'). 

Another point which is easily missed is that the resulting deduction C may also depend on the 
bound variables ( d', in this case) and in fact does to the same extend that D depends on d'. 
Therefore we must abstract C over x' and d' when the computation of C from D is complete. 

Again the question arises to what extend this does encapsulate the informal subject reduction 
proof. First of all, the operational content of the informal proof is fully preserved: we can use the 
predicate to compute a type deduction of the value a. Secondly, the overall induction is missing 
as before, and we need to convince ourselves that we do indeed describe a function of the first 
two arguments. This is straightforward on the first argument (one case for each inference rule 
for evaluation). For the second argument, one has to observe that for each possible expression 
constructor, there is only one possible typing rule which could be applied. This pleasant property 
of the Mini-ML typing rules, as we presented them, is also an important reason for avoiding explicit 
type schemas in the typing rules. 
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7.2 Evaluation of Type Deductions 

An alternative expression of the computational contents of the subject reduction proof is to take 
advantage of the fact that expressions and type deductions stand (almost) in one-to-one corre­
spondence and evaluate type derivations instead of expressions. However, the correspondence is 
not close enough to let this go through easily: even though expressions and the type deductions 
correspond structurally, the types which occur in them may differ (since types are not uniquely 
determined by an expression). Therefore, we cannot circumvent the explicit substitution we needed 
above-it only appears in a slightly different guise. 

The two predicates we need are sr_eval and esubst: 

sr_eval 
esubst 

of E A -> of V A -> type. 
({x:exp} ({A:tp} of El A -> of x A) -> of (E2 x) A2) 
-> of (E2 V) A2 
-> type. 

Now the relationship between this and the predicate sr also is clear: sr has one more argument 
than sr_eval, namely a guiding evaluation trace of E. Here we just perform the evaluation, and 
leave the relationship to an evaluation trace for E implicit. 

So sr _eval expresses the relationship between a deduction and a normalized deduction, and 
esubst uses the same method as before to translate one deduction to another. The intent is that 
there is a closed term SR such that 

SR : sr_eval (P:of EA) (Q:of V A) 

iff there is a closed term NE such that 

NE : naval E V 

Interestingly, this relationship could again be made explicit in Elf! This is the first application 
of relations between relations among deductions we know of. Since it would lead us too far afield, 
let us just write out the declaration of such a predicate, since it introduces a useful technique. We 
would like to write something like 

srne : sr_eval P Q -> naval E V -> type. 

but we lose too much information: P should be a type deduction of E and Q should be a type 
deduction of V. These arguments to sr_eval are implicit, but can be recovered by using explicit 
type annotation. Thus we can write 

srne : sr_eval (P:of E A) (Q:of V A) -> naval E V -> type. 

and now all the relationships are expressed through the type. 
Now let us only briefly consider how sr _eval is to be defined. Because of the similarity of the 

techniques to previously presented material, we restrict ourselves to simply stating a few typical 
cases. The complete code can be found in Appendix G.2 . 

sr_eval_t 
sr_eval_if_f 

sr_eval of_t of_t. 
sr_eval (of_if P3 P2 Pl) Q3 

<- sr_eval Pl of_f 
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sr_eval_let 

<- sr_eval P3 Q3. 

sr_eval (of_let P2 Pl) Q 
<- sr_eval Pl Ql 
<- esubst P2 Q2 
<- sr_eval Q2 Q. 
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Then esubst, the auxiliary substitution predicate, is almost identical in form to the subst 
predicate in the first formulation of subject reduction. But instead of passing along an evaluation 
trace to be converted in the base case, we simply evaluate the type derivation which we find at the 
places where the bound variable occurs in the body of the let expression: 

esubst_var esubst ( [x] [p] p A Pl) Ql 
<- sr_eval Pl Ql. 

8 Example Queries 

As discussed in Section 3, a type can play different roles. One role is as a constraint on the 
instantiation of variables during unification. In our example, exp might play this role. The other is 
that of a goal, for which we are trying to find a deduction. The type (of (pair z z) A) from the 
query ?- of (pair z z) A is an example. In order to obtain a reasonable operational semantics 
for Elf, the interpreter needs to know which interpretation we would like to assign to each type 
and type family. We call the types and type families which are interpreted as predicates and thus 
give rise to goals dynamic. Thus, in our example, of would be dynamic, while nat and exp would 
be static. 

The distinction of static and dynamic families is not a property of the declaration itself, but 
indicates how we would like to use a declaration. For example, we could declare the type tp as 
dynamic and then pose the query 

?- tp. 

and obtain the first answer bool. The declarations 

bool tp. 
nat tp. 
cross tp -> tp -> tp. 
arrov tp -> tp -> tp. 

can now be understood as a named implementation of the Prolog clauses 

tp. 
tp. 
tp :- tp, tp. 
tp :- tp, tp. 

for the predicate tp. Since we can exploit the explicit representation of deductions, this is not 
completely trivial or meaningless. Under this interpretation bool would be considered a deduction 
of tp. 

Finally, let us look at example queries for the programs presented here. Because we restrict 
ourselves to the core language in this paper, we need a mechanism for staged evaluation of queries. 
We use a built-in special predicate sigma for this purpose, which is inspired by the use of~ types 
in various extensions of the LF type theory. Solving a query of the form 
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?- sigma [X:A] (B X) 

will first solve A by finding an appropriate instantiation for X and then solve (B X). The corre­
sponding proof object is a pair consisting of a witness (the instantiation term for X) and the term 
of type (B X). 

The addition function was used as an example in Section 4. Here is the concrete version of this 
function applied to the representations of 2 and 1: 

(app (app (letrec 
([add] (lam [x] (lam [y] 

(if (app zerop x) 
y 

([add] add)) 
(app s (app s z))) 

(app s z)) 

(app s (app (app add (app pred x)) y)))))) 

A query to synthesize its type would be formulated as 

?- of (app (app (letrec 

A. 

([add] (lam [x] (lam [y] 
(if (app zerop x) 

y 

( [add] add) ) 
(app s (app s z))) 

(app s z)) 

(app s (app (app add (app pred x)) y)))))) 

and instantiates A to nat as its only solution. Evaluation can be achieved with 

?- aeval (app (app (letrec 

V. 

([add] (lam [x] (lam [y] 

(if (app zerop x) 
y 
(app s (app (app add (app pred x)) y)))))) 

([add] add)) 
(app s (app s z))) 

(app s z)) 

(the "natural" version neval is not recommended for this example). 
To put all these together consider the following sequence: we generate a type deduction D for the 

expression above (call it E) and also evaluate E algorithmically to obtain Q. This is then translated 
to a natural evaluation trace P. Then we apply subject reduction to D and P to obtain a type 
deduction for the result of evaluation (which is (app s (app s (app s z))) and has type nat). 
This whole sequence can be executed with the query 

?- sigma [D:of (app (app (letrec 
([add] (lam [x] (lam [y] 
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(if (app zerop x) 
y 
(app s (app (app add (app pred x)) y)))))) 

([add] add)) 
(app s (app s z))) 

(app s z)) A] 
sigma [Q:aeval _ V] 

sigma [NA:na P Q] 
sr P D C. 
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The underscore in the type of Q is determined by type reconstruction to be the same expression as 
the one whose type we determine. This query indeed generated the expected substitutions which 
can be found in full in Appendix H. Here we abbreviate some large subterms by '/.'/.. 

c <- of_app (of_app (of_app of_z of_s) of_s) of_s • 
p <- neval_app_lam '/.'/. '1.'1. '1.'1. • 
V <- a pp s (app s (app s z)) • 
A <- nat 

9 Concluding Remarks 

We have demonstrated a methodology for applying Elf to expressing and reasoning about the 
natural semantics of a programming language - in this case Mini-ML. In doing so, we have 
extended the now well-known methodology for representing operational semantics. All the examples 
in the paper have been tested with the current prototype implementation of Elf. 

Many tasks remain to be done to complete this line of research . In [8], Hannan and Miller 
systematically transform a high-level description of a language related to Mini-ML in terms of 
inference rules into two low-level abstract machines. We believe that most, if not all of these 
transformations should be representable in Elf as judgments on deductions, and this should be 
investigated. 

More fundamental is the question how to achieve the complete formalization of the meta­
theoretic properties oflanguages implemented in Elf. We have begun to investigate such possibilities 
based on the preliminary design of a module system for Elf [11]. 
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A Expressions and Types of Mini-ML 

exp 

true 
false 
if 

type. 

exp. 
exp. 
exp -> exp -> exp -> exp. 
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z exp. 
s exp . 
pred exp. 
zerop exp . 

pair exp -> exp -> exp. 
fst exp -> exp. 
snd exp -> exp. 

lam (exp -> exp) -> exp. 
a pp exp -> exp -> exp. 

let exp -> (exp -> exp) -> exp. 

letrec (exp -> exp) -> (exp -> exp) -> exp . 
fix (exp -> exp) -> exp. 

tp type. 

bool tp. 
nat tp. 
cross tp -> tp -> tp. 
arrow tp -> tp -> tp. 

B Typing Rules 

of exp -> tp -> type. 

of_t of true bool. 
of_f of false bool. 
of_ if of (if El E2 E3) A 

<- of El bool 
<- of E2 A 
<- of E3 A. 

of_z of z nat. 
of_s of s (arrow nat nat). 
of_pred of pred (arrow nat nat) . 

of_zerop of zerop (arrow nat bool) . 

of_pair of (pair El E2) (cross Al A2) 
<- of El A1 
<- of E2 A2 . 

of_fst of (fst E) Al 
<- of E (cross A1 A2). 
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of_snd 

of_lam 

of_app 

of_let 

of_letrec 

of_fix 

of (snd E) A2 
<-of E (cross Al A2). 

of (lam E) (arrow Al A2) 
<- {x:exp} of x Al -> of (E x) A2. 

of (app El E2) Al 
<- of El (arrow A2 Al) 
<- of E2 A2. 

of (let El E2) A2 
<- of El A1 
<- {x~exp} ({A:tp} of x A <- of El A) 

-> of (E2 x) A2. 

of (letrec El E2) A2 
<- of (fix El) Al 
<- {x:exp} ({A:tp} of x A <- of (fix El) A) 

-> of (E2 x) A2. 

of (fix E) A 
<- {x:exp} of x A -> of (E x) A. 

C Natural Operational Semantics 

naval : exp -> exp -> type. 

neval_t 
neval_f 
neval_if_t 

neval_if_f 

neval_z 
neval_s 
neval_pred 

neval_zerop 

neval_pair 

neval_fst 

neval_snd 

naval true true. 
naval false false. 
naval (if El E2 E3) V 

<- naval El true 
<-naval E2 V. 

naval (if El E2 E3) V 
<- naval El false 
<-naval E3 V. 

neval z z. 
naval s s. 
naval pred pred. 

neval zerop zerop. 

naval (pair El E2) (pair Vl V2) 
<- naval El Vl 
<- naval E2 V2. 

naval (fst E) Vl 
<-naval E (pair Vl V2). 

naval (snd E) V2 
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D 

D.l 

naval_ lam 

neval_app_lam 

<- neval E (pair Vl V2). 

naval (lam E) (lam E). 

naval (app El E2) V 
<- naval El (lam El') 
<- naval E2 V2 
<- naval (El' V2) V. 

neval_app_s naval (app El E2) (app s V) 
<- naval El s 
<-naval E2 V. 

naval_app_pred_s naval (app El E2) V 
<- naval El pred 
<-naval E2 (app s V). 

neval_app_zerop_t naval (app El E2) true 
<- naval El zerop 
<- naval E2 z. 

neval_app_zerop_f naval (app El E2) false 
<- naval El zerop 
<-naval E2 (app s V). 

neval_let naval (let El E2) V2 

neval_letrec 

neval_fix 

<- neval El Vl 
<- naval (E2 Vl) V2. 

naval (letrec El E2) V 
<- naval (fix El) Vl 
<- naval (E2 Vl) V2. 

naval (fix E) V<- naval (E (fix E)) V. 

The Value Property and Evaluation 

The Value Property 

value exp -> type. 

val_t value true. 
val_f value false. 

val_z value z. 
val_s value s. 
val_pred value pred. 

val_zerop value zerop. 

val_pair value El -> value E2 ->value (pair El E2). 
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val_lam 
val_app_s 

value (lam E) . 
value E ->value (app sE). 

D.2 Transformation of Evaluations to Value Deductions 

vp 

vp_t 
vp_f 
vp_if_t 
vp_if_f 

vp_z 
vp_s 
vp_pred 

vp_zerop 

vp_pair 

vp_fst 
vp_snd 

vp_lam 

vp_app_lam 

vp_app_s 

neval E V -> value V -> type. 

vp (neval_t) val_t. 
vp (neval_f) val_f. 
vp (neval_if_t P2 Pl) 
vp (neval_if_f P3 Pl) 

vp (neval_z) val_z. 
vp (neval_s) val_s. 

VP2 
VP3 

vp (neval_pred) val_pred. 

<-
<-

vp (neval_zerop) val_zerop. 

vp P2 VP2. 
vp P3 VP3. 

vp (neval_pair P2 Pl) (val_pair VPl VP2) 
<- vp Pl VPl 
<- vp P2 VP2. 

vp (neval_fst P) VPl <- vp P (val_pair VPl VP2). 
vp (neval_snd P) VP2 <- vp P (val_pair VPl VP2). 

vp (neval_lam) val_lam. 

vp (neval_app_lam P3 P2 Pl) VP3 
<- vp P3 VP3. 

vp (neval_app_s P2 Pl) (val_app_s VP2) 
<- vp P2 VP2. 

vp_app_pred_s vp (neval_app_pred_s P2 Pl) VPO 
<- vp P2 (val_app_s VPO). 

vp_app_zerop_t 
vp_app_zerop_f 

vp (neval_app_zerop_t P2 Pl) val_t. 
vp (neval_app_zerop_f P2 Pl) val_f. 

vp_let vp (neval_let P2 Pl) VP <- vp P2 VP. 

vp_letrec vp (neval_letrec P2 Pl) VP <- vp P2 VP. 

vp_fix vp (neval_fix P) VP <- vp P VP. 
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D.3 Modified Evaluation to Generate Value Deductions 

veval exp -> {E:exp} value E -> type. 

veval_t 
veval_f 
veval_if_t 

veval_if_f 

veval._z 
veval_s 
veval_pred 

veval_zerop 

veval_pair 

veval_fst 

veval_snd 

veval true true val_t. 
veval false false val_f. 
veval (if El E2 E3) V P2 

<- veval El true Pl 
<- veval E2 V P2. 

veval (if El E2 E3) V P3 
<- veval El false Pl 
<- veval E3 V P3. 

veval z z val_z. 
veval s s val_s. 
veval pred pred val_pred. 

veval zerop zerop val_zerop. 

veval (pair El E2) (pair Vl V2) (val_pair Pl P2) 
<- veval El Vl Pl 
<- veval E2 V2 P2. 

veval (fst E) Vl Pl 
<- veval E (pair Vl V2) (val_pair Pl P2). 

veval (snd E) V2 P2 
<- veval E (pair Vl V2) (val_pair Pl P2). 

veval_lam veval (lam E) (lam E) val_lam. 

veval_app_lam veval (app El E2) V P 
<- veval El (lam El') Pl 
<- veval E2 V2 P2 
<- veval (El' V2) V P. 

veval_app_s veval (app El E2) (app s V) (val_app_s P2) 
<- veval El s Pl 
<- veval E2 V P2. 

veval_app_pred_s veval (app El E2) V P2 
<- veval El pred Pl 
<- veval E2 (app s V) (val_app_s P2). 

veval_app_zerop_t veval (app El E2) true val_t 
<- veval El zerop Pl 
<- veval E2 z P2. 

veval_app_zerop_f veval (app El E2) false val_f 
<- veval El zerop Pl 
<- veval E2 (app s V) P2. 

veval_let veval (let El E2) V P2 
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<- veval El V' Pl 
<- veval (E2 V') V P2. 

veval_letrec veval (letrec El E2) V P2 
<- veval (fix El) V' Pl 
<- veval (E2 V') V P2. 

veval_fix veval (fix E) V P 
<- veval (E (fix E)) V P. 

D.4 Modified Algorithmic Evaluation to Generate Value Deductions 

aveval : exp 
avapp_vals : 

avdoif exp 

aveval_t 
aveval_f 
aveval_if 

aveval_z 
aveval_s 
aveval_pred 

aveval_zerop 

aveval_pair 

aveval_fst 

aveval_snd 

aveval_lam 

aveval_app 

aveval_let 

-> {E:exp} value E -> type. 
{X:exp} value X 

-> {Y:exp} value Y -> {Z:exp} 
-> exp -> exp -> {E:exp} value 

aveval true true val_t. 
aveval false false val_f. 
aveval (if El E2 E3) V P 

<- aveval El Vl Pl 

value Z -> type. 
E -> type. 

<- avdoif Vl E2 E3 V P. 

aveval z z val_z. 
aveval s s val_s. 
aveval pred pred val_pred. 

aveval zerop zerop val_zerop. 

aveval (pair El E2) (pair Vl V2) (val_pair Pl P2) 
<- aveval El Vl Pl 
<- aveval E2 V2 P2. 

aveval (fst E) Vl Pl 
<- aveval E (pair Vl V2) 

aveval (snd E) V2 P2 
<- aveval E (pair Vl V2) 

aveval (lam E) (lam E) val_lam. 

aveval (app El E2) V P 
<- aveval El Vl Pl 
<- aveval E2 V2 P2 

(val_pair Pl 

(val_pair Pl 

<- avapp_vals Vl Pl V2 P2 V P. 

aveval (let El E2) V P2 
<- aveval El V' Pl 
<- aveval (E2 V') V P2. 

P2). 

P2). 
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aveval_letrec 

aveval_fix 

avdoif_t 
avdoif_f 

avapp_v_lam 

avapp_v_s 
avapp_v_zerop_t 
avapp_v_zerop_f 

avapp_v_pred_s 

aveval (letrec El E2) V P2 
<- aveval (fix El) V' Pl 
<- aveval (E2 V') V P2. 

aveval (fix E) V P 
<- aveval (E (fix E)) V P. 

avdoif true E2 E3 V P <- aveval E2 V P. 
avdoif false E2 E3 V P <- aveval E3 V P. 

avapp_vals (lam El) val_lam V2 P2 V P 
<- aveval (El V2) V P. 

avapp_vals s val_s V2 P2 (app s V2) (val_app_s P2). 
avapp_vals zerop val_zerop z val_z true val_t. 
avapp_vals zerop val_zerop (app s V2) (val_app_s P2) 

false val_f. 
avapp_vals pred val_pred (app s V2) (val_app_s P2) 

V2 P2. 

E Algorithmic Operational Semantics 

aeval 
do if 
app_vals 

aeval_t 
aeval_f 
aeval_if 

aeval_z 
aeval_s 
aeval_pred 

aeval_zerop 

aeval_pair 

aeval_fst 

aeval_snd 

aeval_lam 

exp -> 
exp -> 
exp -> 

exp -> type. 
exp -> exp -> exp -> type. 
exp -> exp -> type. 

aeval true true. 
aeval false false. 
aeval (if El E2 E3) V 

<- aeval El Vl 
<- do if Vl E2 E3 V. 

aeval z z. 
aeval s s. 
aeval pred pred. 

aeval zerop zerop. 

aeval (pair El E2) (pair Vl V2) 
<- aeval El Vl 
<- aeval E2 V2. 

aeval (fst E) Vl 
<- aeval E (pair Vl V2). 

aeval (snd E) V2 
<- aeval P (pair Vl V2). 

aeval (lam E) (lam E). 
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aeval_app 

aeval_let 

aeval_letrec 

aeval_fix 

doif_t 
doif_f 

app_v_lam 
app_v_s 
app_v_zerop_t 
app_v_zerop_f 
app_v_pred_s 

aeval (app El E2) V 
<- aeval El Vl 
<- aeval E2 V2 
<- app_vals Vl V2 V. 

aeval (let El E2) V2 
<- aeval El Vl 
<- aeval (E2 Vl) V2. 

aeval (letrec El E2) V2 
<- aeval (fix El) Vl 
<- aeval (E2 Vl) V2. 

aeval (fix E) V<- aeval (E (fix E)) V. 

doif true E2 E3 V <- aeval E2 V. 
doif false E2 E3 V <- aeval E3 V. 

app_vals (lam E) V' V<- aeval (E V') V. 
app_vals s V (app s V). 
app_vals zerop z true. 
app_vals zerop (app s V) false. 
app_vals pred (app s V) V. 

F Equivalence of Natural and Algorithmic Semantics 

na : naval E V -> aeval E V -> type. 

na_t 
na_f 
na_if_t 

na_if_f 

na_z 
na_s 
na_pred 

na_zerop 

na_pair 

na neval_t aeval_t. 
na neval_f aeval_f. 
na (neval_if_t P2 Pl) (aeval_if (doif_t Q2) Ql) 

<- na Pl Ql 
<- na P2 Q2. 

na (neval_if_f P2 Pl) (aeval_if (doif_f Q2) Ql) 
<- na Pl Ql 
<- na P2 Q2 . 

na neval_z aeval_z. 
na neval_s aeval_s. 
na neval_pred aeval_pred. 

na neval_zerop aeval_zerop. 

na (neval_pair P2 Pl) (aeval_pair Q2 Ql) 
<- na Pl Ql 
<- na P2 Q2. 
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na_fst na (neval_fst P) (aeval_fst Q). 
na_snd na (neval_snd P) (aeval_snd Q). 

na_lam na neval_lam aeval_lam. 

na_app_lam na (neval_app_lam P3 P2 Pl) 
(aeval_app (app_v_lam Q3) Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2 
<- na P3 Q3. 

na_app_s na (neval_app_s P2 Pl) 
(aeval_app app_v_s Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2. 

na_app_zerop_t na (neval_app_zerop_t P2 Pl) 
(aeval_app app_v_zerop_t Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2. 

na_app_zerop_f na (neval_app_zerop_f P2 Pl) 
(aeval_app app_v_zerop_f Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2. 

na_app_pred_s na (neval_app_pred_s P2 Pl) 
(aeval_app app_v_pred_s Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2. 

na_let na (neval_let P2 Pl) 
(aeval_let Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2. 

na_letrec na (neval_letrec P2 Pl) 
(aeval_letrec Q2 Ql) 

<- na Pl Ql 
<- na P2 Q2. 

na_fix na (neval_fix P) (aeval_fix Q) 
<- na P Q. 

G The Subject Reduction Property 

G.l Transformation of Evaluation Traces and Type Deductions 

sr : naval E V -> of E A -> of V A -> type. 

sbst ({x:exp} ({A:tp} of El A -> of x A) -> of (E2 x) A2) 
-> naval El Vl 
-> of (E2 Vl) A2 
-> type. 
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sr_t 
sr_f 
sr_neval_if_t 

sr_neval_if_f 

sr_neval_z 
sr_neval_s 
sr_neval_pred 

sr (neval_t) (of_t) (of_t). 
sr (neval_f) (of_ f) (of_f). 
sr (neval_if_t P2 Pl) (of_if 

<- sr P2 D2 C2. 
sr (neval_if_f P3 Pl) (of_ if 

<- sr P3 D3 C3. 

sr (neval_z) (of_z) (of_z). 
sr (neval_s) (of_s) (of_s). 

D3 D2 Dl) 

D3 D2 Dl) 

sr (neval_pred) (of_pred) (of_pred). 

C2 

C3 

sr_neval_zerop sr (neval_zerop) (of_zerop) (of_zerop). 

sr_neval_pair : sr (neval_pair P2 Pl) (of_pair D2 Dl) (of_pair C2 Cl) 
<- sr Pl Dl Cl 

sr_neval_fst 

sr_neval_snd 

<- sr P2 D2 C2. 

sr (neval_fst P) (of_fst D) Cl 
<- sr P D (of_pair Cl C2). 

sr (neval_snd P) (of_snd D) C2 
<- sr P D (of_pair Cl C2). 

sr_neval_lam : sr (neval_lam) (of_lam D) (of_lam D). 

sr_neval_app_lam : sr (neval_app_lam P3 P2 Pl) (of_app D2 Dl) C 
<- sr Pl Dl (of_lam Cl) 
<- sr P2 D2 C2 
<- sr P3 (Cl _ C2) C. 

sr_neval_app_s sr (neval_app_s P2 Pl) 
(of_app D2 Dl) (of_app C2 (of_s)) 

<- sr Pl Dl (of_s) 
<- sr P2 D2 C2. 

sr_neval_app_pred_s sr (neval_app_pred_s P2 Pl) (of_app D2 Dl) C2 
<- sr Pl Dl (of_pred) 
<- sr P2 D2 (of_app C2 (of_s)). 

sr_neval_app_zerop_t sr (neval_app_zerop_t P2 Pl) 
(of_app D2 Dl) (of_t) 

<- sr Pl Dl (of_zerop) 
<- sr P2 D2 (of_z). 

sr_neval_app_zerop_f sr (neval_app_zerop_f P2 Pl) 
(of_app D2 Dl) (of_f) 

<- sr Pl Dl (of_zerop) 
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sr_neval_let 

<- sr P2 D2 (of_app C2 (of_s)). 

sr (neval_let P2 Pl) (of_let D2 Dl) C 
<- sbst D2 Pl C2 
<- sr P2 C2 C. 

sr_neval_letrec : sr (neval_letrec P2 Pi) (of_letrec D2 Dl) C 
<- sbst D2 Pl C2 
<- sr P2 C2 C. 

sr_neval_fix sr (neval_fix P) (of_fix D) C 
<- sr P (D (fix E) (of_fix D)) C. 

sbst_var sbst ([x:exp] [d:{A:tp} of E A -> of x A] d A D) P C 

sbst_t 
sbst_f 

sbst_if 

sbst_z 
sbst_s 
sbst_pred 

sbst_zerop 

sbst_pair 

sbst_fst 

sbst_snd 

sbst_lam 

<- sr P D C. 

sbst ([x] [d] of_t) P of_t. 
sbst ([x] [d] of_f) P of_f. 

sbst ([x] [d] of_if (D3 x d) (D2 x d) (Dl x d)) P 
(of_if C3 C2 Cl) 

<- sbst Dl P Cl 
<- sbst D2 P C2 
<- sbst D3 P C3. 

sbst ( [x] [d] of_z) P of_z. 
sbst ( [x] [d] of_s) P of_s. 
sbst ( [x] (d] of_pred) P of_pred. 

sbst ( [x] (d] of_zerop) P of_zerop. 

sbst ([x] [d] of_pair (D2 x d) (01 x d)) P 
(of_pair C2 Cl) 

<- sbst Dl P Cl 
<- sbst D2 P C2. 

sbst ( [x] [d] of_fst (D X d)) p (of_fst C) 
<- sbst D P C. 

sbst ( [x] [d] of_snd (0 X d)) p (of_snd C) 
<- sbst D P C. 

sbst ( [x] [d] of_lam (D X d)) P (of_lam C) 
<- {x':exp} {d':of x' A} 

sbst ( [x] [d] d') P d·' 
-> sbst ([x] [d] D x d x' d') 

P (C x' d'). 
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sbst_app 

sbst_let 

sbst ([x][d] of_app (02 x d) (01 x d)) P (of_app C2 Cl) 
<- sbst 01 P Cl 
<- sbst 02 P C2. 

sbst ([x][d] of_let (02 x d) (01 x d)) P (of_let C2 Cl) 
<- sbst 01 P Cl 
<- {x':exp} {d':{B':tp} of El B' ->of x' B'} 

({B':tp} {0': of El B'} sbst ([x] [d] d' B' 0') P 
(d' B' 0')) 

-> sbst ([x][d] 02 x d x' d') P (C x' d'). 

sbst_letrec sbst ([x][d] of_letrec (02 x d) (01 x d)) P 
(of_letrec C2 Cl) 

sbst_fix 

<- sbst 01 P Cl 
<- {x':exp} {d':{B':tp} of (fix El) B' ->of x' B'} 

({B':tp} {0': of (fix El) B'} 
sbst ([x] [d] d' B' 0') P (d' B' 0')) 

-> sbst ([x][d] 02 x d x' d') P (C2 x' d'). 

sbst ([x] [d] of_fix (0 x d)) P (of_fix C) 
<- {x':exp} {d':of x' A} 

sbst ( [x] [d] d') P d' 
-> sbst ([x] [d] 0 x d x' d') P (C x' d'). 

G.2 Evaluation of Type Deductions 

sr_eval 

esubst 

sr_eval_t 
sr_eval_f 
sr_eval_if_t 

sr_eval_if_f 

sr_eval_z 
sr_eval_s 
sr_eval_pred 

sr_eval_zerop 

of E A -> of V A -> type. 

({x:exp} ({A:tp} of El A -> of x A) -> of (E2 x) A2) 
-> of (E2 V) A2 
-> type. 

sr_eval of_t of_t. 
sr_eval of_f of_f. 
sr_eval (of_if P3 P2 Pl) Q2 

<- sr_eval Pl of_t 
<- sr_eval P2 Q2. 

sr_eval (of_if P3 P2 Pl) Q3 
<- sr_eval Pl of_f 
<- sr_eval P3 Q3. 

sr_eval of_z of_z. 
sr_eval of_s of_s. 
sr_eval of_pred of_pred. 

sr_eval of_zerop of_zerop. 
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sr_eval_pair sr_eval (of_pair P2 P1) (of_pair Q2 Q1) 
<- sr_eval P1 Q1 
<- sr_eval P2 Q2. 

sr_eval_fst sr_eval (of_fst P) P1 

sr_eval_snd 
<- sr_eval P (of_pair P2 P1). 

sr_eval (of_snd P) P2 
<- sr_eval P (of_pair P2 P1). 

sr_eval_lam sr_eval (of_lam P) (of_lam P). 

sr_eval_app_lam sr_eval (of_app P2 P1) P 
<- sr_eval P1 (of_lam Q1) 
<- sr_eval P2 Q2 
<- sr_eval (Q1 _ Q2) P. 

sr_eval_app_s sr_eval (of_app P2 P1) (of_app P of_s) 
<- sr_eval P1 of_s 
<- sr_eval P2 P. 

sr_eval_app_pred_s sr_eval (of_app P2 P1) Q3 
<- sr_eval P1 of_pred 
<- sr_eval P2 (of_app Q3 of_s). 

sr_eval_app_zerop_t sr_eval (of_app P2 P1) of_t 
<- sr_eval P1 of_zerop 
<- sr_eval P2 of_z. 

sr_eval_app_zerop_f sr_eval (of_app P2 P1) of_f 
<- sr_eval P1 of_zerop 
<- sr_eval P2 (of_app Q2 of_s). 

sr_eval_let 

sr_eval_letrec 

sr_eval_fix 

esubst_var 

esubst_t 
esubst_f 
esubst_if 

sr_eval (of_let P2 P1) Q 
<- sr_eval P1 Q1 
<- esubst P2 Q2 
<- sr_eval Q2 Q. 

sr_eval (of_letrec P2 P1) Q 
<- sr_eval Pl Q1 
<- esubst P2 Q2 
<- sr_eval Q2 Q. 

sr_eval (of_fix P) Q 
<- sr_eval (P _ (of_fix P)) Q. 

esubst ([x] [p] p A Pl) Ql 
<- sr_eval Pl Ql. 

esubst ( [x] [p] of_t) of_t. 
esubst ( [x] [p] of_f) of_f. 
esubst ( [x] [p] of _if (P3 X p) (P2 X p) 

(of_if Q3 Q2 Ql) 
<- esubst Pl Ql 
<- esubst P2 Q2 

(Pl x p)) 
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esubst_z 
esubst_s 
esubst_pred 

esubst_zerop 

esubst_pair 

esubst_fst 

esubst_snd 

esubst_lam 

esubst_app 

esubst_let 

<- esubst P3 Q3. 

esubst ( [x] [p] of_z) of_z. 
esubst ( [x] [p] of_s) of_s. 
esubst ( [x] [p] of_pred) of_pred. 

esubst ( [x] [p] of_zerop) of_zerop. 

esubst ([x] [p] of_pair (P2 x p) (Pl x p)) 
(of_pair Q2 Ql) 

<- esubst Pl Ql 
<- esubst P2 Q2. 

esubst ([x] [p] of_fst (P x p)) (of_fst Q) 
<- esubst P Q. 

esubst ([x] [p] of_snd (P x p)) (of_snd Q) 
<- esubst P Q. 

esubst ([x] [p] of_lam (P x p)) (of_lam Q) 
<- {x':exp} {p': of x' A'} 

esubst ( [x] [p] p' ) p' 
-> esubst ([x][p] P x p x' p') (Q x' p'). 

esubst ([x] [p] of_app (P2 x p) (Pl x p)) 
(of_app Q2 Ql) 

<- esubst Pl Ql 
<- esubst P2 Q2. 

esubst ([x] [p] of_let (P2 x p) (Pl x p)) (of_let Q2 Ql) 
<- esubst Pl Ql 
<- {x':exp} {p': {A':tp} of E' A'-> of x' A'} 

({A':tp} {P':of E' A'} esubst ([x] [p] p' A' P') 
(pI A I pI)) 

-> esubst ([x] [p] P2 x p x' p') (Q2 x' p'). 

esubst_letrec 
esubst ([x] [p] of_letrec (P2 x p) (Pl x p)) (of_letrec Q2 Ql) 

<- esubst Pl Ql 
<- {x':exp} {p': {A':tp} of (fixE') A' ->of x' A'} 

({A':tp} {P':of (fixE') A'} esubst ([x] [p] p' A' P') 
(p, A, p,)) 

esubst_fix 

-> esubst ([x] [p] P2 x p x' p') (Q2 x' p'). 

esubst ([x] [p] of_fix (P x p)) (of_fix Q) 
<- {x':exp} {p': of x' A'} 

esubst ( [x] [p] p' ) p' 
-> esubst ([x][p] P x p x' p') (Q x' p'). 
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H Example Query and Answer Substitutions 

?- sigma [D:of (app (app (letrec 
([add] (lam [x] (lam [y] 

(if (app zerop x) 
y 
(app s (app (app add (app pred x)) y)))))) 

([add] add)) 
(app s (app s z))) 

(app s z)) A] 
sigma [Q:aeval _ V] 

sigma [NA:na P Q] 
sr P D C. 

C <- of_app (of_app (of_app of_z of_s) of_s) of_s , 
p <-
neval_app_lam 

(neval_if_f 
(neval_app_s 

(neval_app_lam 
(neval_if_f 

(neval_app_s 
(neval_app_lam 

(neval_if_t (neval_app_s neval_z neval_s) 
(neval_app_zerop_t neval_z neval_zerop)) 

(neval_app_s neval_z neval_s) 
(neval_app_lam neval_lam 

neval_s) 

(neval_app_pred_s (neval_app_s neval_z neval_s) 
neval_pred) 

(neval_fix neval_lam))) 
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(neval_app_zerop_f (neval_app_s neval_z neval_s) neval_zerop)) 
(neval_app_s neval_z neval_s) 
(neval_app_lam neval_lam 

neval_s) 

(neval_app_pred_s 
(neval_app_s (neval_app_s neval_z neval_s) neval_s) 
neval_pred) 

(neval_fix neval_lam))) 

(neval_app_zerop_f (neval_app_s (neval_app_s neval_z neval_s) neval_s) 
neval_zerop)) 

(neval_app_s neval_z neval_s) 
(neval_app_lam neval_lam (neval_app_s (neval_app_s neval_z neval_s) neval_s) 

(neval_letrec neval_lam (neval_fix neval_lam))) , 
V <- app s (app s (app s z)) , 
A <- nat . 
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