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Abstract 

This tutorial surveys various approaches to executing discrete event 
simulation programs on a parallel computer. The tutorial is focused on 
asynchronous simulation programs where different processes may advance 
asynchronously in simulated time. Parallelization of discrete event sim- 
ulation programs requires adequate synchronization scheme. We review 
several synchronization schemes that have appeared in the literature in 
recent years. The performance result of these schemes will be surveyed 
and some application areas will be discussed. 

1. I n t r o d u c t i o n  

The analysis of large and complex systems by analytical techniques is often 

very difficult. The availability of low cost microcomputers has introduced sim- 

ulation to many real life applications. Simulation of a system may have several 

objectives, including: (i) understanding behavior of a system; (ii) obtaining esti- 

mates of performance of a system; (iii) guiding the selection of design parameters; 

(iv) validation of a model. Simulation has been used in many areas, including 

manufacturing lines, communication networks, computer systems, VLSI design, 

design automation, air traffic and road traffic systems, among others. 

Two separate classes of methodologies, called continuous time and discrete 

time simulation, have emerged over the years and are widely used for simulating 

complex systems. As the terms indicate, in a continuous simulation changes 

in the state of the system occur continuously in time, whereas in a discrete 

simulation changes in the system take place only at selected points in time. 

Thus, in a discrete-event simulation (DES) events happen at discrete points in 

time and are instantaneous. One kind of discrete simulation is the fixed time 

increment, or the time-stepped approach, the other kind,is the discrete-event 

method. A typical DES algorithm is based on an ordered list of events, called 



event-list, or future-event-set. The Mgorithm repeatedly performs the following 

steps:(1) removes the event with the minimum simulation t ime from the event- 

list, (2) evaluates the event and possibly, and (3) inserts new event(s), generated 

by step 2, in the event-list. 

The traditionM DES, as described above, is sequential. However, many prac- 

tical simulations, e.g. in engineering applications, consume several of hours (and 

even days) on a sequential machine. Parallel computers are attractive tools to 

be used to reduce execution time of such simulation programs. 

In practice, a simulation program is run with several parameter  settings. For 

instance, to design a system various parameters must be tested to determine 

the most appropriate ones. One may suggest to run replication of a simulator 

on separate processors of a multiprocessor computer.  The replication approach 

is reasonable, if the experiments are independent. However, in many practical 

situations parameters of an experiment is determined based on outcome of the 

previous experiments and thus the replication approach is not applicable. An 

alternative solution would be to parallelize a single run of a simulator. 

In this tutorial, we discuss cases where several processors of a multiprocessor 

system cooperate to execute a single simulation program and complete it in a 

fraction of the t ime one processor would need. There are several approaches to 

parallel simulation some of which are briefly reviewed below (see e.g. [56] for 

more detail). 

A. Functional decomposition: In this approach, the simulation support  tasks 

(such as random number generation, event set processing and statistics col- 

lection) are performed by different processors. Generally, the t ime needed to 

execute different tasks is different and thus load balancing is a problem in this 

approach. Moreover, the number of support functions is limited and thus this 

method cannot use large multiprocessors efficiently. 

B. Time-stepped simulation: In a time-stepped simulation, simulated t ime 

is advanced in fixed increments and ach process simulates its components at 

these fixed points. The t ime step must be short to guarantee accuracy of the 

simulation result. This method is inefficient if there occur few events at each 

point. A case where good speed can be obtained has been reported by Goli et 

al. [251). 
C. Asynchronous parallel simulation: In this paper, we focus on asynchronous 

parallel simulation, where each process maintains its own local clock and the local 

t ime of different processes may advance asynchronously. 



The rest of this tutorial is organised as following: Some basic concepts are 

reviewed in Section 2 and the use of parallel simulation is argued in Section 3. 

We review conservative parallel simulation schemes in Section 4 and optimistic 

methods in Section 5. Some hybrid approaches are highlighted in Section 6. 

Finally, concluding remarks are given in Section 7. 

2 .  P r e l i m i n a r i e s  

Real t ime is the actual t ime needed to run a simulator, whereas the occur- 

rence t ime of events in the actual system is denoted by simulated time. 

Event  list is a list that  contains all scheduled, but not yet processed events. 

Timestamp of an event denotes the time the event occurs in the actual 

system. 

State variables describe the state of the system. In the process of devel- 

oping a simulation model, state variables are identified. The value of the state 

variables represent the essential features of a system at specific points in time. 

For instance, in a network, state variables represent queue length and waiting 

time, among others. 

Causality error may occur if an event E~ depends on another event E1 in 

the actual system, but  it is processed before E1 in the simulation program. In 

the sequential DES described in Section 1, it is crucial to remove the event with 

the minimum simulation t ime from the event list to avoid causality error. 

Speedup is defined as the t ime it takes to run a simulator on a uniproces- 

sor divided by the t ime it takes to run a parallel version of the simulator on a 

multiprocessor. The main problems related to this metric are: (i) It depends 

on implementation of the sequential simulator. For instance, if the sequential 

simulator is slow the speedup is higher! (ii) It is hardware dependent, i.e., it de- 

pends on speed of both uniprocessor and multiprocessor computer being used. 

As discussed by Ayani and Berkman [7], it would be more accurate to'  define 

speedup as the time it takes to run the most "efficient sequential simulator on a 

single processor of a multiprocessor divided by the time it takes to execute the 

parallel simulator on n processors of the same multiprocessor. 

3 .  W h y  P a r a l l e l  s i m u l a t i o n ?  

Parallel discret event simulation (PDES) refers to the execution of a sin- 

gle DES program on a parallel computer.  PDES has at t racted a considerable 

number of researchers in recent years, because: 



(i) It has the potential to reduce the simulation time of a DES program. This 

interest is partly due to the fact that  a single run of a sequential simulator may 

require several hours or even days. 

(ii) Many real life systems contain substantial amounts of parallelism. For 

instance, in a communication network, different switches receive and redirect 

messages simultaneously. It is more natural to simulate a parallel phenomenon 

in parallel. 

(iii) From an academic point of view, PDES represents a problem domain 

that  requires solution to most of the problems encountered in parallel processing, 

e.g., synchronization, efficient message communication, deadlock management 

and load balancing. 

One of the main difficulties in PDES is synchronization. It is difficult because 

the precedence constraints that  dictate which event must be executed before each 

other is, in general, quite complex and data dependent. This contrasts sharply 

with other areas where much is known about the synchronization at compile 

time, e.g. in matrix algebra [24] 

The common approach to PDES is to view the system being modeled, usu- 

ally referred to as the physical system, as a set of physical processes (PPs) that  

interact at various points in simulated time. The simulator is then constructed 

as a set of logical processes (LPs) that  communicate with each other by sending 

t imestamped messages. In this scenario, each logical process simulates a physi- 

caly process. Each LP maintains its own logical clock and its own event list. The 

logical process view requires that  the state variables are statically partitioned 

into a set of disjoint states each belonging to an LP. This view of the simulation 

as a set of communicating LPs is used by all of the simulation methods reviewed 

in this paper. 

It can be shown that  no causality errors occur if each LP processes events in 

non-decreasing t imestamp order [43]. This requirement is known as local causal- 

ity constraint. The local causality constraint is sufficient, but not necessary. 

This is not necessary, because two events occurring within the same LP may be 

independent of each other and thus can be processed in any order. Ahmed et 

al. [2] suggest an approach where independent events belonging to the same LP 

may be identified and processed in parallel. 

Two main paradigms have been proposed for asynchronous parallel simu- 

lation: conservative and optimistic methods. Conservative approaches strictly 

avoid the possibility of any causality error ever occurring. On the other hand, 



optimistic approaches make the optimistic assumption that  messages arrive at 

different LPs in correct order. However, these approaches employ a detect and 

recovery mechanism to correct causality errors. 

4 .  C o n s e r v a t i v e  A p p r o a c h e s  

Several conservative approaches to PDES have been proposed in the litera- 

ture. These approaches are based on processing safe events. The main difference 

between these methods, as discussed in this section, lies in the way they identify 

safe events. 

4.1 T h e  C h a n d y - M i s r a  S c h e m e  

Chandy and Misra proposed one of the first conservative PDES algorithms 

[14]. In this method,  as described by Misra [43], a physical system is modeled as 

a directed graph where arcs represent communication channels between nodes. 

Each node of the graph is called a logical process (LP). Each LP simulates a 

portion of the real system to be simulated and maintains a set of queues, one 

associated with each arc in the graph. Within each logical process, events are 

simulated strictly in the order of their simulated time. Interprocess communica- 

tion is required whenever an event associated with one logical process wishes to 

schedule an event for another logical process. It is assumed that  the communi- 

cation medium preserves the order of messages, and that  the t imestamp of the 

messages sent along any particular arc are nondecreasing. 

The method is conservative because a logical process is not allowed to process 

a message with t imestamp t until it is certain that  no messages will ever arrive 

with a t imestamp less than t. To guarantee this, each node must select the 

message with the lowest t imestamp that  is now scheduled for the node or will 

be scheduled in future. If every input arc of a node has at least one unprocessed 

message, then the next message to be processed is simply the one with the lowest 

t imestamp among all of the input arcs of the node. However, if any of the input 

arcs is empty, then the node will be blocked waiting for a message to arrive. The 

blocking mechanism is necessary, because if a node processes any message from 

one of its nonempty input queues, there is no guarantee that  a message that  

arrives later to an empty input arc will have a t imestamp equal or greater than 

the t imestamp of the processed message. 

There are two problems related to blocking a node: memory overflow and 

deadlock. 



(i) M e m o r y  over f low:  While a node is blocked because some of its input 

queues are empty,  the other queues may  grow, leading to an unpredictable stor- 

age requirement. For instance, consider the system shown in Figure 1. If  node 1 

sends most  of the messages to node 4 via node 2, there may  be many  messages 

on arc (2,4) while node 4 is blocked waiting for a message on arc (3,4). 

F i g u r e  1. In this network, node 4 may cause memory overflow. For instance, node 

4 may be blocked waiting for a message from node 3, while it receives lots of messages 

from node 2. 

(ii) D e a d l o c k :  I f  the directed graph representing the system contains a 

cycle, as shown in Figure 2, then the Chandy-Misra paradigm is vulnerable to 

deadlock. Several methods have been proposed in the li terature to resolve the 

deadlock problem. These methods are either based on deadlock avoidance or 

deadlock detection and recovery. 

F i g u r e  2. A circular network 



4.2 Deadlock Avoidance Mechanisms 

The original approach suggested by Chandy and Misra for avoiding deadlock, 

described in [43] is based on sending null messages. A null message is a dummy 

message used only for synchronoization purpose and does not correspond to any 

activity in the real system. A null message Enuu with t imestamp T(E,~uu) sent 

from LPi to LPj indicates that  LPi will not send any message to LPj earlier 

than T(En~tt). The receiver process may use this information to identify its next 

message to be processed. For instance, if LPj is blocked waiting for a message 

from LPI, this null message can be used to unblock it. 

The null message scenario is straight-forward and simple to implement. How- 

ever, the transmission of null messages can create substantial overhead, espe- 

cially for high branching networks. One may reduce the overhead by transmit-  

ting null messages less frequently. The question is how frequently does a node 

need to send null messages to its successor nodes? Several mechanisms have 

been proposed to reduce the overhead related to null messages. 

Misra [43] suggests a time-out scheme, where transmission of a null message is 

delayed for some time. This scenario decreases the total number of null messages 

required, because a real message with a higher t imestamp may arrive or a null 

message with a higher t imestamp may over-write the earlier null message during 

the t ime-out period. However, some processes might be delayed longer than in 

the original null message scheme. 

Another approach is that  a process sends null messages on each of its output  

arcs whenever it is blocked. It can be shown that this mechanism avoids deadlock 

if there is no cycle in which the collective t imestamp increment of a message 

traversing the cycle could be zero [24]. 

Another approach would be to send null messages on demand. In this 

method,  a process that  is blocked sends a request to its predecessor asking for 

the earliest t ime the predecessor may send a message. Thus, a null message 

will be sent from LPi to LPj only when LPj requests it. This scheme, however, 

may result in a cycle of requests. In this case, the message with the minimum 

t imestamp can be processed [43]. 

4.3 D e a d l o c k  D e t e c t i o n  a n d  Recovery 

Another possibility would be to let the basic Chandy-Misra schem deadlock, 

and provide a mechanism to detect deadlock and recover from it. 

In an algorithm suggested by Misra [43], a marker circulates in a cycle of 



channels. The marker is a special type of message carrying some information. 

The cycle is constructed in such a way that  the marker traverses every channel 

of the network sometimes during a cycle. If an LP receives the marker it will 

send it to the next channel within a finite time. An LP is said to be white if it 

has neither received nor sent a message since the last departure of the marker 

from it; the LP is black otherwise. The marker declares deadlock when it finds 

that  the last N logical processes that  it has visited were all white, where N is the 

number of nodes in the network. As discussed in [43], the algorithm is correct 

if the messages communicated between the LPs are received in the t ime order 

they are sent. As an example consider the network depicted by Figure 1. The 

network is deadlocked if the marker visits all the three nodes and finds that  all 

of them are white, i.e., they have neither received nor sent a message since last 

visit. 

The marker scheme may also be used to recover from deadlock. The marker 

may carry the minimum of the next-event-times for the white LPs it visits. 

When the marker detects deadlock, it knows the smallest event-time and the LP 

at which this event occurs. To recover from deadlock, the LP with the minimum 

next-event-time will be restarted. 

Experimental  results (e.g. [22], [53], [63]) suggest that  the deadlock avoid- 

ance method is superior to the deadlock detection and recovery. Unfortunately, 

the deadlock avoidance presumes a nonzero minimum service time. 

4.4 Conservat ive  T i m e  W i n d o w  Schemes  

Several researchers have proposed window based conservative parallel simu- 

lation schemes (e.g., see [9], [38], [47]). The main idea behind all these schemes is 

to identify a t ime window for each logical process such that  events within these 

windows are safe and can thus be processed concurrently. The basic constraint 

on such schemes is that  events occurring within each window are processed 

sequentially, but  events within different windows are independent and can be 

processed concurrently. 

Consider a system consisting of n logical processes LP1, LP2,. . . ,LPn. Assume 

that  the following Conservative Time Window (CTW) parallel simulation scheme 

is used. 

The CTW-algor i thm shown in Figure 3 works in the following way: 

a) In the first phase, a window Wi is assigned to each LPi such that  the events 

occurring within Wi are independent from the events occurring in Wj, i r j .  



Repeat  

1 ) Ident i f ica t ion  phase 
Assign a window Wi to LPi such that events in Wi 
can be processed concurrently with events in Wj, 
i # j .  
B a r r i e r  
2)  P r o c e s s  p h a s e  
Process the events in W1, W2, ...,Wn. 
Bar r i e r  

Until  (End-of-Simulation) 

Figure  3. A Conservative Time Window (CTW) parallel simulation scheme. 

The way independent windows are identified has been discussed elsewhere, e.g. 

see [9]. 
b) In phase 2 of the CTW-algorithm, the events occurring within each window 

are processed sequentially, but events within different windows are independent 

and can be processed concurrently. 

c) Each phase of the algorithm may be executed by several processors in par- 

allel. However, synchronization is required between the two consecutive phases. 

Thus, the next iteration of the CTW-algorithm will be started after processing 

all the time windows belonging to the current iteration.The algorithm produces 

a Time Window, which may be empty, for each LP. The width of the windows is 

calculated in each iteration of the algorithm. Figure 4 illustrates three iterations 

of the CTW-algorithm for simulating a system consisting of three subsystems. 

Generally, different windows have different sizes and contain different num- 

ber of events. In "other words, there will be n windows W1, W2, ..., Wn with 

different widths to be assigned to m processors. The performance of the window 

based schemes depends heavily on how the windows are assigned to the proces- 

sors. Several scheduling schemes have been proposed and evaluated in [8]. As 

discussed in [9], the number of non-empty windows produced in each iteration of 

the algorithm and the size of each one depends on features of the system being 

simulated, e.g. message population, network topology, and network size. 
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Figure  4. Results of performing 3 iterations of the CTW-algorithm on a system 
with three LPs, where Wij denotes the window generated for LPi in the jth iteration. 

More information on the behavior of the window based parallel simulation 

algorithms can be found in [9]. 

4.5 P e r f o r m a n c e  of  t he  Conse rva t ive  Schemes  

Several researchers have studied the performance of the conservative schemes. 

The most extensive performance result has been reported by Richard Fujimoto 

[22], [24]. According to Fujimoto, performance of the conservative algorithms is 

critically related to the degree to which logical processes can look ahead into their 

future simulated time. Wagner and Lazowska [63] report on performance of a 

conservative scheme on a shared memory multiprocessor. Chandy and Sherman 

[16] report speedup in simulation of queueing networks. Ayani and P~ajaei [9] 

present an intensive performance study of the conservative time window scheme 

on shared memory multiprocessors. 

5. O p t i m i s t i c  A p p r o a c h e s  

Optimistic approaches to PDES, as opposed to conservative ones, allow oc- 
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currence of causality error. These protocols do not determine safe events; instead 

they detect causality error and provide mechanisms to recover from such error. 

The Time Warp mechanism proposed by Jefferson and Sowizral [31] is the 

most well known optimistic approach. The Time Warp mechanism (as described 

in [29]) allows an LP to execute events and proceed in its local simulated time, 

called local virtual time or LVT, as long as there is any messeage in its input 

queue. This method is optimistic because it assumes that message commu- 

nications between LPs arrive at proper time, and thus LPs can be processed 

independently. However, it implements a roll back mechanism for the case when 

the assumption turns out to be wrong, i.e. if a message arrives to a node at its 

past. The method requires both time and space for maintaining the past history 

of each node, and for performing the roll back operation whenever necessary. 

Under the Time Warp protocol, each message has a send time and a receive 

time. The send time is equal to the local clock of the sending LP when the 

message is sent. The receive time is the simulated time the message arrives at 

the receiving LP. The receive time is the same as the timestamp used in the 

conservative approaches. The send time concept is used to define GVT and to 

implement the Time Warp protocol correctly. Global virtual time (GVT) is the 

minimum of all LVTs and the send times of all messages that have been sent 

but not yet received. 

If messages arrive to a process with receive times greater than the receiver's 

LVT, they are enqueued in the input queue of the receiver LP. However~ if an 

LP receives an event message that "should" have been handled in its simulated 

past, i.e., its receive time is less than the receiver's LYT (such a message is called 

a straggler), then the receiving LP is rolled back to the simulation time before 

the timestamp of the straggler message. In addition to rolling back the receiving 

LP, however, the Time Warp mechanism must cancel all of the indirect side 

effects caused by any messages the receiving LP sent with timestamps greater 

than the time at which it is rolled back. This is done by sending antimessages 

to annihilate the corresponding ordinary messages. 

In Time Warp, no event with timestamp smaller than GVT will ever be 

rolled back. Thus, all events with timestamp less than GVT can be committed 

and the memory space occupied by state variables up to GVT can be released. 

The process of committing events and reclaiming memory is referred to as fossil 

collection [23] and [24]. 
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5.1 Lazy Cancel la t ion  

Several schemes for undoing side effects caused by erroneous messages have 

appeared in the literature. In the  aggressive cancellation mechanism, when a 

process rolls back antimessages are sent immediately to cancel erroneous mes- 

sages. 

In lazy cancellation [23], antimessages are not sent immediately after rollback. 

Instead, the rolled back process resumes execution of events from its new LVT. 

If the reexecution of the events regenerates the same message, there is no need to 

cancel the message. Only messages that are different from the old messages are 

transmitted; after the process' clock passes time T, antimessages are sent only 

for those messages with timestamp less than T that are not regenerated. Under 

aggressive cancellation, a process may send unnecessary antimessages. Under 

lazy cancellation there are no unnecessary antimessages. However, lazy cancel- 

lation may allow erroneous computation to spread further because antimessages 

are sent later. 196z The lazy cancellation mechanism may improve or degrade 

performance of the time warp depending on features of the application. Most of 

the performance results reported in the literature suggest that lazy cancellation 

improves performance. However, one can construct cases where lazy cancellation 

is much slower than aggressive cancellation [23]. 

5.2 Performance of  the Optimistic  Schemes 

Several researchers have report successes in using Time Warp to speedup sim- 

ulation problems. Fujimoto has reported significant speedup for several queueing 

networks [23]. Some researchers have developed analytical models to evaluate 

performance of Time Warp. Analytical models for the case of two processors 

have been developed by Mitra and Mitrani [44], and Feldman and Kleinrock [20]. 

Models for multiprocesses have been developed by Akyildiz et al. [4] and Gupta 

et at. [26], among others. 

6. H y b r i d  A p p r o a c h e s  

The deadlock handling is the main cost factor in conservative methods. In 

optimistic approaches, the detection and recovery of causality errors require state 

saving and rollback. State saving may require a considerable amount of memory 

if system state consists of many variables that must be saved frequently. The 

memory requirement may be reduced if the GVT is more frequently computed 

and the unnecessary states are removed, i.e. the fossil collection procedure is 
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done more frequently. However, this requires more CPU time. 

It seems reasonable to combine the advantages of these two approaches in 

a hybrid protocol. The issue of combining the two approaches has received 

considerable attention in recent years, since the limitations of each paradigm 

are better understood. It is believed that the future PDES paradigm will be a 

hybrid one! 

There are three general categories of hybrid approaches: 

(i) To add optimism into a conservative approach. For instance, in the spec- 

ulative simulation method proposed by Horst Meh [42] whenever an LP is to 

be blocked, it optimistically simulates the events in its event list, but keeps the 

result locally until it becomes committed. In the Filtered Rollback proposed by 

Lubachevsky [39], the upper-bound is set to a larger value than the one deter- 

mined by the the conservative bounded-lag algorithm . These hybrid schemes 

are still conservative and thus cannot support dynamic configuration of LPs. 

(ii) To add conservatism to an optimistic approach. One may try to bound 

the advancement of LVTs in Time Warp. This technique reduces rollback fre- 

quency and the rollback distance in general. However, it tends to reduce the 

degree of available parallelism as well. 

The main problem with this category of schemes is how to determine a bound- 

ary for limiting the optimism. For instance, in MIMDIX [40] special processes, 

called Genie processes, are introduced to compute upper bounds for the advance- 

ment of LVTs. In Wolf [41], whenever a rollback occurs, special messages are 

broadcasted to limit propagation of the erroneous messages. The bounded time 

warp (BTW) proposed by Turner and Xu [61] divides the simulation duration 

time interval into a number of equal intervals and all events within an interval 

is processed before the next one is started. Reiher and Jefferson [55] propose a 

window-based throttling scheme, where LPs are prevented from executing events 

in the far future. The local time warp (LTW) proposed by Rajaei [52] partitions 

the system into a set of clusters each containing a number of LPs. The LPs 

within each cluster are synchronized by Time Warp, whereas the inter-cluster 

synchronization is based on the conservative time window scheme described in 

[9]. 
(iii) Switching between Optismism and Conservatism. Some researchers, e.g. 

[5], suggest to switch between the conservative and the optimistic schemes. This 

approach is attractive, especially when the behavior of the application changes 

dynamically. 
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7. Conclusions 
The state of the art in PDES has advanced very rapidly in the recent years 

and much more is known about the potentials of the parallel simulation schemes. 

In particular, the extensive performance studies conducted by several researchers 

have identified strengths and weaknesses of the parMlel simulation schemes. In 

this paper, we attempted to provide an insight into various strategies for exe- 

cuting discrete event simulation programs on parallel computers and highlight 

future research directions in this field. The implementation of the event-list and 

its impact on performance, though important, was not covered in this tutorial. 

Interested readers are referred to [57], [58], [32] and other articles given in the 

reference list. 

Conservative methods offer good potentials for certain classes of problems 

where application specific knowledges can be applied to exploit look ahead. Op- 

timistic methods have had a significant success on a wide range of applications, 

however, reducing the state saving costs is still a research problem. The issue of 

combining the two approaches has received considerable attention in the recent 

years. It is believed that the future PDES paradigm will be based on hybrid 

approaches. 
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