
PARALLEL SIMULATION

Rassul Ayani

Department of Teleinformatics, Computer Systems Laboratory

Royal Institute of Technology (KTH)

Stockholm, Sweden

Abstract

This tutorial surveys various approaches to executing discrete event
simulation programs on a parallel computer. The tutorial is focused on
asynchronous simulation programs where different processes may advance
asynchronously in simulated time. Parallelization of discrete event sim-
ulation programs requires adequate synchronization scheme. We review
several synchronization schemes that have appeared in the literature in
recent years. The performance result of these schemes will be surveyed
and some application areas will be discussed.

1. I n t r o d u c t i o n

The analysis of large and complex systems by analytical techniques is often

very difficult. The availability of low cost microcomputers has introduced sim-

ulation to many real life applications. Simulation of a system may have several

objectives, including: (i) understanding behavior of a system; (ii) obtaining esti-

mates of performance of a system; (iii) guiding the selection of design parameters;

(iv) validation of a model. Simulation has been used in many areas, including

manufacturing lines, communication networks, computer systems, VLSI design,

design automation, air traffic and road traffic systems, among others.

Two separate classes of methodologies, called continuous time and discrete

time simulation, have emerged over the years and are widely used for simulating

complex systems. As the terms indicate, in a continuous simulation changes

in the state of the system occur continuously in time, whereas in a discrete

simulation changes in the system take place only at selected points in time.

Thus, in a discrete-event simulation (DES) events happen at discrete points in

time and are instantaneous. One kind of discrete simulation is the fixed time

increment, or the time-stepped approach, the other kind,is the discrete-event

method. A typical DES algorithm is based on an ordered list of events, called

event-list, or future-event-set. The Mgorithm repeatedly performs the following

steps:(1) removes the event with the minimum simulation t ime from the event-

list, (2) evaluates the event and possibly, and (3) inserts new event(s), generated

by step 2, in the event-list.

The traditionM DES, as described above, is sequential. However, many prac-

tical simulations, e.g. in engineering applications, consume several of hours (and

even days) on a sequential machine. Parallel computers are attractive tools to

be used to reduce execution time of such simulation programs.

In practice, a simulation program is run with several parameter settings. For

instance, to design a system various parameters must be tested to determine

the most appropriate ones. One may suggest to run replication of a simulator

on separate processors of a multiprocessor computer. The replication approach

is reasonable, if the experiments are independent. However, in many practical

situations parameters of an experiment is determined based on outcome of the

previous experiments and thus the replication approach is not applicable. An

alternative solution would be to parallelize a single run of a simulator.

In this tutorial, we discuss cases where several processors of a multiprocessor

system cooperate to execute a single simulation program and complete it in a

fraction of the t ime one processor would need. There are several approaches to

parallel simulation some of which are briefly reviewed below (see e.g. [56] for

more detail).

A. Functional decomposition: In this approach, the simulation support tasks

(such as random number generation, event set processing and statistics col-

lection) are performed by different processors. Generally, the t ime needed to

execute different tasks is different and thus load balancing is a problem in this

approach. Moreover, the number of support functions is limited and thus this

method cannot use large multiprocessors efficiently.

B. Time-stepped simulation: In a time-stepped simulation, simulated t ime

is advanced in fixed increments and ach process simulates its components at

these fixed points. The t ime step must be short to guarantee accuracy of the

simulation result. This method is inefficient if there occur few events at each

point. A case where good speed can be obtained has been reported by Goli et

al. [251).
C. Asynchronous parallel simulation: In this paper, we focus on asynchronous

parallel simulation, where each process maintains its own local clock and the local

t ime of different processes may advance asynchronously.

The rest of this tutorial is organised as following: Some basic concepts are

reviewed in Section 2 and the use of parallel simulation is argued in Section 3.

We review conservative parallel simulation schemes in Section 4 and optimistic

methods in Section 5. Some hybrid approaches are highlighted in Section 6.

Finally, concluding remarks are given in Section 7.

2 . P r e l i m i n a r i e s

Real t ime is the actual t ime needed to run a simulator, whereas the occur-

rence t ime of events in the actual system is denoted by simulated time.

Event list is a list that contains all scheduled, but not yet processed events.

Timestamp of an event denotes the time the event occurs in the actual

system.

State variables describe the state of the system. In the process of devel-

oping a simulation model, state variables are identified. The value of the state

variables represent the essential features of a system at specific points in time.

For instance, in a network, state variables represent queue length and waiting

time, among others.

Causality error may occur if an event E~ depends on another event E1 in

the actual system, but it is processed before E1 in the simulation program. In

the sequential DES described in Section 1, it is crucial to remove the event with

the minimum simulation t ime from the event list to avoid causality error.

Speedup is defined as the t ime it takes to run a simulator on a uniproces-

sor divided by the t ime it takes to run a parallel version of the simulator on a

multiprocessor. The main problems related to this metric are: (i) It depends

on implementation of the sequential simulator. For instance, if the sequential

simulator is slow the speedup is higher! (ii) It is hardware dependent, i.e., it de-

pends on speed of both uniprocessor and multiprocessor computer being used.

As discussed by Ayani and Berkman [7], it would be more accurate to' define

speedup as the time it takes to run the most "efficient sequential simulator on a

single processor of a multiprocessor divided by the time it takes to execute the

parallel simulator on n processors of the same multiprocessor.

3 . W h y P a r a l l e l s i m u l a t i o n ?

Parallel discret event simulation (PDES) refers to the execution of a sin-

gle DES program on a parallel computer. PDES has at t racted a considerable

number of researchers in recent years, because:

(i) It has the potential to reduce the simulation time of a DES program. This

interest is partly due to the fact that a single run of a sequential simulator may

require several hours or even days.

(ii) Many real life systems contain substantial amounts of parallelism. For

instance, in a communication network, different switches receive and redirect

messages simultaneously. It is more natural to simulate a parallel phenomenon

in parallel.

(iii) From an academic point of view, PDES represents a problem domain

that requires solution to most of the problems encountered in parallel processing,

e.g., synchronization, efficient message communication, deadlock management

and load balancing.

One of the main difficulties in PDES is synchronization. It is difficult because

the precedence constraints that dictate which event must be executed before each

other is, in general, quite complex and data dependent. This contrasts sharply

with other areas where much is known about the synchronization at compile

time, e.g. in matrix algebra [24]

The common approach to PDES is to view the system being modeled, usu-

ally referred to as the physical system, as a set of physical processes (PPs) that

interact at various points in simulated time. The simulator is then constructed

as a set of logical processes (LPs) that communicate with each other by sending

t imestamped messages. In this scenario, each logical process simulates a physi-

caly process. Each LP maintains its own logical clock and its own event list. The

logical process view requires that the state variables are statically partitioned

into a set of disjoint states each belonging to an LP. This view of the simulation

as a set of communicating LPs is used by all of the simulation methods reviewed

in this paper.

It can be shown that no causality errors occur if each LP processes events in

non-decreasing t imestamp order [43]. This requirement is known as local causal-

ity constraint. The local causality constraint is sufficient, but not necessary.

This is not necessary, because two events occurring within the same LP may be

independent of each other and thus can be processed in any order. Ahmed et

al. [2] suggest an approach where independent events belonging to the same LP

may be identified and processed in parallel.

Two main paradigms have been proposed for asynchronous parallel simu-

lation: conservative and optimistic methods. Conservative approaches strictly

avoid the possibility of any causality error ever occurring. On the other hand,

optimistic approaches make the optimistic assumption that messages arrive at

different LPs in correct order. However, these approaches employ a detect and

recovery mechanism to correct causality errors.

4 . C o n s e r v a t i v e A p p r o a c h e s

Several conservative approaches to PDES have been proposed in the litera-

ture. These approaches are based on processing safe events. The main difference

between these methods, as discussed in this section, lies in the way they identify

safe events.

4.1 T h e C h a n d y - M i s r a S c h e m e

Chandy and Misra proposed one of the first conservative PDES algorithms

[14]. In this method, as described by Misra [43], a physical system is modeled as

a directed graph where arcs represent communication channels between nodes.

Each node of the graph is called a logical process (LP). Each LP simulates a

portion of the real system to be simulated and maintains a set of queues, one

associated with each arc in the graph. Within each logical process, events are

simulated strictly in the order of their simulated time. Interprocess communica-

tion is required whenever an event associated with one logical process wishes to

schedule an event for another logical process. It is assumed that the communi-

cation medium preserves the order of messages, and that the t imestamp of the

messages sent along any particular arc are nondecreasing.

The method is conservative because a logical process is not allowed to process

a message with t imestamp t until it is certain that no messages will ever arrive

with a t imestamp less than t. To guarantee this, each node must select the

message with the lowest t imestamp that is now scheduled for the node or will

be scheduled in future. If every input arc of a node has at least one unprocessed

message, then the next message to be processed is simply the one with the lowest

t imestamp among all of the input arcs of the node. However, if any of the input

arcs is empty, then the node will be blocked waiting for a message to arrive. The

blocking mechanism is necessary, because if a node processes any message from

one of its nonempty input queues, there is no guarantee that a message that

arrives later to an empty input arc will have a t imestamp equal or greater than

the t imestamp of the processed message.

There are two problems related to blocking a node: memory overflow and

deadlock.

(i) M e m o r y over f low: While a node is blocked because some of its input

queues are empty, the other queues may grow, leading to an unpredictable stor-

age requirement. For instance, consider the system shown in Figure 1. If node 1

sends most of the messages to node 4 via node 2, there may be many messages

on arc (2,4) while node 4 is blocked waiting for a message on arc (3,4).

F i g u r e 1. In this network, node 4 may cause memory overflow. For instance, node

4 may be blocked waiting for a message from node 3, while it receives lots of messages

from node 2.

(ii) D e a d l o c k : I f the directed graph representing the system contains a

cycle, as shown in Figure 2, then the Chandy-Misra paradigm is vulnerable to

deadlock. Several methods have been proposed in the li terature to resolve the

deadlock problem. These methods are either based on deadlock avoidance or

deadlock detection and recovery.

F i g u r e 2. A circular network

4.2 Deadlock Avoidance Mechanisms

The original approach suggested by Chandy and Misra for avoiding deadlock,

described in [43] is based on sending null messages. A null message is a dummy

message used only for synchronoization purpose and does not correspond to any

activity in the real system. A null message Enuu with t imestamp T(E,~uu) sent

from LPi to LPj indicates that LPi will not send any message to LPj earlier

than T(En~tt). The receiver process may use this information to identify its next

message to be processed. For instance, if LPj is blocked waiting for a message

from LPI, this null message can be used to unblock it.

The null message scenario is straight-forward and simple to implement. How-

ever, the transmission of null messages can create substantial overhead, espe-

cially for high branching networks. One may reduce the overhead by transmit-

ting null messages less frequently. The question is how frequently does a node

need to send null messages to its successor nodes? Several mechanisms have

been proposed to reduce the overhead related to null messages.

Misra [43] suggests a time-out scheme, where transmission of a null message is

delayed for some time. This scenario decreases the total number of null messages

required, because a real message with a higher t imestamp may arrive or a null

message with a higher t imestamp may over-write the earlier null message during

the t ime-out period. However, some processes might be delayed longer than in

the original null message scheme.

Another approach is that a process sends null messages on each of its output

arcs whenever it is blocked. It can be shown that this mechanism avoids deadlock

if there is no cycle in which the collective t imestamp increment of a message

traversing the cycle could be zero [24].

Another approach would be to send null messages on demand. In this

method, a process that is blocked sends a request to its predecessor asking for

the earliest t ime the predecessor may send a message. Thus, a null message

will be sent from LPi to LPj only when LPj requests it. This scheme, however,

may result in a cycle of requests. In this case, the message with the minimum

t imestamp can be processed [43].

4.3 D e a d l o c k D e t e c t i o n a n d Recovery

Another possibility would be to let the basic Chandy-Misra schem deadlock,

and provide a mechanism to detect deadlock and recover from it.

In an algorithm suggested by Misra [43], a marker circulates in a cycle of

channels. The marker is a special type of message carrying some information.

The cycle is constructed in such a way that the marker traverses every channel

of the network sometimes during a cycle. If an LP receives the marker it will

send it to the next channel within a finite time. An LP is said to be white if it

has neither received nor sent a message since the last departure of the marker

from it; the LP is black otherwise. The marker declares deadlock when it finds

that the last N logical processes that it has visited were all white, where N is the

number of nodes in the network. As discussed in [43], the algorithm is correct

if the messages communicated between the LPs are received in the t ime order

they are sent. As an example consider the network depicted by Figure 1. The

network is deadlocked if the marker visits all the three nodes and finds that all

of them are white, i.e., they have neither received nor sent a message since last

visit.

The marker scheme may also be used to recover from deadlock. The marker

may carry the minimum of the next-event-times for the white LPs it visits.

When the marker detects deadlock, it knows the smallest event-time and the LP

at which this event occurs. To recover from deadlock, the LP with the minimum

next-event-time will be restarted.

Experimental results (e.g. [22], [53], [63]) suggest that the deadlock avoid-

ance method is superior to the deadlock detection and recovery. Unfortunately,

the deadlock avoidance presumes a nonzero minimum service time.

4.4 Conservat ive T i m e W i n d o w Schemes

Several researchers have proposed window based conservative parallel simu-

lation schemes (e.g., see [9], [38], [47]). The main idea behind all these schemes is

to identify a t ime window for each logical process such that events within these

windows are safe and can thus be processed concurrently. The basic constraint

on such schemes is that events occurring within each window are processed

sequentially, but events within different windows are independent and can be

processed concurrently.

Consider a system consisting of n logical processes LP1, LP2,. . . ,LPn. Assume

that the following Conservative Time Window (CTW) parallel simulation scheme

is used.

The CTW-algor i thm shown in Figure 3 works in the following way:

a) In the first phase, a window Wi is assigned to each LPi such that the events

occurring within Wi are independent from the events occurring in Wj, i r j .

Repeat

1) Ident i f ica t ion phase
Assign a window Wi to LPi such that events in Wi
can be processed concurrently with events in Wj,
i # j .
B a r r i e r
2) P r o c e s s p h a s e
Process the events in W1, W2, ...,Wn.
Bar r i e r

Until (End-of-Simulation)

Figure 3. A Conservative Time Window (CTW) parallel simulation scheme.

The way independent windows are identified has been discussed elsewhere, e.g.

see [9].
b) In phase 2 of the CTW-algorithm, the events occurring within each window

are processed sequentially, but events within different windows are independent

and can be processed concurrently.

c) Each phase of the algorithm may be executed by several processors in par-

allel. However, synchronization is required between the two consecutive phases.

Thus, the next iteration of the CTW-algorithm will be started after processing

all the time windows belonging to the current iteration.The algorithm produces

a Time Window, which may be empty, for each LP. The width of the windows is

calculated in each iteration of the algorithm. Figure 4 illustrates three iterations

of the CTW-algorithm for simulating a system consisting of three subsystems.

Generally, different windows have different sizes and contain different num-

ber of events. In "other words, there will be n windows W1, W2, ..., Wn with

different widths to be assigned to m processors. The performance of the window

based schemes depends heavily on how the windows are assigned to the proces-

sors. Several scheduling schemes have been proposed and evaluated in [8]. As

discussed in [9], the number of non-empty windows produced in each iteration of

the algorithm and the size of each one depends on features of the system being

simulated, e.g. message population, network topology, and network size.

Space

10

LP3

LP2

LPI

W31 W32 W33

W21 W22

. . m Q

W23

ii

WII WI2 WI3

Time

Figure 4. Results of performing 3 iterations of the CTW-algorithm on a system
with three LPs, where Wij denotes the window generated for LPi in the jth iteration.

More information on the behavior of the window based parallel simulation

algorithms can be found in [9].

4.5 P e r f o r m a n c e of t he Conse rva t ive Schemes

Several researchers have studied the performance of the conservative schemes.

The most extensive performance result has been reported by Richard Fujimoto

[22], [24]. According to Fujimoto, performance of the conservative algorithms is

critically related to the degree to which logical processes can look ahead into their

future simulated time. Wagner and Lazowska [63] report on performance of a

conservative scheme on a shared memory multiprocessor. Chandy and Sherman

[16] report speedup in simulation of queueing networks. Ayani and P~ajaei [9]

present an intensive performance study of the conservative time window scheme

on shared memory multiprocessors.

5. O p t i m i s t i c A p p r o a c h e s

Optimistic approaches to PDES, as opposed to conservative ones, allow oc-

1]

currence of causality error. These protocols do not determine safe events; instead

they detect causality error and provide mechanisms to recover from such error.

The Time Warp mechanism proposed by Jefferson and Sowizral [31] is the

most well known optimistic approach. The Time Warp mechanism (as described

in [29]) allows an LP to execute events and proceed in its local simulated time,

called local virtual time or LVT, as long as there is any messeage in its input

queue. This method is optimistic because it assumes that message commu-

nications between LPs arrive at proper time, and thus LPs can be processed

independently. However, it implements a roll back mechanism for the case when

the assumption turns out to be wrong, i.e. if a message arrives to a node at its

past. The method requires both time and space for maintaining the past history

of each node, and for performing the roll back operation whenever necessary.

Under the Time Warp protocol, each message has a send time and a receive

time. The send time is equal to the local clock of the sending LP when the

message is sent. The receive time is the simulated time the message arrives at

the receiving LP. The receive time is the same as the timestamp used in the

conservative approaches. The send time concept is used to define GVT and to

implement the Time Warp protocol correctly. Global virtual time (GVT) is the

minimum of all LVTs and the send times of all messages that have been sent

but not yet received.

If messages arrive to a process with receive times greater than the receiver's

LVT, they are enqueued in the input queue of the receiver LP. However~ if an

LP receives an event message that "should" have been handled in its simulated

past, i.e., its receive time is less than the receiver's LYT (such a message is called

a straggler), then the receiving LP is rolled back to the simulation time before

the timestamp of the straggler message. In addition to rolling back the receiving

LP, however, the Time Warp mechanism must cancel all of the indirect side

effects caused by any messages the receiving LP sent with timestamps greater

than the time at which it is rolled back. This is done by sending antimessages

to annihilate the corresponding ordinary messages.

In Time Warp, no event with timestamp smaller than GVT will ever be

rolled back. Thus, all events with timestamp less than GVT can be committed

and the memory space occupied by state variables up to GVT can be released.

The process of committing events and reclaiming memory is referred to as fossil

collection [23] and [24].

12

5.1 Lazy Cancel la t ion

Several schemes for undoing side effects caused by erroneous messages have

appeared in the literature. In the aggressive cancellation mechanism, when a

process rolls back antimessages are sent immediately to cancel erroneous mes-

sages.

In lazy cancellation [23], antimessages are not sent immediately after rollback.

Instead, the rolled back process resumes execution of events from its new LVT.

If the reexecution of the events regenerates the same message, there is no need to

cancel the message. Only messages that are different from the old messages are

transmitted; after the process' clock passes time T, antimessages are sent only

for those messages with timestamp less than T that are not regenerated. Under

aggressive cancellation, a process may send unnecessary antimessages. Under

lazy cancellation there are no unnecessary antimessages. However, lazy cancel-

lation may allow erroneous computation to spread further because antimessages

are sent later. 196z The lazy cancellation mechanism may improve or degrade

performance of the time warp depending on features of the application. Most of

the performance results reported in the literature suggest that lazy cancellation

improves performance. However, one can construct cases where lazy cancellation

is much slower than aggressive cancellation [23].

5.2 Performance of the Optimistic Schemes

Several researchers have report successes in using Time Warp to speedup sim-

ulation problems. Fujimoto has reported significant speedup for several queueing

networks [23]. Some researchers have developed analytical models to evaluate

performance of Time Warp. Analytical models for the case of two processors

have been developed by Mitra and Mitrani [44], and Feldman and Kleinrock [20].

Models for multiprocesses have been developed by Akyildiz et al. [4] and Gupta

et at. [26], among others.

6. H y b r i d A p p r o a c h e s

The deadlock handling is the main cost factor in conservative methods. In

optimistic approaches, the detection and recovery of causality errors require state

saving and rollback. State saving may require a considerable amount of memory

if system state consists of many variables that must be saved frequently. The

memory requirement may be reduced if the GVT is more frequently computed

and the unnecessary states are removed, i.e. the fossil collection procedure is

]3

done more frequently. However, this requires more CPU time.

It seems reasonable to combine the advantages of these two approaches in

a hybrid protocol. The issue of combining the two approaches has received

considerable attention in recent years, since the limitations of each paradigm

are better understood. It is believed that the future PDES paradigm will be a

hybrid one!

There are three general categories of hybrid approaches:

(i) To add optimism into a conservative approach. For instance, in the spec-

ulative simulation method proposed by Horst Meh [42] whenever an LP is to

be blocked, it optimistically simulates the events in its event list, but keeps the

result locally until it becomes committed. In the Filtered Rollback proposed by

Lubachevsky [39], the upper-bound is set to a larger value than the one deter-

mined by the the conservative bounded-lag algorithm . These hybrid schemes

are still conservative and thus cannot support dynamic configuration of LPs.

(ii) To add conservatism to an optimistic approach. One may try to bound

the advancement of LVTs in Time Warp. This technique reduces rollback fre-

quency and the rollback distance in general. However, it tends to reduce the

degree of available parallelism as well.

The main problem with this category of schemes is how to determine a bound-

ary for limiting the optimism. For instance, in MIMDIX [40] special processes,

called Genie processes, are introduced to compute upper bounds for the advance-

ment of LVTs. In Wolf [41], whenever a rollback occurs, special messages are

broadcasted to limit propagation of the erroneous messages. The bounded time

warp (BTW) proposed by Turner and Xu [61] divides the simulation duration

time interval into a number of equal intervals and all events within an interval

is processed before the next one is started. Reiher and Jefferson [55] propose a

window-based throttling scheme, where LPs are prevented from executing events

in the far future. The local time warp (LTW) proposed by Rajaei [52] partitions

the system into a set of clusters each containing a number of LPs. The LPs

within each cluster are synchronized by Time Warp, whereas the inter-cluster

synchronization is based on the conservative time window scheme described in

[9].
(iii) Switching between Optismism and Conservatism. Some researchers, e.g.

[5], suggest to switch between the conservative and the optimistic schemes. This

approach is attractive, especially when the behavior of the application changes

dynamically.

14

7. Conclusions
The state of the art in PDES has advanced very rapidly in the recent years

and much more is known about the potentials of the parallel simulation schemes.

In particular, the extensive performance studies conducted by several researchers

have identified strengths and weaknesses of the parMlel simulation schemes. In

this paper, we attempted to provide an insight into various strategies for exe-

cuting discrete event simulation programs on parallel computers and highlight

future research directions in this field. The implementation of the event-list and

its impact on performance, though important, was not covered in this tutorial.

Interested readers are referred to [57], [58], [32] and other articles given in the

reference list.

Conservative methods offer good potentials for certain classes of problems

where application specific knowledges can be applied to exploit look ahead. Op-

timistic methods have had a significant success on a wide range of applications,

however, reducing the state saving costs is still a research problem. The issue of

combining the two approaches has received considerable attention in the recent

years. It is believed that the future PDES paradigm will be based on hybrid

approaches.

Acknowledgments
I would like to thank Hassan Rajaei and Eric Lin for reading a draft of

the tutorial and suggesting improvements. Our research project on parallel

simulation (PARSIM) supported by the Swedish National Board for Industrial

and Technical Development, NUTEK (contract no. 90-01773), was the driving

force behind this study. I would like to thank NUTEK for the support we

received during the past five years.

R e f e r e n c e s

[1] M. Abrams. The object library for parallel simulation (olps). In 1988 Winter
Simulation Conference Proceedings, pages 210-219, December 1988.

[2] H. Ahmed, L. Barriga, and R. Ayani. Parallel discrete event simulation

using space-time events. Submitted for publication.

[3] I. F. Akyildiz, L. Chen, S. Das, R. M. Fujimoto, and R. F. Serfozo. Per-

formance analysis of "time warp" with limited memory. Technical Report

15

TR-GIT-91-46, College of Computing, Georgia Institute of Technology, At-

lanta, GA, October 1991.

[4] I. F. Akyildiz, L. Chen, S. R. Das, R. M. Fujimoto, and R. Serfozo. Per-

formance analysis of time warp with limited memory. In Proceedings of the

1992 ACM SIGMETRICS Conference on Measuring and Modeling Com-

puter Systems, volume 20, pages 213-224, May 1992.

[5] K. Arvind and C. Smart. Hierarchical parallel discrete event simulation in

composite elsa. In 6 th Workshop on Parallel and Distributed Simulation,

volume 24, pages 147-158. SCS Simulation Series, January 1992.

[6] RI Ayani. A parallel simulation scheme based on the distance between ob-

jects. In Proceedings of the SCS Multiconference on Distributed Simulation,

volume 21, pages 113-118. SCS Simulation Series, March 1989.

[7] R. Ayani and B. Berkman. Parallel discrete event simulation on sired com-

puters. To appear in Journal of Parallel and Distributed Computing, 18,

1993.

[8] R. Ayani and It. Rajaei. Event scheduling in window based parallel simu-

lation schemes. In Proceedings of the Fourth IEEE Symposium on Parallel

and Distributed Computing, Dec 1992.

[9] R. Ayani and It. Rajaei. Parallel simulation based on conservative time

windows: A performance study. To appear in Journal of Concurrency,

1993.

[10] D. Baezner, G. Lomow, and B. Unger. Sire++: The transition to dis-

tributed simulation. In Distributed Simulation, volume 22, pages 211-218.

SCS Simulation Series, January 1990.

[11] R. Bagrodia and W.-T. Liao. Maisie:A language and optimizing environ-

ment for distributed simulation. In Distributed Simulation, volume 22, pages

205-210. SCS Simulation Series, January 1990.

[12] B. Berkman and R. Ayani. Parallel simulation of multistage interconnection

networks on a SIMD computer. In Advances in Parallel and Distributed Sim-

ulation, volume 23, pages 133-140. SCS Simulation Series, January 1991.

]6

[13] A. Boukerche and C. Tropper. A performance analysis of distributed simula-

tion with clustered processes. In Advances in Parallel and Distributed Sim-

ulation, volume 23, pages 112-124. SCS Simulation Series, January 1991.

[14] K. M. Chandy and J. Misra. Distributed simulation: A case study in design

and verification of distributed programs. IEEE Transactions on Software

Engineering, SE-5(5):440-452, Sept. 1979.

[15] K. M. Chandy and J. Misra. Asynchronous distributed simulation via a

sequence of parallel computations. Communications of the ACM, 24(4):198-

205, April 1981.

[16] K. M. Chandy and R. Sherman. Space, time, and simulation. In Proceedings

of the SCS Multiconference on Distributed Simulation, volume 21, pages 53-

57. SCS Simulation Series, March 1989.

[17] M. Chung and Y. Chung. An experimental analysis of simulation clock ad-

vancement in parallel logic simulation on an SIMD machine. In Advances in

Parallel and Distributed Simulation, volume 23, pages 125-132. SCS Simu-

lation Series, January 1991.

[18] B. Cota and R. Sargent. A framework for automatic lookahead compu-

tation in conservative distributed simulations. In Distributed Simulation,

volume 22, pages 56-59. SCS Simulation Series, January 1990.

[19] R. W. Earnshaw and A. Hind. A parallel simulator for performance mod-

elling of broadband telecommunication networks. In 1992 Winter Simula-

tion Conference Proceedings, pages 1365~1373, December 1992.

[20] R. Felderman and L. Kleinrock. Two processor Time Warp analysis: Some

results on a unifying approach. In Advances in Parallel and Distributed

Simulation, volume 23, pages 3-10. SCS Simulation Series, January 1991.

[21] R. Fujimoto. Performance of Time Warp under synthethic workloads. In

Distributed Simulation, volume 22, pages 23-28. SCS Simulation Series,

January 1990.

[22] R. M. Fujimoto. Performance measurements of distributed simulation

strategies. Transactions of the Society for Computer Simulation, 6(2):89-

132, April 1989.

17

[23] R. M. Fujimoto. Time Warp on a shared memory multiprocessor. Transac-

tions of the Society for Computer Simulation, 6(3):211-239, July 1989.

[24] R. M. Fujimoto. Parallel discrete event simulation. Communications of the

ACM, 33(10):30-53, October 1990.

[25] P. Goli, P. Heidelberger, D. Towsley, and Q. Yu. Processor assignment and
synchronization in parallel simulation of multistage interconnection net-

works. In Distributed Simulation, volume 22, pages 181-187. SCS Simula-

tion Series, January 1990.

[26] A. Gupta, I. F. Akyildiz, and R. M. Fujimoto. Performance analysis of

Time Warp with multiple homogenous processors. IEEE Transactions on

Software Engineering, 17(10):1013-1027, October 1991.

[27] P. Heidelberger and D. M. Nicol. Simultaneous parallel simulations of con-

tinuous time markov chains at multiple parameter settings. In Proceedings

of the 1991 Winter Simulation Conference, pages 602-607, 1991.

[28] P. Heidelberger and H. S. Stone. Parallel trace-driven cache simulation by

time partitioning. In Proceedings of the 1990 Winter Simulation Conference,

pages 734-737, 1990.

[29] D. R. Jefferson. Virtual time. ACM Transactions on Programming Lan-

guages and Systems, 7(3):404-425, July 1985.

[30] D. R. Jefferson, B. Beckman, F. Wieland, L. Blume, M. DiLorento, P. Hon-

talas, P. Reiher, K. Sturdevant, J. Tupman, J. Wedel, and tI. Younger.

The Time Warp Operating System. 11th Symposium on Operating Systems

Principles, 21(5):77-93, November 1987.

[31] D. R. Jefferson and H. Sowizral. Fast concurrent simulation using the

Time Warp mechanism, part I: Local control. Technical Report N-1906-
AF, RAND Corporation, December 1982.

[32] D. W. Jones. An empirical comparison of priority-queue and event-set

implementations. Communications of the ACM, 29(4):300-311, Apr. 1986.

[33] Y.-B. Lin and E. D. Lazowska. Exploiting lookahead in parallel simulation.
IEEE Transactions on Parallel and Distributed Systems, 1(4):457-469, Oc-
tober 1990.

]8

[34] Y.-B. Lin and E. D. Lazowska. Optimality considerations of "Time Warp"

parallel simulation. In Proceedings of the SCS Multiconference on Dis-

tributed Simulation, volume 22, pages 29-34. SCS Simulation Series, Jan-

uary 1990.

[35] Y.-B. Lin and E. D. Lazowska. A study of Time Warp rollback mechanisms.

ACM Transactions on Modeling and Computer Simulation, 1(1):51-72, Jan-

uary 1991.

[36] W. M. Loucks and B. R. Preiss. The role of knowledge in distributed simula-

tion. In Proceedings of the SCS Multiconference on Distributed Simulation,

volume 22, pages 9-16. SCS Simulation Series, January 1990.

[37] B. D. Lubachevsky. Bounded lag distributed discrete event simulation.

In Proceedings of the SCS Multiconference on Distributed Simulation, vol-

ume 19, pages 183-191. SCS Simulation Series, July 1988.

[38] B. D. Lubaehevsky. Efficient distributed event-driven simulations of

multiple-loop networks. Communications of the A CM, 32(1):111-123, Jan.

1989.

[39] B. D. Lubachevsky, A. Shwartz, and A. Weiss. Rollback sometimes works

... if filtered. In 1989 Winter Simulation Conference Proceedings, pages

630-639, December 1989.

[40] V. Madisetti, D. tIardaker, and R. Fujimoto. The mimdix operating sys-

tem for parallel simulation. In 6 ~h Workshop on Parallel and Distributed

Simulation, volume 24, pages 65-74. SCS Simulation Series, January 1992.

[41] V. Madisetti, J. Walrand, and D. Messerschmitt. Wolf: A rollback algorithm

for optimistic distributed simulation systems. In 1988 Winter Simulation

Conference Proceedings, pages 296-305, December 1988.

[42] H. Mehl. Speedup of conservative distributed discrete-event simulation

methods by speculative computing. In Advances in Parallel and Distributed

Simulation, volume 23, pages 163-166. SCS Simulation Series, January

1991.

[43] J. Misra. Distributed-discrete event simulation. ACM Computing Surveys,

18(1):39-65, March 1986.

19

[44] D. Mitra and I. Mitrani. Analysis and optimum performance of two message

passing parallel processors synchronized by rollback. In Performance '8~,

pages 35-50, Elsevier Science Pub., (North Holland), 1984.

[45] D. Nicol, A. Greenberg, B. Lubachevsky, and S. Roy. Massively parallel

algorithms for trace-driven cache simulation. In 6 ~h Workshop on Parallel

and Distributed Simulation, volume 24, pages 3-11. SCS Simulation Series,

January 1992.

[46] D. M. Nicol. Parallel discrete-event simulation of FCFS stochastic queueing

networks. SIGPLAN Notices, 23(9):124-137, September 1988.

[47] D. M. Nicol. Performance bounds on parallel self-initiating discrete-event

simulations. ACM Transactions on Modeling and Computer Simulation,

1(1):24-50, January 1991.

[48] J. K. Peacock, J. W. Wong, and E. G. Manning. Distributed simulation

using a network of processors. Computer Networks, 3(1):44-56, February

1979.

[49] B. R. Preiss. The Yaddes distributed discrete event simulation specification

language and execution environments. In Proceedings of the SCS Multicon-

ference on Distributed Simulation, volume 21, pages 139-144. SCS Simula-
tion Series, March 1989.

[50] H. Rajaei and 1%. Ayani. Language support for parallel simulation. In 6 th

Workshop on Parallel and Distributed Simulation, volume 24, pages 191-

192. SCS Simulation Series, January 1992.

[51] H. Rajaei and R. Ayani. Design issues in parallel simulation languages. To

appear in IEEE Design and Test of Computers, Sep 1993.

[52] H. Rajaei, R. Ayani, and L.-E. Thorelli. The local time warp approach to

parallel simulation. In 7 th Workshop on Parallel and Distributed Simulation,

January 1993.

[53] D. A. Reed, A. D. Malony, and B. D. McCredie. Parallel discrete event sim-
ulation using shared memory. IEEE Transactions on Software Engineering,

14(4):541-553, April 1988.

20

[54] P. L. Reiher and D. Jefferson. Dynamic load management in the Time Warp

Operating System. Transactions of the Society for Computer Simulation,

7(2):91-120, June 1990.

[55] P. L. Reiher, F. Wieland, and D. R. Jefferson. Limitation of optimism in

the Time Warp Operating System. In 1989 Winter Simulation Conference

Proceedings, pages 765-770, December 1989.

[56] R. Righter and J. C. Walrand. Distributed simulation of discrete event

systems. Proceedings of the IEEE, 77(1):99-113, Jan. 1989.

[57] R. Ronngren, R. Ayani, R.. Fujimoto, and S. Das. Efficient implementation

of event sets in time warp. In Workshop on Parallel and Distributed Sim-

ulation (PADS), volume 23, pages 101-108. SCS Simulation Series, May

1993.

[58] 1~. Ronngren, J. Riboe, and R. Ayani. Fast implementation of the pending

event set. In International Workshop on Modeling, Analysis and Simulation

of Computer and Telecommunication Systems. SCS Simulation Series, Jan

1993.

[59] L. Sokol and B. Stucky. MTW:experimentM results for a constrained op-

timistic scheduling paradigm. In Distributed Simulation, volume 22, pages

169-173. SCS Simulation Series, January 1990.

[60] J. Steinman. Speedes:an approach to parallel simulation. In 6 th Work-

shop on Parallel and Distributed Simulation, volume 24, pages 75-84. SCS

Simulation Series, January 1992.

[61] S. Turner and M. Xu. Performance evaluation of the bounded Time Warp

algorithm. In 6 ~h Workshop on Parallel and Distributed Simulation, vol-

ume 24, pages 117-128. SCS Simulation Series, January 1992.

[62] D. B. Wagner and E. D. Lazowska. Parallel simulation of queueing networks:

Limitations and potentials. In Proceedings of 1989 A CM SIGMETRICS and

PERFORMANCE '89, volume 17, pages 146-155, May 1989.

[63] D. B. Wagner, E. D. Lazowska, and B. N. Bershad. Techniques for efficient

shared-memory parallel simulation. In Proceedings of the SCS Multiconfer-

ence on Distributed Simulation, volume 21, pages 29-37. SCS Simulation

Series, March 1989.

