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The finiteness of logic programming derivations

Philippe Balbiani(/)

Institut de Recherche en Informatique de Toulouse

Abstract. The question of the termination of logic programming computations is
studied from a semantical point of view. To every program are associated two first
order formulas. Their valid consequences are respectively the finiteness and the
infiniteness SLDNF scts of the logic programs considered. The non-existence of a

recursive safe computation rule leading into an infinite SLDNF computation is proved.

1 Introduction

When does it stop? This question is common to many fields in computer science. To
ask it in a logic programming setting does not make it easier; the restriction of first order
predicate calculus to definite Horn clauses has the full power of recursion theory. Thus,
because of the indecidability of the halting problem, there is no procedure to decide
whether a computation will end or not. Non-termination is one of the most inefficient
behaviour of programs. To force termination, programmers sometimes decide to insert
control informations in their programs. This leads to imperative programs: from the
point of view of logic programming, this is not an ideal option. Another way to limit the
number of non-terminating execution is to allow the interpreter to cut some derivations
[3] or to forbide multiple use of some clauses. Other methods consist in the analysis of
the stream of informations between clauses and in the resolution of a linear system of
equations [16]. For some classes of programs, these methods provide decision
procedures for termination [1, 3, 7, 16, 18].

'We do not propose here another method to decide termination in logic programming.
We rather propose a semantical characterization of finite and infinite SLDNF
computations.

To every program is firstly associated a first order classical formula: the completion of
finiteness. As Clark’s formula [10] offered a characterization of SLDNF finite failure,
the ground valid consequences of this completion formula of finiteness will be the
finiteness set of the logic program considered, that is to say: the set of ground atoms
from which there cannot be any infinite SLONF computation. '

Secondly, a completion formula of infiniteness is defined. This formula will belong to



the language of first order modal logic of provability. Its ground valid consequences are
the set of ground atoms from which it is possible to have an infinite SLDNF
computation. Since the modal logic of provability [9] is not axiomatizable, this

characterization does not lead to a decision procedure for infinite SLDNF computation.
Consequently, we ask the question of the existence of an algorithm leading, every sime
it is possible, to an infinite computation. It is proved that such an algorithm cannot exist:
for some logic programs, a safe computation rule leading to an infinite derivation every

time it is possible cannot be recursive.

2 Normal Logic Programs

The first order language in which normal logic programms will be written, &£ , is made
of variables, constants, function symbols, predicate symbols(z), classical connectors -,
A, v and «, the quantifiers 3 and V and the usual punctuation symbols. Pre-
interpretation, interpretation, variable assignment (with respect to some pre-
interpretation), term assignment (with respect to some pre-interpretation and variable
assignment) are defined as usual (see Lloyd [14] for precise definitions). Let J be a pre-
interpretation of £, V a variable assignment with respect to J and A an atom. We
suppose that A is of the form P(t}...t,) and that dy, ..., d,, elements of the domain of
J, are the term assignments of ¢, ..., ¢,. We callAJ'V = p(d; '""dn) the J-instance of A
with respect to V. Let [A]y={Ayy: Visa variable assignment with cespect to J}. Let /
be an interpretation of domain D of £ and V a variable assignment. To every formula
of &£ is given a truth value, true or false, (with respect to 7 and V) following the
classical rules of first order predicate calculus. A ground term (atom) is a term (atom)
without variable. The Herbrand universe Ucp is the set of ground terms of £ . The

Herbrand base B<p  is the set of ground atoms of &£ . The Herbrand pre-interpretation is
the pre-intespretation such that: (a) its domain is Usp , (b) constants are assigned to
themselves, (c) the mapping from (U<p SoU P, defined with (¢7,..t,) — fit},...4,) is

assigned to any function symbol f of arity n. An Herbrand interpretation is an
interpretation based on the Herbrand pre-interpretation.

Nomal clause, normal program, normal goal, derived goal, safe computation rule,
SLDNF derivation, SLDNF refutation and SLDNF tree are defined as in [14]. A safe
computation rule always selects, if possible, a positive or a ground negative literal in a



given goal. An SLDNF computation flounders if this selection is not possible. Let P be
a normal program and G be a normal goal. The finiteness set of P is the set of all
AeBgp such that there is no infinite SLDNF computation of PU{«A}. The substitution

0 is a computed answer of finiteness of rank n of PU{G} if there is no SLDNF
computation of PU{G6} involving n or more than n goals. The substitution 6 is a
computed answer of finiteness of PU{G} if there is no infinite SLDNF computation of
PU{G6]. The infiniteness set of P is the set of all AeB P, such that there is an infinitc
SLDNF computation of PU{<«A}. The substitution 6 is a computed answer of
infiniteness of rank n of PU{G} if there is an SLDNF computation of PU{G6}
involving n or more than n goals. The substitution 8 is a computed answer of
infiniteness of PU{G} if there is an infinite SLDNF computation of PU{G6}.

3 A Completion Formula

We define in this section a completion formula of finiteness for all normal programs. As
Clark’s formula [10], it will be obtained putting on the same side of an implication

symbol the bodies of the clauses defining some predicate. Let p(1j,...,4, k~L}....L,, be
a clause of a program P. We will necd a new predicate symbol: the equality predicate,
=. The first step is to transform this clause into the formula
P(xp.-xy)e—(L A AL (X =t I)A...A(xn=tn)) where the variables Xj, ..., X, do not
appear in P. If yj, ..., y4 are the variables of the original clause then this formula is

transformed into p(xl,...xn)¢—Vyl..Vyd (L I*A...ALm*(—(x]=t )AA(X,=t,)), where:
if L; is an atom then L; = L;* else L; is a negative literal and L; = ~L;*. Let us suppose
this transformation has been done for every clause appearing in the definition of p. Then
we have k formulas of the form p(x; weXg=E], .oy X} Xpf—E}, where each E; is
of the form Vy;..Vy 4 (L;*A... AL *(x;=1; INeA(xy=t,)). The completed definition
of finiteness of p is then the formula Vx;...Vx, (p(x},... X, )¢—EA..AE},).

It might be the case that some predicate symbols are not the head of any clauses in P,
For such a predicate symbol g, we explicitly add the formula Vx;...Vx, g(x;.....x,). This
formula is also called the completed definition of finiteness of ¢g. Let P be a normal
program. The completion of finiteness of P, compg(P), is the collection of all the
completed definition of finiteness of the predicate symbols of &£ together with CET,



Clark’s equational theory that defines the predicate symbol of equality [10]. Our
completion of finiteness possesses some properties possessed by P itself. Next result,
for example, states that the set of Herbrand models of comp(P) is a complete lattice.

proposition 3.1 Let P be a normal logic program and (My};. s a ﬂon-empty set of
Herbrand models of comp p(P). Then N jM; is a Herbrand model of comp(P).

Thus, since B P, is a Herbrand model of compg{(P), the intersection Mp of all

Herbrand models of compp{P) is still a model of compp(P). It is the least Herbrand
model of compg(P). Unfortunately, it is not true that: Mp = {AGB£: A is a valid
consequence of comp F(P)}. As a matter of fact, if P = {A«<B(x), B(f(x)—B(x)} then the

least Herbrand model of comp{(P) is M p = {A}U{B(a), B(f(a)), ...} but A is not a valid

consequence of CET U{A « VxB(x), Vy (B(y) « Vx(B(x}y=f(x)))}.
To the procedural notion of a computed answer of finiteness is associated the
semantical notion of a correct answer. Let P be a normal program, G the normal goal

«Lj,...L, and 8 a substitution of the variables of G. We say that 8 is a correct answer
for compp(P)u{(G} if Y((L 1 *A.,.ALn*)B) is a valid consequence of compg(P).

Theorem 3.5 will give a first relation between computed answers of finiteness and
COfrect answers.

Now we define a mapping TPJ on the lattice of interpretations (based on some pre-
interpretation J of the language) to itself. If J is a pre-interpretation of £ and 7 is an

interpretation based on J then TPJ (I)={(B: for every variable assignment V with respect
to J and for every clause A¢Lj,...L, in P, if Ay y=B then L A...AL, " is true with
respect to / and V}. When J is the Herbrand pre-interpretation of &£ , we will write T'p
instead of TPJ . The mapping TPJ possesses the usual properties.

proposition 3.2 For every pre-interpretation J of &£ and for every normal program

P, the mapping TPJ is monotonic.

The mapping TPJ is not always continuous. Nevertheless its pre-fixpoints are models
of the completion of finiteness of the program considered.



proposition 3.3 Let P be a normal program, J a pre-interpretation of &£ and I an
interpretation based on J. Let us suppose that I, together with the identity relation
assigned to =, is a model of the equality theory. We have: I, together with the identity

relationassigned o =, is a model of compg(P) iff TPJ(I)Q.
Asacorollary, we have:
proposition 3.4 The least Herbrand model of comp {P)is the least fixpoint of Tp.

Note that, for every program P, gfp(Tp)=Bp . A first important result is the

soundness of our completion formula for SLDNF resolution (see theorem 3.5 below).
Let P be a normal program and G be a normal goal. We say that PU{G} is allowed
whenever no SLDNF computation of PU{G} flounders. We say that P is allowed
whenever, for every ground atom A, no SLDNF computation of PU{«A} flounders.

theorem 3.5 Let P be a normal program and G be a normal goal. If PU(G]} is
allowed then every computed answer of finiteness of PU{G} is a correct answer of
compp(P)U(G}.

proof Let 6 be a computed answer of finiteness of PU{G}. Since there is no infinite
SLDNF computation of PU{G6}, there is an integer max greater than the number of

goals involved in any SLDNF computation of PU{G8}3). The induction on max is
straightforward.

As acorollary, we have:

corollary 3.6 Let P be a normal program and G a normal goal. If PU{G} is allowed
and if there is no infinite SLDNF computation of P\{G} then the empty substitution is
a correct answer for comp (P)U{G}.

Let P be a normal program. A consequence of corollary 3.6 is the inclusion of the set
of finiteness of P in the least Herbrand model of comp(P). However, it is not always
equal to this least Herbrand model. Let us consider the program P = {A«<B(x),
B(fix))<—B(x)}. The least Herbrand model of comp(P) is M p = {A}U{B(a), B(f(a)), ...}
but there is an infinite SLDNF computation of PU{«A]. For that program, Tptw =



{B(a), B(fa)), ..} and Mp = TpTw+1. In other respects, if A€Bp , if PU{<-A} is

allowed and if there is no SLDNF computation of PU{¢«A} involving n or more than n
goals then AeTptw. If A is an atom, we define [A]={A’eB§g: A’=A0, for some

substitution 8. Then, [A] is the set of ground instances of A.

theorem 3.7 Let P be a normal program and G the normal goal «Lj,...L,,. If
PU(G] is allowed and if 8 is a computed answer of finiteness of rank n of PU{G} then

Uj=1..m[Lj* e]S’I‘P Tw.
proof The proof is a straightforward induction on the rank of the computed answer.

As acorollary, we have:

corollary 3.8 The set of finiteness of P isincludedin Tp Tw.

The set of computed answer of finiteness of PU{G] is not always finite (just consider
the program containing one clause: A(f{x))«A(x)). The possibility of its finiteness will
not be studied here. Now we give the first completeness result of the finiteness of
SLDNF resolution. Its proof is similar to the completeness proof of the negation as
failure rule given by Lassez, Maher and Wolfram [13].

theorem 3.9 Let P be a normal program and G a normal goal. Every correct answer
for compp(P)U{G} is a computed answer of finiteness of PU{G}.

proof Suppose there is an infinite SLDNF computation of PU{G}. We show the empty
substitution is not a correct answer for comp(P)U{G}. Let Gp=G=¢1},....1,,,, Gy, ...
be the infinite SLDONF computation of PU{G}. Let 8}, 05, ... be the mgu and Cy, C5,
... the input clauses of this derivation. Let © be the relation defined on terms by s°¢ if
and only if there is an integer n such that 56,...6,=10;...6,. Of course, ° is an
equivalence relation on the set of terms of the language. For every term ¢, we note [ ¢ ]

its class modulo °. Let D be the set of equivalence classes modulo °. Let J be the pre-
interpretation of £ with domain D assigning to each constant ¢ its class [c] and

assigning to each function symbol f of arity » the function from D™ to D defined by:
([s7)....[sy]) = [f(s}.....5,)]. Let I be the interpretation based on J defined by: I =



{p([t]],...[ty]): for every element ¢}, ..., ¢, in [t;], ..., [t,], the set of proper
successors of p(t'j,...,t",) in the computation is finite}. We show that TPJ (<l If
p((t3]....[ty] )€1 then there are elements 'y, ..., £, in [t;], ..., [t,] such that the set of
the proper successors of p(t’ ;,....£ ,,) in the computation is infinite. Consequently, there
is an integer i such that the goal G;( contains p(f' j,....t' ,) as a subgoal, there is an
integer i greater or equal to iy, there is a clause C; ; = p(sp....Sp}—Lj,...L,, in P, a
substitution 6;,; and an integer j in I, ..., m such that 0;,; =
mgu(p(t’ 180418k’ n8j041-8i)P(5],--.5,)) and the set of proper successors of
L je,- 4] in the computation is infinite. Consequently, [¢;]=[s}], ..., [tp]=[s,] and
there is a clause A«<-Lj,....L,, in P and a variable assignment V' with respect to J such

that AJ'V=p([t1],....[tn])' and L*IA...AL*m is false with respect to / and V.

Consequently, p((t 1 ],...,[tn])e TPJ (I). Then: TPJ(I)CI and, according to proposition
3.3, I'is amodel of compg(P). In others respects, it is not difficult to show that/ is not a

model of V(I * ]A...Al*m). Thus the empty substitution is not a correct answer for
compp(P)U(G} .

The following theorem states the point of view of the fixpoint operator about the
completeness of the finiteness of SLDNF derivation.

theorem 3.10 Let P be a normal program and G the nommal goal <-Lj.,....L,,. If
Vj= 1..m[Lj* 6] STpTn then 6 is a computed answer of finiteness of rank n of PU{G}.

proof By induction on the integer x.
As a corollary we have:

corollary 3.11If P is allowed then the set of finiteness of P is equal to TpT®.

4 Infinite Derivations

Connectors used so far were truth-functional: the truth value of every formula formed
by them only depends on the truth values of its subformulas. Now, our language will
include a pair of intensional connectors (the modal connectors



O and ©) which will be no more truth-functional. Our language contains the following
rule: if F is a formula then so is OF. The connector O is defined by: OF= def"u -F. We
could give to O and © a variety of interpretations. Historically, modal logic is the logic
of possibility and necessity: OF and OF are usualy read “F is necessary” and “F is
possible”. For us, O will be used to denote the temporal relationship between bodies
and heads of definite clauses. For example, we will formally represent through the
modal forinula O(A<—0B) the procedural role of the clause A«<B.

A pre-interpretation of our first order modal language is made of: a non-empty set D,
the domain; to each constant in &£ the assignment of an element in D; to each function

symbol of arity n, the assignment of a function from D" to D; a non-empty set M, the

universe or set of possible worlds of the pre-interpretation; a binary relation R on M, the
accessibility relation between possible worlds. We will require that this accessibility
relation is transitive and reverse well-founded.

note This condition of well-foundedness is of fundamental importance for us. As a
matter of fact, we will have to prove the equivalence between “OA is a valid
consequence of comp(P)” and “there is an SLDNF computation of PU{<A) involving
an infinite number of goals”, comp(P) being some modal completion of infiniteness of
P. On one hand, we will prove by induction on the longest SLDNF derivation of
PU{«A} that DA is not a valid consequence of comp(P). On the other hand, we will
prove by induction on the model of comp(P)u{-~0A} that there is no infinite SLDNF
computation of PU{«A). This last induction holds because the accessibility relation
between the possible worlds of a model of comp {P)u{ ~0A} is well-founded.

An interpretation I of a first order modal language &£ over a pre-intespretadon J with
domain D and universe M is made of: for every predicate symbol of arity n, the

assignment of a function from MxD" to {true, false}. We thus say that[ is based on J.
Let J be a pre-interpretation with domain D and universe M. Let I be an interpretation
based on J and V a variable assignment. To every possible world and formula can be
atwibuted a truth value, true or false, (with respect to I and V) as follows: if the formula
is of the forin OF (OF) then its truth value in w is true if and only if, in every (some)
possible world accessible from w using R, the truth value of F is true. The Herbrand
pre-interpretation is a pre-interpretation whose domain is Usp . A Herbrand



interpretation of £ is an interpretation based on the Herbrand pre-interpretation,

A formula is satisfiable (valid) if it is true in some (every) possible world of some
(every) interpretation. It is a valid consequence of some set of formulas if it is true in
every possible world (of every interpretation) satisfying every formula of this set. Let us
consider the set of valid formulas. It is not recursively enurnerable. As a matter of fact,
validity (in the transitive and reverse well-founded interpretations we are considering) is

highly indecidable: it is IT 21 -complete in the analytical hierarchy [9]. If the language is

restricted to its propositional part then one gets Pr, the (decidable) propositional! modal
logic of provability. Its axiom schemata and inference rules are those of the classical
propositional calculus plus:

(a) (OA<0OB)«0O(A<B).
(b) 0A<0O(A<DA).
(¢)if —p, A then —p,DA.

This modal logic is of importance because of its relationship with provability in
arithmetic. For further informations, we suggest the reader consult the book by Boolos
[8]. As far as we know, the following results together with the previous ones presented
in [4] and [5] are the first use of this modal logic for the semantical characterization of a

programming language.

In [4] was defined a modal completion formula comp -y A(P) of any definite logic
program P. It was proved that there was no SLD refutation of PU{«A} if and only if
DA is a valid consequence of comp -y A(P) in transitive and reverse well-founded
interpretations. In [5] was defined a modal completion formula comppy(P) of any
normmal logic program P. It was proved that if the program is stratified then A belongs to
its natural interpretation as it has been defined in [2] if and only if OA is a valid
consequence of comppy(P) in transitive and reverse well-founded interpretations.

We would like to define a modal completion formula comp(P) of any normal logic
program P such that there is an infinite SLDNF computation of PU{<A} if and only if
DA is a valid consequence of comp,P) in transitive and reverse well-founded
interpretations.

Let p(t},...ty)=Lj.....Ly, be a clause of a normal program P. The first step is to
transform it into the formula p(x;,....x, Je~((OL yv..vOL,)A(X) =t |)A...A(x,=t,)) Where
the variables x;, ..., X do not appear in P. IfyI, cees Yq ar€ the variables of the original
clause then we transform this formula into the formula p(x;,....x,)e3y;...3y 4



((OL I*V...VDLm*)A(xI =t])A..A(x,=t,)). Now suppose this transformnation has been
made for every clause in the definition of p. Then we have & transformed clauses of the
form p(xj,... }Ej, ..., p(x].... 5, —E; where each E; is of the forin 3y;. 3y,
((OL ;" v..vOLy, JA(x)=t1)AwA(Xy=t,)). Then, the completed definitian of

i nfinite ne sof p is the formula Vx;... Vx, O(p(x) ... Xp)¢E V... VE).
Furthemore we add the following modal equational theory:

. O(c+d),for every pair ¢, d of distinct constants.

» O((x] 0 X )#8(Y] 1.0, Yy P)fOT every pair £, g of distinct function symbols.

. O(ftx,....x,)%c), for every constant ¢ and every function symbol £,

. O(¢[ xJ#x),for every term ¢[ x] containing x but distinct from x.

- O((xp2y v #y )ofx X WY .. .., 3)), for every function symbol f.
. O(x=x).

- O((x7=Y P)AwrA Xy =Y y}f(X] e X )=f(¥ 15....¥ p)s fOT every function symbol f.

- O((x7=y PA-AXy=Y ) p(x] . X ) P(Y ] -0 J))), fOr every predicate symbol p
(and for the predicate symbol of equality too).

R N A N R W e

Let P be a normal program. The completion of infinitenessof P, compi(P), is the
collection of all the completed definitions of infiniteness of the predicate symbols of &£
together with the modal equational theory. Let G be the normal goal ¢-L;,...L, and 8 a

substitution of the variables of G. We will say that © is a correct answer for

compy(P)U{G} if 3((OL I*V...VDLn*)B) is a valid consequence of comp;(P). This
notion of comrect answer is the semantical counterpart of the procedural notion of a
computed answer of infiniteness.

Now we define a mapping TPJ on the lattice of interpretations (based on some pre-
interpretation J of the language) to itself. If J is a classical pre-interpretation of £ and if
I is a classical interpretation based on J then TPJ (1) = {B: for some variable assignment
V with respect to J, there is a clause A<Lj,... L, in P such that A J,v=B and
L J*V...VL n* is true with respect to [ and V}. When J is the classical Herbrand pre-

interpretation, we will write Tp instead of T J. The mapping TPJ possesses some

properties.



proposition 4.1 For every pre-interpretation J of &£ and for every normal program

P, the mapping TPJ is continuous.

Note that, for every program P, Ifp( TPJ ) = @, In other respects, it is not always true
that gfp(Tp) = Tpl . If P = {A<B(x), B(f(x))«B(x)}, then gfp(Tp) = D and Tplw =

{A}. A first important result is that the domain of interpretation of the terms of the
language is not essential.

theorem 4.2 Let P be a normal program and G the narmal goal ¢-L,...,.L;. Let 6 be a
substitution of the variables in G. The following assertions are equivalent:

(a) 8 is a correct answer for comp(P)U{G}, that is to say: 3JaL I*Bv...vElLk*B) is
true in every model of comp(P).
(b) 3(OL 1* 6v..vOL k* 6) is true in every Herbrand model of comp (P).

The proof of theorem 4.2 is not essential for our purpose. It could be done by
induction on the model of comp(P)u{ -3J@aL I*OV...vDLk*B)). See [6] for the exact

details. The result of theorem 4.2 will greatly simplified the presentation of future
proofs. Especially the soundness proof of the infiniteness of SLDNF resolution we
present now.

theorem 4.3 Let P be a normal program and G the narmal goal <—L;,....Ly. Every
computed answer of infiniteness of PU(G} is a correct answer for comp (P )U{G].

proof Let 6 be a substitution of the variables of G which is not a comrect answer for
comp;(P)u{G]. Theorem 4.2 says there is a Herbrand model of

comp(PYs{~3(OL; 0v..v0L, 6)). Let I be a Herbrand interpretation with universe
M and accessibility relation R which is a model of
comp(P)u{-~3(0OL; ="ev...vElL,c*e)] . Let w be a possible world of M where
comp(P)o{ -3J(oL I*BV...VUL,C*B)] is true and such that, for every possible world w’
accessible from w using R, for every normal goal </ ,...,lq and for every substitution o
of the variables of that goal, if comp (P} -~3(i 1*ov...le q*o)] is frue in w' then ¢

is not a computed answer of infiniteness of Pu{«{ 1,...,lq}. Now for every j=1,..., k



and for every variable assignment V with respect to the Herbrand pre-interpretation,
there is a possible world w;, accessible from w and where

compP)o{ —-Lj*e}u{VxI...Vxn ( ;fi(xl,.J...J;,)e-E 1V-VEL)} is true with respect to V, P
being the predicate symbol of the atom L j*° Let: L j’"e = pj(t' e U'p)- Thus, for every
clause Pj(tl' -tp)ely, ...,qlin P, y;. 3y ((Dllv...vl]lq))/\(tl=t’1)A...A(tn=t'n)) is
false in wj, y With respect to V. Let ¢ be an mgu of pj(tl.....tn) and pj(t' I Ip)
comp(P)u{~3(0! 1*ov...leq*o)} is true in wj yand, by induction hypothesis, o is
not a computed answer of infiniteness of PU{«I 1,...,lq). Consequently, 6 is not a

computed answer of infiniteness of PU{«-Lj,...L;}.

corollary 4.4 If there is an infinite SLDNF computation of PU{G} then
compy(P)U{« (0L | *v..vil n* )} is insatisfaisable.

corollary 4.5 The infiniteness set of P is contained in the set {A€B o : DA is a valid

consequence of comp(P)}.

Now we give the point of view of the fixpoint operator.

theorem 4.6 Let P be a normal program and G the normal goal «-L;,...L,,.. If 6is a
computed answer of infiniteness of rank n of PU{G} then Vj= 1.mL j* 6]NTpin # 2.

proof The following induction on n proves that if U j= 1.miL j* 0] B §E,\TP'L" then ©
is a computed answer of finiteness of rank n of PU{G}. Suppose it is true for a.-I. Let

n=o. If uj=]"m[l.j*6] < Bsg\TPln then, for every Lje in GO and for every

substitution ¢ such that Ljeo is ground, Lj*eo € Tpln, that is to say: for every
variable assignment V with respect to the Herbrand pre-interpretation and for every
clause Bé~lj,..., f in P, if By = B;8o then I;"v...vl," is false with respect to Tpla:- 1
and V. Thus, for every clause B¢l;,.. .qlin P and for every substitution o, if 6 =

mgu(B,Bje JthenUyp_; q[lk*o] CB gg\Tpla-I and, by induction hypothesis, ¢ is a
computed answer of finiteness of rank a-I of PU{«l,,..., (I) Consequently, 8 is a
computed answer of finiteness of rank n of PU{G}.



note Theorem 4.6 does not imply that if there is an infinite SLDNF computation of
PU{«L;,...,L,,} then uj___l'_m[Lj*]nTPl(o # . As a matter of fact, if P =

(A(s(x)A(x)} and G = A(y) then Uy [L;"] = {A(™0)): n 0} and Tplo = @.
corollary 4.7 The set of infiniteness of a normal program P is contained in Tp }@.

As for the completeness proof of the infiniteness of SLDNF resolution, it has becn
done using the fact that SLDNF trees are finitely branching: if PU{G} is allowed and if
there is no infinite SLDNF computation of PU{G} then every SLDNF tree of PU{G} is
finite. More precisely: some integer is greater than the depth of SLDNF trees of PU{G].

theorem 4.8 Let P be a normal program and G the normal goal «-L;,....L,,. If
PU(G} is allowed and if comp(P)uf{ «J(aL l*v...vDLn*)} is insatisfaisable then
there is an infinite SLDNF computation of PU{G}.

proof If there is no infinite derivation of PU{G} then some integer max is greater than
the length of any SLDNF derivation of PU{G}. The proof is straightforward and can be
done by induction on max.

proposition 4.9 The set of infiniteness of an allowed normal program P is equal

toT pd @ and is equal to the set {A€B ¢ : OA is a valid consequence of comp(P)}.

proof IfA ¢ Tplw then, for some integer n, A € T pln. The proof is straightforward

and can be done by induction on n.

5 Recursive Computation Rules

We have just characterized in provability modal logic a property of infiniteness of
SLDNF resolution: if P is allowed then there is an infinite SLDNF computasion of
PU{«A} if and only if DA is a valid consequence of comp,(P) in the class of modal
interpretations whose accessibility relation is transitive and reverse well-founded. This
characterization does not give us a choice procedure of an atom in a goal such that if
there is an infinite SLDNF computation of PU{G} then there is an infinite SLDNF



derivation which uses this procedure: validity in the class of transitive and reverse well-

founded interpretations is I'IZI ~complete [9]. Our characterization does not say however
that such a procedure cannot exist. Now the question is to see whether there could be an
algorithm of selection of atoms in goals always leading into an infinite derivation when
such a derivation exists. Such an algorithm is a recursive maximal computation rule for
the infiniteness of SLDNF resolution. Considering definite logic programs and SLD
resolution, we will show that such a rule cannot exist.

A computation rule is maximal for the refutation of SLD resolution when, for every
definite program P and for every definite goal G, if there is an SLD refutation of PU{G}
then there is an SLD refutation of PU{G} using this rule. An essential result of the
theory of logic programming is the independence of the computation rule for the
refutation of SLD resolution, that is to say: every computation rule is maximal for the
refutation of SLD resolution [14]. A computation rule is maxirmal for the finite failure of
SLD resolution when if there is a finitely failed SLD tree of PU{G} then the SLD trce of
PU{G} using this rule is finitely failed. An important result is the independence of the
computation rule, as far as it is fair, for the finite failure of SLD resolution [12].
Similarly, it is not difficult to prove that every fair computation rule is maximal for the
finiteness of SLD resolution,

Now we consider the maximality of a computation rule with respect to the infiniteness
of SLD resolution. A computation rule is maxirnal for the infiniteness of SLD resolution
when, for every program P and for every goal G, if there is an infinite SLD tree of
PU{G} then the SLD tree of PU{G} using this rule is infinite. Some rules can be
maximal for the infiniteness of SLD resolution. A computation rule is recursive if it is an
algorithm for the selection of an atom in a goal. Such rules cannot be maximal for the
infiniteness of SLD resolution.

theorem 5.1 There is no recursive computation rule maxmal for the infiniteness of
SLD resolution .

proof As a matter of fact, we prove that, for some definite program P, there can be no
recursive computation rule maximal for the infiniteness of SLD resolution in P. The
proof is based on an idca developed by Shepherdson [17] who proved that no recursive
rule can be maximal for the refutation of SLDNF resolution. Let A and B be two
recursively enumerable recursively inseparable disjoint sets [15]). Let f and g be two
unary functions enumerating A and B. Let F and G be the partial recursive functions
defined as follows: F(x) = wy(f(y)=x); G(x) = ny(g(y)=x). F(x), respectively: G(x), is,



when it exists, the least integer y such that f{y) = x, respectively: g(y) = x. Now, F(x) is
defined if and only if xcA and G(x) is defined if and only if xeB. Let P be the
imperative program using the variables X and Y r, and instructions like:

@ [i|Xp:=Xp+l
(b) [jJIFXp OTHEN Xp:=Xp-1AND GOTO [j’]

for X and similar instructions for Y i, and such that, for every input (X, Yg)=(x,0), the
program stops if and only if F(x) is defined. Let Pp« be the logic program obtained
from Pp; as follows:

(1) Replace every instruction of type (a) by the clause pr X.Y)pp ;4 [(5(X).Y).
(2) Replace every instruction of type (b) by the clauses pp JS(X )Y)—pp J-v(X,Y) and
pFJO.Yk—pFJ-_*_](O,Y).

Let Ppxx and Pxx be the programs obtained from P« and P« respectively by the

addition of the clauses pF,dF*(X).X Y-pp f(X ,0) and PG,O(G*(X)'X)‘_PG, 1(X,0). Let
P be the program PpxxUPGxx. Let G, be the goal «—pp o(X.n).pg o(X,n). If we want
to find an infinite SLD derivation, we have the choice of the selection of an atom at the
first step of the computation only. If we choose the first atom then there is an infinite
SLD derivation if and only if n¢ A. Otherwise, there is an infinite SLD derivation if and
only if n¢ B. Let R be a recursive computation rule. It corresponds to a recursive set C
such that R selects the first atom of G,, if and only if ne C. Thus, if R is maximal for the
infiniteness of SLD derivation then ACMN\C and BEC, which is impossible since A and

B are recursively inseparable.

6 Conclusion

We have given a semantical characterization of finite and infinite SLDNF derivations.
The completion formulas we have defined were both sound and complete for the

finiteness and infineteness of SLDONF resolution: if P is allowed then there is no (an)
infinite SLDNF computation of PU{<«A} if and only if A (OA) is a valid consequence
of compg(P) (comp/P)) in classical first order predicate calculus (in transitive and

reverse well-founded modal interpretations). The characterization of infinite SLDNF
computations that was presented in theorems 4.3 and 4.8 constitutes a first step towards



a better understanding of the modal semantics of perpetual processes.

However, the result stated in theorem 5.1 is not very encouraging from the point of
view of using PROLOG for concurrent applications. As a matter of fact, what is asked
to a perpetual processes is to carry a computation which never ends. This computation
has to be defined with the help of a recursive rule. As we have proved, such a rule
cannot exist. Consequently, we have to circumscribe classes of definite logic programs
for which recursive rules maximal for the infiniteness of SLD resolution exist. The
notion of a perpetual processes makes sense for these classes of programs only. Now
the question is the nature of these classes of programs.

Notes
(1) 58 avenue de l1a république, 93110 Rosny-sous-bois, France
(2) Including the binary predicate symbol of equality.

(3) This is a direct consequence of Knig’s lemma.
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