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A b s t r a c t  
Queueing network models with finite capacity queues and blocking are used to represent 
systems with finite capacity resources and with resource constraints, such as production, 
communication and computer systems. Various blocking mechanisms have been defined in 
literature to represent the various behaviours of real systems with limited resources. 
Queueing networks with finite capacity queues and blocking, their properties and the exact 
and approximate analytical solution methods for their analysis are surveyed. 
The class of product-form networks with finite capacities is described, including both 
homogeneous and non-homogeneous models, i.e., models of systems in which different 
resources work under either the same or different blocking mechanisms. Non- 
homogeneous network models can be used to represent complex systems, such as 
integrated computer-communication systems. 
Exact solution algorithms to evaluate the passage time distribution of queueing networks 
with finite capacity are discussed, as well as some recent results on the arrival time queue 
length distribution and its relation to the random time queue length distribution. This 
result provides an extension of the arrival theorem to a class of product-form networks 
with finite capacity. 
Properties of queueing network models with blocking are presented. These include 
insensitivity properties and equivalencies between models with and without blocking, 
between models with both homogeneous and non-homogeneous blocking types, and 
relationships between open and closed queueing network models with blocking. 
Although properties of queueing networks with blocking have been mainly derived for the 
queue length distribution and average performance indices, we shall also present some 
equivalence properties in terms of passage time distribution in closed models. 

1 Introduction 

Queueing network models  have been extensively applied to represent and analyze 
resource sharing systems, such as production, communication and computer systems. 
Queueing networks with finite capacity queues and blocking are used to represent 
sys tems with finite capaci ty  resources and with resource constraints .  Various  
blocking mechanisms have been defined in the literature to represent  the various 
behaviours of  real systems with limited resources. 

We  consider queueing network models with finite capacity queues and blocking, their 
properties,  and analytical solution methods for their analysis. 

The performance of  systems with l imited resources can be evaluated by considering 
both average performance indices, such as system throughput and resource utilization, 
and more detai led measures,  such as queue length distr ibution and passage time 
distribution. 
Most  of  the solutions proposed in literature concern exact or approximate evaluation 
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of average performance indices and of the joint queue length distribution of the 
system in stationary conditions. Under special constraints, a product-form solution of 
the joint queue length distribution can be derived. 
Identifying a class of product-form queueing networks with finite capacity queues is 
an important issue which allows efficient solution algorithms to be defined. 
This paper introduces the class of product-form networks with finite capacities is 
introduced and the main key properties that lead to the closed form solution are 
discussed. This class of models has recently been extended to include both 
homogeneous and non-homogeneous models, i.e., models of systems in which 
several resources work under either the same or different blocking mechanisms. Non- 
homogeneous network models can be used to represent complex systems, such as 
integrated computer-communication systems. 
A few results have been obtained for the evaluation of more detailed performance 
measures, such as passage time distribution and arrival queue length distribution. We 
survey algorithms to evaluate the passage time distribution exactly in closed network 
models with blocking. Some recent related results on the arrival time queue length 
distribution in queueing networks with finite capacity and its relationship with the 
random time queue length distribution are presented. This result provides an extension 
of the arrival theorem for a class of product-form queueing networks with finite 
capacity. 
We briefly discuss the main approaches to approximate solution methods to evaluate 
performance indices of non product-form networks with finite capacity. These 
methods are based on the decomposition principle which is applied either to the 
network or to underlying Markov process. Approximate solutions with knowledge of 
the introduced error and bounded methods are discussed. 

Finally, properties of queueing network models with blocking are presented, 
including insensitivity properties and equivalences between models with and without 
blocking, between models with both homogeneous and non-homogeneous blocking 
types, and relationships between open and closed queueing network models with 
blocking. 
By using these equivalence relationships, it is possible both to extend product-form 
solution and solution methods defined for a given model to the corresponding one and 
to extend or to relate insensitivity properties for queueing networks with different 
blocking mechanisms. 
Although properties of queueing networks with blocking have been mainly derived 
for the stationary joint queue length distribution and for average performance indices, 
we shall also present some equivalence properties in terms of passage time 
dislribution in closed models. 

This paper is organized as follows. Section 1 introduces the model and blocking type 
definition. In Section 2 analytical solution methods are surveyed. Exact analytical 
solutions are presented both for Markovian non product-form networks and for 
product-form networks with finite capacity in terms of different performance indices. 
Moreover we present an extension of the arrival theorem to this class of models. 
Section 3 deals with insensitivity and equivalence properties of networks with finite 
capacity and blocking, including equivalencies between networks with and without 
blocking, and between models with different blocking types. Finally, Section 4 
presents the conclusions and open issues. 

1.1 Queueing networks with finite capacity queues 

We consider open and closed queueing networks with finite capacity queues. For the 
sake of simplicity we introduce model assumptions and notations for the single class 
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network. Multiclass queueing networks with finite capacities and their relationship 
with single class networks under different blocking types is discussed in [23]. 

Consider a queueing network formed by M finite capacity service centers (or nodes). 
The queueing network can be either open or closed. For a closed network, N denotes 
the number of customers in the network. For open networks an exogenous arrival 
process is defined at each node i, l_<i_<M. The arrival rate can be either load 
independent or load dependent, denoted as )v and ~. a(n), n_>0, respectively, where a(n) 
is an arbitrary non negative function of the total number of customers in the entire 
network. The arrival process is usually assumed to be Poisson. 
An exogenous arrival tries to enter node i with probability P0i, l_<i<M. In other 
words, the Poisson arrival process at node i has a parameter 7. P0i for load 
independent arrivals, and 7. a(n) P0i for load dependent arrivals. 
The customers' behaviour between service centers of the network is described by the 
routing matrix P = Ilpi j II, l_<i,j<M, where Pij denotes the probability that a job 
leaving node i tries to enter node j. For open networks Pi0 , l<i_<M denotes the 
probability that a job which exits node i leaves the network. By definition, the 
following relation holds, for l<_i<M: 

M 
Y'.Pij + Pi0 = 1 

j= l  

Let us introduce vector x =(x 1 .. . . .  XM) which can be obtained by solving the 
following linear system: 

M 
x i = )vp0 i + Y, xiPji (1) 

J=l 
For closed networks, by definition, P0i = Pi0 = 0 for l_<i_<M, and system (1) does not 
provide a unique solution. 
For queueing networks with infinite capacity queues, component x i of the solution 
vector represents the throughput of node i for open networks, whereas it represents 
the relative throughput or mean number of visits of customers at node i for closed 
networks, l<i_<M [16, 41, 47]. 
For queueing networks with finite capacity this meaning is not generally true. 
Network routing matrix P is said to be reversible if x i Pij= xj Pji, and 7, P0i = x i Pi0 
for l_<i,j_<M [39]. 
Service center i, l_<i_<M, is described by the number of servers, the service time 
distribution and the service discipline. Let S i denote the state of node i, which 
includes the number of jobs in node i, denoted by n i, and other components depending 
on both the node type (service discipline and service time distribution) and the 
blocking type. 
The service time distribution of jobs at node i is denoted by Fi(t ), t_>0, l_<i<M, and 
its mean value by 1/bt i if it is load independent. The node i job service rate can be 
defined as dependent on the number of customers in node i, ni>0, and is denoted by 
,~fi(ni), where fi is an arbitrary non-negative function, l<i_<M. 

e consider a Markovian network, i.e., we assume that the queueing network model 
with finite capacity can be represented by a Markov process. 
This is a common assumption in the performance analysis of computer and 
communication systems. From the modelling viewpoint, the queueing network 
model introduced above can be represented by a continuous time Markov process if 
service time distributions and inter-arrival time distribution in open networks have a 
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phase-type or coxian representation [41, 47]. This allows us to consider a large class 
of distributions and to represent, possibly by approximation, arbitrary distributions. 

In queueing networks with finite capacity queues and blocking, additional constraints 
on the number of customers are included to represent different types of resource 
constraints in real systems, which correspond to definitions of different parameters. 
We consider two types of constraints, related to the capacity of a single resource and 
to a set of resources, respectively. 
In the first case, let B i denote the maximum number of customers admitted at node i 
(i.e., the maximum buffer size), l<i_<M. The total number of jobs in node i, n i, is 
thus assumed to satisfy the constraint ni<Bi, l<i<M. When the number of 
customers in a node reaches the finite capacity (ni=Bi) the node is said to be full. 
Note that in multichain and multiclass networks one can also define a chain or a class 
dependent maximum queue length at node i. 
In the second case, let B W denote the maximum population admitted in a subnetwork 
W of the whole network. In certain cases, in order to represent particular system 
behaviours, a minimum population value L W for subnetwork Wi t  is also introduced. 
In other words, the total population in subnetwork W, n W = L i e  W hi, is assumed 
to satisfy constraints LW< n W < B W. 

Finally, let bi(ni) denote the blocking function, i.e., the probability that a job 
arriving at node i, is accepted when n i is the state of the node, l<_i<M. For multiclass 
queueing networks the blocking function may also depend on the total number of 
jobs in the node and in the class or in the chain. 
An example of a simple blocking function for single class queueing networks which 
allows us to define the maximum queue length B i for each node i, l_<i<M, is defined 
as follows [36] : 

bi(ni) = 1 for 0<ni<B i, bi(Bi) = 0 l<i_<M 
More generally, one can define 

0 < bi(n i) -< 1 for 0<ni<B i , bi(Bi) = 0 l_<i<_M (2) 
as an arbitrary non-negative load-dependent function which can be used to represent a 
flow control mechanism of node i input traffic. 

1 .2 Det'inition oI' blocking mechanisms 

Various blocking mechanisms or types that describe different behaviours of customer 
arrivals at a full capacity node and the servers' activity in the network have been 
defined in literature. We now introduce the most commonly used five blocking 
mechanisms. 

The first three blocking types, Blocking After Service, Blocking Before Service and 
Repetitive Service Blocking, have been named and classified in [5,51]. They are due 
to the finite capacity of service centres of the network [5,51 ]. 
The last two blocking mechanisms, Stop and Recirculate Blocking, which are very 
common in communication systems, have been named and compared in [64, 65]. 
They are due to the maximum queue length constraint for either a subnetwork or the 
total queueing network population. 

Blocking After Service (BAS): if a job attempts to enter a full capacity queue j upon 
completion of a service at node i, it is forced to wait in node i server, until the 
destination node j can be entered. The server of source node i stops processing jobs (it 
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is blocked) until destination node j releases a job. Node i service will be resumed as 
soon as a departure occurs from node j. At that time the job waiting in node i 
immediately moves to node j. 
If more than one node is blocked by the same node j, then a scheduling discipline 
must be considered to define the unblocking order of the blocked nodes when a 
departure occurs from node j. First Blocked First Unblocked is a possible discipline 
[7, 51] which states that the first node to be unblocked is the one which was first 
blocked. 
This blocking mechanism, also called classical, transfer, manufacturing and 
production blocking [l, 5, 7, 9, 12, 14, 17, 26, 33, 35, 45, 49-57, 62], has been 
used to model production systems and disk I/O subsystems. 

Blocking Before Service (BBS): a job declares its destination node j before it starts 
receiving service at node i. If at that time node j is full, the service at node i does not 
start and the server is blocked. If a destination node j becomes full during the service 
of a job at node i whose destination is j, node i service is interrupted and the server is 
blocked. The service of node i will be resumed as soon as a departure occurs from 
node j. The destination node of a blocked customer does not change. 
Two different subcategories can be introduced [51] depending on whether the server 
can be used as a service centre buffer when the node is blocked: 
BBS-SO (server occupied) when the server of the blocked node is used to hold a 
customer; 
BBS-SNO (server is not occupied) when the server of the blocked node cannot be used 
to hold a customer. However note that BBS-SNO can only be defined for special 
topology networks, i.e., when the finite capacity node has only one possible sending 
node, i.e., if ni<B i, then there exists only one node j such that Pji>0, and Pki=0 for 
k#j, l<i,j,k<M. 
A variant of the BBS type has been considered [9, 29, 33, 42] when the overall set of 
sending nodes is blocked. This variant is defined as follows : 
BBS-O (Overall Blocking Before Service): when a destination node j becomes full, it 
blocks the service in each of its possible sending nodes i, regardless of the destination 
of the currently processed job. Note that a job which arrives at an empty node i 
cannot begin the service if one of the downstream nodes of i is full. Services will be 
resumed as soon as a departure occurs from node j. The destination node of a blocked 
customer does not change. 
This blocking mechanism, also called service or immediate blocking [ 7, 9-11, 13-15, 
17, 19, 28, 30-34, 50-56] has been used to model production, telecommunication, 
and computer systems. 

Repetitive Service Blocking (RS): a job upon completion of its service at queue i 
attempts to enter destination queue j. If node j is full, the job is looped back into the 
sending queue i, where it receives a new independent service according to the service 
discipline. 
Two different subcategories have been introduced depending on whether the job, after 
receiving a new service, chooses a new destination node independently of the one that 
it had selected previously: 
RS-RD (random destination)'if a job destination is randomly chosen at the end of 
each new service, whatever the previous choices; 
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RS-FD (fixed destination) if a job destination is determined after the first service and 
cannot be modified. 
This blocking type, also called rejection, retransmission or repeat protocol [2-4, 8-10, 
19, 27, 32, 36, 37, 40, 43, 50-56, 59, 64, 66, 68, 69] has been used to model 
telecommunication systems. 

For the following two blocking types the population either of a subnetwork or of the 
total network is assumed to be in the range [L,U], where L and U are the minimum 
and maximum populations admitted, respectively. This constraint can be represented 
by an appropriate definition of both the load dependent arrival rate functions a(n) and 
of a (network) blocking function d(n), where n_>O is the total network population. For 
multichain networks, arrival and blocking functions can also be defined for each 
chain, dependent on the total network population in the chain. 

STOP Blocking: the service rate of each node is delayed by a factor d(n)_>l, when 
there is a network population n>_0. In other words, the actual job service rate of each 
node depends on the state n of the entire network according to function d(n). When 
d(n) = 0 then the service at each node in the network is stopped. Services will be 
resumed at each node as soon as an exogenous amval occurs. 
This blocking mechanism, also called delay blocking [64, 65,671 has been used to 
model communication systems. 

RECIRCULATE Blocking: a job upon completion of its service at queue i actually 
leaves the network with probability Pi0 d(n), when n is the total network population, 
whereas it is forced to stay in the network with probability Pi0 [1-d(n)l, according to 
routing probabilities. Consequently, a job completing the service at node i actually 
enters node j with state dependent routing probability Pij + Pi0 [1-d(n)] P0j, l<i,j_<M, 
n20. 
This blocking type, also called triggering protocol [38, 46, 64, 65] has been used to 
model communication systems. 

Closed queueing networks with finite capacity queues and blocking can deadlock, 
depending on the blocking type definition. If a deadlock occurs then either prevention 
techniques or detection and resolving techniques must be applied. Deadlock prevention 
for blocking types BAS, BBS and RS-FD is based on the condition that the overall 
network population N is less than the total buffer capacity of the nodes in each 
possible cycle in the network, whereas for RS-RD blocking it is sufficient that 
routing matrix P is irreducible and N is less than the total buffer capacity of the nodes 
in the network. Deadlock in queueing networks with blocking has been discussed in 
[45, 51]. Moreover, note that in order to avoid deadlocks for BAS and BBS blocking 
types we assume Pii=O, l<_i<M. 

Below we shall consider deadlock-free queueing networks in steady-state conditions. 

1 .3  Pe r fo rmance  indices 

The analysis and properties of queueing network models with finite capacity queues 
refer to a set of figures of merit of the system performance. These indices can be 
related to a single resource, corresponding to a service center of the queueing network, 
or to the overall system. 
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Specifically, for each resource i, l_<i<M, we consider the following average 
performance indices: 

Ui utilization 
Xi throughput 
Li mean queue length 
Ti mean response time 

and the following random variables whose distribution can be evaluated: 
ni number of customers in the resource 
ti customer passage time through the resource. 

Random variable n i is considered both at arbitrary times and at arrival times of a 
customer at the resource. The latter distribution is usually required in the evaluation 
of job residence time and passage time distributions in queueing networks. 

Let N(ni) denote the stationary (marginal) queue length distribution of resource i, 
i.e., the stationary probability of ni customers in node i at arbitrary time, hi_>0, 
l_<i_<M. 
Let ~,i(ni) denote the stationary queue length distribution of resource i at arrival times 
of a customer at that node, ni_>0, l<_i<_M. 
Let PBi(ni) denote the blocking probability of resource i, i.e., the probability that 
resource i is not empty and blocked by a full destination node, when there are ni 

customers in node i. Let PB i =Y',ni PBi(ni) denote the overall blocking probability of 

node i, l_<i<M. The definition of these probabilities depends on the blocking type, as 
discussed in [9]. 

For open queueing networks with finite capacity another performance index of interest 
is the job loss probability, which can be computed by the stationary queue length 
distribution at arrival times. 

Resource utilization and throughput in queueing networks with finite capacity depend 
on the blocking probability. For single server nodes this can be defined as follows: 

Ui = 1 - r~i(0) - PBi 

Xi = Y'ni [ ~i(ni) - PBi(ni)] bti(ni) 
which for constant service rate, i.e., when ~i(ni)=~ti for ni>0, reduces to 

X i = U i bti. 

Mean queue length and mean response time for resource i can be computed as for 
queueing network models with infinite capacity queues as follows: 

Li = }-"hi ni rq(ni) 

Ti = Li / Xi.  

Performance indices of queueing networks with finite capacity can be evaluated 
through the analytical solution methods discussed in the next section. Insensitivity 
and equivalence properties of these models are expressed in terms of the performance 
measures and are presented in Section 3. 

2 A n a l y t i c a l  s o l u t i o n  m e t h o d s  

In this section we overview analytical methods to analyze queueing network models 
with finite capacity queues and blocking. 
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Solutions have been proposed to evaluate both average performance indices and 
probability distribution of the number of customers in the nodes and of the passage 
time. 
Exact solutions for the evaluation of average performance indices and of the stationary 
joint queue length probability distribution at arbitrary times of queueing networks 
with blocking have been derived in literature for different blocking mechanisms [1-4, 
23, 27, 33, 36-39, 46, 50, 51, 59, 65, 66, 68-68]. 
Product-form solutions of the joint stationary queue length distribution have been 
obtained, under special constraints, for different blocking mechanisms. A survey of 
product-form solutions of queueing networks with blocking and equivalence 
properties among different blocking network models is presented in [ 10]. 
The exact evaluation of the arrival time queue length distribution in closed networks 
with different blocking types has been derived [11, 14] and a few results have been 
obtained for the passage time distribution for closed cyclic networks [11, 13]. 

In Section 2.1 we overview analytical solutions of Markovian networks with finite 
capacity in terms of average performance indices and stationary joint queue length 
distribution both at arbitrary and arrival times. Section 2.2 deals with product-form 
networks with blocking. 
As regards the joint queue length distribution at arrival times, we discuss the 
conditions under which it can be related to the state distribution at arbitrary times for 
a class of non product-form networks with blocking. For the special case of product- 
form closed networks this result provides an extension of the arrival theorem for 
queueing networks with infinite capacity queues to networks with finite capacity 
queues and blocking. 
Algorithms to evaluate the passage time distribution exactly in queueing networks 
with blocking are considered. 

Several approximate solutions have been proposed for queueing networks with 
blocking, mostly to derive mean performance measures. A survey of exact and 
approximate methods for closed queueing networks with blocking is presented in 
[51]. Open queueing networks with blocking and a bibliography on networks with 
finite capacity queues are presented in [55, 56]. 
Since most of the approximation methods proposed in literature are based on the 
decomposition principle, in Section 2.3 we discuss the main approaches related to the 
decomposition applied either to the network model or to the underlying Markov 
process. The problem of the knowledge of the approximation error is discussed and 
bounded solution methods to evaluate queueing networks with blocking are 
considered. 

2.1 Exact analysis of Markovian networks 

The exact analysis of queueing networks with finite capacity and blocking concerns 
the evaluation of 

1) mean performance indices and joint queue length distribution at arbitrary times; 
2) stationary joint queue length distribution at arrival times; 
3) passage time distribution. 

In this section we deal with analytical solutions of Markovian networks which 
generally do not have a product-form solution. Product-form networks with finite 
capacity are considered in Section 2.2. 

1) Mean performance indices and.joint queue length distribution at arbitrary times 

In order to evaluate the stationary joint queue length distribution at arbitrary times 



29 

and the average performance indices, the queueing network behaviour can be 
represented by a homogeneous continuous time Markov process M with discrete 
state space E. 
The state of a queueing network with finite capacity can be defined as an M-vector 
S=(S 1 . . . . .  SM), where S i is the state of node i which includes the number of 
customers in the node, n i, l_<i_<M. The state space E of the network is the set of all 
feasible states. Queueing network evolution can be represented by a continuous time 
ergodic Markov chain M with discrete state space E and transition rate matrix Q. The 
stationary and transient behaviour of the network can be analyzed by the underlying 
Markov process. 
Under the hypothesis of an irreducible routing matrix P, there exists a unique steady- 
state queue length probability distribution x = {x(S), S~ E}, which can be obtained 
by solving the following homogeneous linear system of the global balance equations 
[41]: 

x Q = 0 (3) 

subject to the normalising condition ~ S e  E re(S) =1 and where 0 is the all zero 
vector. 
The definition of state space E and transition rate matrix Q depends on the network 
characteristics and on the blocking type of each node. 
For example, for an open exponential network with Poisson load independent 
arrivals, where each node i has finite capacity B; and works under the RS-RD 
blocking type, the state of node i can be s~mply defined as S i = n i, l<_i<M, the state 
space is g~ven by 

E = {(nl,n2 ..... nM) I 0_<ni<B i , l_<i<M} 
and the transition rate matrix is defined as follows: 
Q = IIq(S,S')ll, for S ,S ' cE  and 

q(S,S') = 5(nj) ~tj bi(ni) Pji if S'= S + ei - ej 
q(S,S') = 5(n j) ~tj Pj0 if S'= S - ej 
q(S,S') = ~. P0j bj(nj) if S'= S + ej 

q(S,S) = -  ~S '~  E, S' .S q(S,S') 
where blocking functions bi(ni) are given by formula (2), 5(ni) is the following 
function: 8(ni)=0 if ni=0, ~(ni)=l otherwise, l_<i_<M, and ei denotes the M-vector 
with all zero components except one in i-th position. 

Note that system state S definition depends on the network characteristics and on the 
blocking type. Hence the state of node i definition may be more complex than the 
example above, including information such as the state of the server (whether it is 
active or blocked) and, for the BAS blocking type, the description of the set of nodes 
that are blocked by the finite capacity resource and the unblocking scheduling. A 
detailed definition of the system state for each blocking type is given in the 
Appendix. 

An exact solution algorithm of queueing networks with finite capacity and blocking 
based on the Markov process approach can be summarised as follows: 

1) Definition of the appropriate system state depending on the network 
characteristics (i.e., service time distributions, arrival distribution, service 
disciplines, network dimensions), and on the blocking type. 
Definition of the system state space E. 

2) Definition of the transition rate matrix Q which describes the queueing 
network evolution, according to the blocking type of each node. 
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3) Solution of linear system (3) to derive the stationary state distribution rt at 
arbitrary times. 

4) Computation from the solution vector rt of the joint and marginal queue 
length distributions and of the average performance indices, such as 
throughput, utilization and mean response time, for each resource i of the 
network, l<i<M. 

Note that state space E is finite for closed and open networks where all the nodes have 
finite capacity. For open networks which include at least one infinite capacity queue 
state space, E is infinite and the solution of the linear system (3) has to be 
approximated numerically. 

Although the joint queue length distribution of the queueing network with finite 
capacity can be obtained by solving linear system (3) and the average performance 
measures can be derived from re, this approach becomes unfeasible as the state space 
E dimension grows, proportionally to the dimension of the model, i.e., the number 
of customers, nodes and chains. 
Consequently for non product-form networks, approximation methods have to be 
considered. 
Nevertheless, under certain constraints, which depend both on the network definition 
and the blocking mechanism, rc has a product-form solution, as discussed in Section 
2.2. Hence, steps 2 and 3 of the algorithm above can be substituted by the direct 
evaluation of the closed form solution for which computationally efficient exact 
solution algorithms can be defined. 

Remark.  A special case in which the computation step 3 can be drastically reduced 
concerns the so-called symmetrical networks. This class of networks was introduced 
in [29] and is defined as having the same blocking type, service rate and buffer 
capacity for each node. The routing probabilities out of each node are the same, and 
routing matrix P can be rewritten so that all rows are identical up to a rotation of the 
entries. 
For symmetrical closed exponential networks with BBS-SO, BBS-O and BAS 
blocking types, a reduction technique has been introduced to efficiently compute 
solution r~ and average performance indices [29, 51]. Note that the reduction 
algorithm is related to the exact aggregation procedure applied to the Markov process, 
which can be easily computed due to the special characteristics of the network. 

2) Arrival time distribution 

When the performance index of interest is the joint queue length distribution at input 
times at a given node, a different solution method has to be applied, based on a new 
homogeneous discrete time Markov process M e embedded in process M. Let A denote 
the discrete state space of M e and S e the system state as seen by an arriving job at 
input time at node i, where the state does not include the arriving job. Informally, 
each state S e of the embedded process M e is identical, except for one less job at node 
i, to a corresponding state of the process M just after the customer transition to node 

a i denoted by S . As in process M, also the state space definition of process M 
depends on the blocking type. 
If the embedded Markov chain M e is irreducible and recurrent then there exists the 
stationary state distribution ~ at arrival instants at node i. The direct evaluation of 
this distribution is not trivial. However, for a class of networks with finite capacity 
one can derive an expression of { in terms of the stationary state distribution at 
arbitrary times, re. By applying this result to some special cases of product-form 
networks with blocking, an extension of the arrival theorem for queueing networks 
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with infinite capacity queues to networks with finite capacity queues and blocking can 
be derived, as discussed in Section 2.2. 
For Markovian non-product-form networks the following relationship between 
stationary distributions ~ and rt for the same network holds. The following theorem 
has been proved for closed exponential networks with a general routing topology and 
blocking types BAS, BBS-SO and RS-RD [14]. 

Theorem 1 
The stationary state probability distributions ~ and n of a closed exponential network 
with finite capacity queues and blocking of type BAS, BBS-SO or RS-RD, are related 
as follows: 

~(S e)  = 1 Z n(S)q(S,  Sa) 

S~ I(S a) 
where se ~ A, sac  E is the state corresponding to S e and, according to the blocking 
type: 

I(S a) is the set of initial states of process M which occur just before a 
customer transition which leads to state S a, 

q(S,S a) is the transition rate from state S to S a of process M and 
q is a normalising constant. 

The proof of the theorem and the detailed definition of set I(S a) and transition rates 
q(S,S a) is given in [14]. When the finite capacity node i has only one upstream or 
sending node, say k (i.e., Pki>0 and Pii=0, j;ek ,I<j_<M) then the set I(S a) is formed 
by a single state s = s a +  ek - ei and, for blocking type RS and BBS-SO, this 
relationship can be simplified as follows [14]: 

Coro l l a ry  1 
If the node has only one sending node, then 

~(S e) = ~ n ( S )  (4) 

where s e e  A, I(sa)={S} and vl is a normalising constant. 

This result is an extension of a similar relationship ['or qucueing networks with 
infinite capacity to networks with finite capacity queues. As a consequence, the 
evaluation of the steady-state probability distribution at arrival times ~ can be reduced 
to the evaluation of the probability distribution at arbitrary times n. This arrival time 
distribution can be used in the analysis of job passage time distributions in the 
network. Moreover the theorem can be simplified for a class of product-form 
networks with finite capacity, leading to an extension of the arrival theorem for 
queueing networks with infinite capacity queues to networks with finite capacity and 
certain blocking types, as discussed in Section 2.2. 

3) Passage time distribution 

The time spent by a customer in the entire system or in a subsystem (the passage 
time) is an important performance measure which provides a more detailed 
performance evaluation of system behaviour than the average indices. The passage 
time distribution in queueing networks is generally difficult to obtain even for 
queueing networks with infinite capacity; a survey of sojourn time results in 
queueing networks is presented in [18]. For queueing networks with finite capacity 
queues and blocking, a few results have been obtained in terms of cycle time 
distribution for cyclic models [11-13] and for central server model or star topology 
networks [ 15]. 
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A recursive algorithm to derive the cycle time distribution for cyclic closed 
exponential queueing networks with M_>2 finite capacity nodes and BBS-SO blocking 
is defined in [11, 13] and for M=2 nodes and BAS in [12]. The method is based on the 
definition of a transient Markov process which describes the evolution of a specific 
(tagged) customer in a complete walk through the network. Sets E 0 and F of the 
possible initial and final states of the network are defined, corresponding to the 
beginning and the end of the walk of the tagged customer, respectively. 
The cycle time distribution is computed by evaluating the first hitting time 
probability distribution of the Markov process to the final states, starting from the 
initial states. 
Let Z denote a state of the transient Markov process and let T(Z,s) denote the Laplace- 
Stieltjes transform (LST) of the passage time distribution from Z to the final states 
F. 

The LST of the cycle time distribution, denoted by T(s) can be computed as follows: 
T(s)  = ~'.Prob(Z) T(Z,s )  (5) 

Z~ E 0 

where Prob(Z) is the probability of state Z at the cycle starting time and T(Z,s) can 
be computed by a recursive scheme. This recursive scheme can be reduced by taking 
into account the process structure and the blocking type definition, as described in 
[11,131. 
Since each state Z corresponds to a system state see  A of the embedded process M e, 
as previously introduced to define the joint queue length distribution, then Prob(Z) 
can be evaluated as the stationary distribution at arrival times, ~(S e) and, by applying 
Theorem 1, as a function of the stationary distribution at arbitrary times, re(S), Se E. 

From the recursive scheme to evaluate the LST of the cycle time distribution one can 
derive an explicit expression for the cycle time distribution in the time domain, where 
coefficients are defined by recursion. 
For a two-node exponential network with BBS-SO or BAS blocking this approach 
leads to the following closed-form expression in the time domain of the density 
function f (t) of the cycle time: 

k. 
__3 J t i-1 

f(t) = Z e  -p'jt Zcj~ 
(i 1)[ j=l i=t - 

where k l=k2=N', k:3=2N-3, la3=gl +bt2 and coefficients cij are recursively computed 
for each i and j [11]. 
Note that for the special case of a two-node network with blocking, the stationary 
distribution 7c has a product-form solution and consequently ~, and Prob(Z) have a 
product-form solution. In this case an extension of the arrival theorem holds, as 
proved in [11, 12] and discussed in Section 2.2. 
However, note that the algorithm sketched above to evaluate the passage time 
distribution applies to any Markovian non product-form network. For the class of 
product-form networks with finite capacity, the advantage consists in a more efficient 
computation of distribution rc and consequently of Prob(Z) in formula (5). 

In many practical applications it is sufficient to evaluate the first few moments of the 
cycle time. A recursive evaluation of the cycle time moments can be derived for 
cyclic closed exponential networks [11, 13] and for central server model networks 
[15]. 
For a two node exponential networkwith  BBS-SO or BAS blocking, the k-th 
moment of the cycle time distribution, E(k), for k=l,2 ..... is given by [11, 12]: 



33 

3 kj+l (i + k 1)! 
E ( k ) = Z  Z 

i+k (i - 1) 1 j=l i=l ,t.tj 
The evaluation of the passage time distribution in other classes of queueing network 
models with finite capacity, including different types of blocking and non-exponential 
service time distribution is an open issue. 

2.2 P roduc t - fo rm ne tworks  

In this section we survey the class of product-form queueing networks with finite 
capacity and blocking. This class is a subset of the class of Markovian networks with 
finite capacity considered in the previous section, and hence the same analytical 
techniques can be applied to solve these networks. 
However, an important consequence of the identification of the class of product-form 
networks is the definition or extension of efficient "algorithms to evaluate performance 
indices. Specifically, one could extend basic algorithms for the class of product-form 
BCMP networks with infinite capacity queues [16], such as MVA and Convolution 
algorithms [47] to queueing networks with finite capacity queues. 

First we summarise the cases of product-form networks with finite capacity and 
different blocking types. The extenskm of the arrival theorem to some cases of this 
class of network is then discussed. 

�9 Product-form solutions of the joint queue length distribution 

Product-form solutions of the joint queue length distribution rc for single class open 
or closed networks under certain constraints, depending both on the network definition 
and the blocking mechanism, can be defined as follows: 

: • v M 
O (n) 1--[gi(ni) (6) 

i = l  
where G is a normalising constant, and n is the total network population. The 
functions V and gi ,l_<i<M, are defined in terms of network parameters which include 
vector x defined by system (1) and service rates bt i ,l_<i_<M, and depend on the 
blocking type and additional constraints. 
Similarly, for multichain open, closed or mixed queueing networks with blocking, 
formed by M nodes and R chains, product-form solutions can be defined as follows: 

1 M 
~(S) = -L--Vr(mr) l I g i ( n i )  va 

i = l  
where G is a normalising constant, m r is the total network population in chain r, 
l_<r<R, and the functions Vr ,  l<r<R, and gi, l_<i<M, are defined in terms of 
network parameters. 

Table I summa.rises product-form networks with finite capacity and different blocking 
types. 
Both homogeneous networks, where each node works under the same blocking type, 
and non-homogeneous ones, where different nodes work under different blocking 
mechanisms, are considered for five topologies. 
The first three topologies concern closed networks and are the two-node network, the 
cyclic topology and the central server or star topology. For the central server 
topology networks, node 1 denotes the central node, i.e., routing matrix P is defined 
as follows: Pij>0 for i=l, 2<j_<N, Pil=l  for 2_<i_<N and Pij=0 otherwise, l_<i,j<N. 
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The fourth case refers to queueing networks with reversible routing matrix P, as 
defined in the Section 2.1. The latter is the arbitrary topology network. 
Table I shows the cases of product-form solution together with additional constraints, 
for each combination of blocking type and network topology, where: 

�9 PFi denotes the corresponding product-form formula, 1_<i_<8, defined below for 
i=3 and 6 and in Table II for all the other cases; 

�9 an arrow denotes that the case is included in the more general class of arbitrary 
topology networks and, as far as we are aware, there are no special results which 
only hold for that specific topology; 

�9 'NO' means that, as far as we are aware, no product-form has been proved; 
�9 'NA' means that the blocking type is not applicable to the network topology; 
�9 for non-homogeneous networks the allowed combination of blocking types is 

also given. 
Some additional conditions are required in some cases: 

M 
Let B. = ~ B i denote the total capacity of the network and let Bmin = min { Bj ,  

i=l 
l_<j<M}. 
The non-empty condition for closed networks requires that at most one node can be 
empty, i.e., N 2 B -  Bmin. 
This condition is said to be strictly verified when each node can never be empty, i.e., 
if the inequality strictly holds. 
The condition which requires at most one blocked ~7ode is satisfied if N = Bmi n + 1. 
In other words, if a node is full then at most one of its sending nodes is not empty 
and can be blocked. 

Condition (A) refers to a particular model introduced in [4] of multiclass networks 
with parallel queues with interdependent blocking functions and service rates, and 
which satisfy a so-called invariant condition. See [4] for further details. 

Condition (B) requires that each node i with finite capacity is the only destination 
node for each upstream node, i.e., it satisfies the following constraint: 

if Pji > 0 then Pji = 1, I_<j<M. 

To keep the presentation simple we only present formulas of product-form solutions 
for single class networks; the detailed expression of functions V r, l_<r<R, and gi, 
l_<i<_M, in product-form solutions for multiclass networks is given m [10]. 
Table II shows the definitions of product-forms PFi, for i=1,2,4,5,7 and 8, in terms 
of conditions on the network model and expressions for functions V and gi, l<i_<M, 
in product-form (6) for single class networks. In Table II, for product-form PF4, A- 
type nodes are defined as follows: 

Definition. A node is said to be A-type if it has an arbitrary service time distribution 
and a symmetric scheduling discipline or exponential service times distributions, 
which are the same for each class at the same node, when the scheduling is arbitrary. 

We shall now define the product-form solutions PF3 and PF6. 

PF3: 
Conditions: 

�9 multiclass central server networks with the class type of a job fixed in the 
system, 

�9 state-dependent routing depending on the class type, 
�9 blocking functions dependent on node and class, 
�9 A-type nodes. 
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blocking type network topology 

two-node cyclic arbitrary 

BAS PF1 ____> 

central 
server 
._..+ 

reversible 
routing 

__.+ PF7 
at most one 
blocked node 

BBS-SNO P F l i f  NO NO NO NO 
NgBI+B2-2i 

BBS-SO PF1 PF2 
non-empty 
condition 

PF2 
non-empty 
condition 

PF2 
non-empty 
condition 

RS-RD PF1 

PF3 
if onl 
B I < ~ ,  

PF3 

PF3 
if onl 
BI<~ 

PF1 

Y 

PF4 

PF6 and 
con& (A) 
____> 

Y 

RS-FD 

Stop PF5 NO PF5 PF5 
Recirculate NA NA NA .__> PF8 

BAS 
BBS-SO 

BBS-SO 
RS-RD 

RS-RD 
Stop 

BBS-SO 
RS-RD 

PF2 
str ict ly non- 
empty cond. 
and cond. (B) 
PF2 
str ict ly non- 
empty cond. 

PF2 
str ict ly non- 
empty con& 
and cond. (B) 
PF8 

BBS-SO 
RS-RD, 

Non- 
Homogeneous 

RS-RD 
RS-FD 

PFI 

RS-FD 
non-empty 
condition 

PF2 

RS-FD 
node 1 
with RS 

PF3 PF5 

RS-FD 
strict ly non- 
empty cond. 
and con& (B) 
for BBS-SO 
and RS-FD 

PF2 

Table I - Product-form networks with blocking. 

For single class exponential networks with load dependent service rates bti(ni)=gifi(ni) 
and state-dependent routing pl;(m)= w:(n:) w(N-nl) Vn:, p . ,= l  for 2<_j<N, where N 
�9 . J �9 J . - -  IS the number of customers m tt~e l~etw~rk, product form (6)J~olds with 

N-nl M nj ni 
V ( N ) =  1 - [ w ( l - 1 ) [ - [ l - I w j ( l - 1 ) ,  g i ( n i ) =  1-1 1 b i ( l - 1  ) ,Vni ' l_<i_<M 

l=1 j=21=l 1=1 Pi f. (1) 

PF6: 
Conditions: 

�9 multiclass networks with the class type of a job fixed in the system, 
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PF1 

PF5 
PF7 

PF8 

PF4 

Conditions 
multiclass networks 
BCMP type nodes 
class independent capacities 
like PF4, but single class 
multiclass networks 
FCFS-exponential nodes 
class independent capacities 
multiclass open Jackson 
networks with class type 
fixed 

V(n) gi(ni),Vni, l<i<M 

1 (xi / bti) ni 

multiclass networks 1 n. 
with class type fixed 1--ll bi (1-1) 
blocking functions dep. on (x i /b t i )n i l  i f. (1) 
node, class and chain 1 = 1 l 
A-type nodes 

load dependent service rates 
gi(ni)=bq fi(ni), 

PF2 single class networks 1 1 / eini 
exponential nodes 
load independent service rates 
with e =(e 1 ..... aM) 
e = e  P' 
P'= [I P'ij I[, P'ij=btjpji, i~j, 

P'ii= 1-Zi:xiP'ii, l<i,j_<M 

Table II - Product-form formulas and conditions. 

�9 interdependent blocking probability and service rates [4], 
�9 A-type nodes. 

Product-form (6) holds with 

V(n) = 1, n20, gi(ni) = (x i ) ni hi (bti ' ni), ni>0, l<i_<M, 
where h i (bti, ni) is a product-form function dependent on the state and the service rate 
of node i and defined according to the scheduling of the interdependent parallel queues; 
for a complete definition see [41. 

Product-form solutions can be proved by substituting the closed-form expression into 
the global balance equations of the underlying Markov process (linear system (3)). 
Note that product-form expression (6) generalizes the closed-form expression for 
BCMP networks, and in certain cases, such as PFi, i=1,5,7 and 8, it corresponds to 
the same solution as the one for queueing networks with infinite capacity queues 
computed on the guncated state space of the network with finite capacities. 
This relationship provides the basis for the equivalence between product-form 
networks with and without blocking discussed in Section 2.3. 
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Observations 
Identification of necessary and sufficient conditions under which a queueing network 
model has a product-form solution is an open issue for networks with infinite 
capacity queues as well. 
We observe that most of the product-form solutions for queueing networks with finite 
capacity queues have been derived by using the following properties: 

�9 reversibility of the underlying Markov process, 
�9 duality. 

The first approach can be applied to networks with finite capacity whose underlying 
Markov process is shown to be obtained by truncating the reversible Markov process 
of the network with infinite capacity. Hence, a product-form solution immediately 
follows from the theorem for truncated Markov processes of reversible Markov 
processes. This theorem states that the truncated process shows the same equilibrium 
distribution as the whole process normalised on the truncated sub-space [39]. 
A product-form solution of both homogeneous and non-homogeneous two-node 
cyclic networks can be proved by using this property for exponential single class 
networks [1, 36, 40, 59] and for multiclass networks with BCMP nodes under 
additional constraints in [24, 50, 66]. 
Similarly, it has been proved that closed queueing networks with a reversible routing 
matrix P have a reversible underlying Markov process under RS-RD or Stop blocking 
and different types of nodes [36, 40, 59]. This class of product-form networks with 
RS-RD blocking for multiclass networks has been extended [3, 50, 68, 69] to include 
A-type nodes and more general blocking functions which may depend both on the 
total population, class population and routing chain population at the node. 
The central server or star topology network is a special case of product-lbrm networks 
with reversible routing. However, some product-lbrm results havc only been 
specifically proved ['or central server networks [2, 27, 44, 63, 68 ]. 

Remark.  Although some of these results concern networks where routing 
probabilities are dependent on the state of the network, they are related to queueing 
networks with finite capacity and blocking. In fact, by using blocking functions, the 
actual routing probabilities of queueing networks with finite capacity can be 
interpreted as state dependent probabilities, and they are obtained by combining the 
routing probability matrix P with blocking functions bi(ni), l<i_<M. Therefore, 
product-form solutions for networks with slate dependent routing, such as the one 
proved in [63], can be interpreted in the same way as for blocking networks, as 
discussed and extended in [44] and [68] to multiclass networks. A generalization of 
these results obtained by combining state dependent routing and finite capacity queues 
is presented in [2]. 

Routing reversibility [36, 37, 39, 40, 59] which lcads to thc Markov process 
reversibility is related to the job-local-balance of the underlying Markov process 
introduced in [37]. This balance property, which is related to local balance and station 
balance for queueing networks with infinite capacity [16, 20, 21, 24, 40, 46], states 
that the rate outside a state due to any particular job in the system is equal to the rate 
inside that state which is due to that particular job [37]. Job-local-balance provides 
the basis for deriving equivalence and insensitivity properties, as discussed in Section 
3. 

The second approach to derive product-form solution of queueing networks with 
blocking is based on duality. Product-form PF2 has been obtained by adding the 
capacity constraint to the Gordon-Newell closed exponential networks and by defining 
a dual network which has the same stationary joint queue length distribution [33]. 
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Consider a cyclic closed network with M nodes, N customers, node capacities B i, 
l<i_<M and BBS-SO or RS blocking. The dual network is obtained from the original 
one by reversing the connections between the nodes. It is formed by M centers and (B 
- N) customers which correspond to the 'holes' of the original (primal) network. 
When a customer moves from node i in the original network, a hole moves backward 
to node i in the dual one. When there are n i customers in node i the original 
networks, the i-th center of the dual one contains Bi-n i holes, l_<i_<M. It can be 
shown that the underlying Markov process which describes the evolution of 
customers in the network is equivalent to the one which describes the behaviour of 
holes in the dual network [33]. As a consequence, when the non-empty condition is 
satisfied, then the total number of holes in the dual network cannot exceed the 
minimum capacity, i.e., (B - N)<Bmin, and the dual network has a product-form 
solution like a network without blocking. Hence the product-form solution for the 
primal network is given by formula (6) with V(N)=I and gi(ni) = (1/bti_l) ni , l_<i<M, 
(where if i=l then i-l=M) [33], which corresponds to expression PF2. This solution 
can be extended to arbitrary topology networks with load independent service rates for 
RS-RD blocking [36]. This result has been extended to homogeneous networks with 
BBS-O blocking under condition (B) and to heterogeneous networks [9]. 
The concept of duality introduced in [33] has been applied to closed cyclic networks 
with phase-type service distributions and BBS-SO blocking for which the throughput 
of the network is shown to be symmetric with respect to its population [28]. 

�9 Arrival theorem for product-form queueing networks with blocking 

The arrival theorem for product-form networks with infinite capacity [48, 60] 
provides the basic principle for the MVA computational algorithm. It states that the 
stationary state distribution at arrival instants of a customer at a particular node is 
equal to the stationary state distribution at arbitrary times of the same network, for 
open networks, and of the network with one less job, for closed networks. This result 
can also be applied for an efficient computation of the stationary state distribution at 
arrival times in the evaluation of passage time distribution, as discussed in Section 
2.1. 
Since the proof of the arrival theorem [48, 60] is based on the BCMP product-form 
solution [t6] which does not allow blocking due to the finite capacity of the queues, 
the direct application of the arrival theorem to queueing networks with finite 
capacities does not hold. For example, the direct application of the arrival theorem to 
a product-form network with Stop protocol is shown to fail, as discussed in [67]. 
An extension of the arrival theorem has been proved for a special class of networks in 
which a particular type of blocking can be defined by using the 'loss' and 'trigger' 
functions, which allow a constraint on the overall network population of a chain in 
multichain queueing networks with infinite capacity queues [60] and is rel/ited to 
Recirculate blocking. A similar case is considered in [67]. 
A recent result related to product-form queueing networks with blocking is the 
extension of the arrival theorem to some finite capacity networks with either BBS- 
SO, BAS and RS-RD blocking [11, 12, 14]. 
In fact, from corollary 1 one can derive a relationship between the joint queue length 
distribution at arrival and arbitrary times of networks with different parameters for 
some closed exponential networks under BBS-SO, BAS and RS-RD blocking [11, 
13, 14]. 

Consider closed networks with either a cyclic or central server topology. Let W 
denote the network model introduced above and let W denote a new network idenucal 
to W except for one less customer, and modified finite capacities denoted by B j*, 
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I_<j_<M. Let re* denote the steady-state probability distribution at arbitrary times of 
network W*. One can prove the following theorem [11, 14]. 

Theorem 2 
The stationary state distribution at arrival instants at node i of network W is identical 
to the state distribution at arbitrary times of network W*, i.e., Vse c A 

~(se ) = rt*(se ) 
i) for product-form networks with RS-RD or BBS-SO blocking and 

for a cyclic topology with M>2 nodes and 
Bj =Bj-1, for j=l,l-1 and Bj =Bj for j;%M, I<j<M, l<i<M, 

and for a central server topology with 
Bj*=Bj- 1, for j=l,i  and Bj*=Bj for j*l,i, I<j<M, 2<i<M, 

where 1 denotes the central node; 
ii) for the two-node product-form network with BAS blocking and Bj*=Bj-1, for 
j=l,2..  

The extension of the arrival theorem to queueing network models with a more general 
topology and different blocking types is an open issue. 

2.3 Approximate  analysis  

Many approximate solution methods to analyze queueing network models with finite 
capacity queues have been proposed in literature both for open and closed networks. 
In this section we consider approximate solution techniques to solve queueing 
networks with finite capacity. We discuss the basic ideas and principles on which the 
approximations are based and the main results. 

Approximate solution techniques have been proposed to evaluate the joint queue 
length distribution at arbitrary times and average performance indices, such as 
resource throughput and utilization [5, 51, 55]. 
Most of the approximations do not provide any bound on the introduced error and 
they are validated by comparing numerical results against either simulation results or 
exact solutions if the state space is small enough. 
These approximate techniques are heuristics which are mainly based on: 

�9 the decomposition principle applied to the underlying Markov process, 
�9 the decomposition principle applied to the network, 
�9 the forced solution of a non-blocking (product-form) network, 
�9 special structural properties of a specific class of networks. 

The decomposition principle applied to the Markov process consists in the 
identification of a partition of the state space E into K subsets E k, l_<k_<K, which 
leads to a decomposition of the rate matrix Q into K2 submatrices. By referring to a 
decomposition-aggregation procedure, the solution of the entire system (3) is reduced 
to the solution of K subsystems of smaller dimensions, each related to a subset of E. 
These solutions are then combined to obtain the solution of the overall system. 
This approach is based on the following relationship between the stationary state 
probability re(S), the conditional probability of state S in E k, Prob(S I Ek), and the 
aggregate probability of the subset Ek, Prob(Ek), VSE Ek, l_<k_<K: 

re(S) = Prob(S I Ek) Prob(Ek) 
Instead of the direct computation of re(S), the decomposition technique requires the 
computation of Prob(S I Ek) and Prob(Ek) for each S and Ek. 
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Unfortunately the exact computation of the decomposition-aggregation approach for 
Markov processes is comparable to the cost of solving the entire model and so soon 
becomes computationally intractable. However, exact aggregation can be performed 
efficiently for some classes of Markovian models such as symmetric networks. 
Approximate solutions based on the decomposition of the Markov process provide an 
approximate evaluation of the conditional and aggregate probabilities Prob(S I Ek) 
and Prob(Ek). Heuristics are defined by taking into account both the network model 
characteristics and the blocking type [5, 7, 17, 26, 27, 29, 31, 33, 35, 42, 43, 51, 
52, 55-58, 62, 68, 69]. 
An important issue is the identification of an appropriate state space partition which 
affect both the accuracy and the time computational complexity of the approximate 
algorithm. 
When the state space partition is related to a network partition into subnetworks, then 
the decomposition principle is applied to the queueing network and the subsystems 
can be solved in terms of solving (possibly modified) subnetworks in the original 
network. Various approaches have been proposed to determine the parameters of each 
subnetwork [26, 30, 31, 33, 43, 57, 58, 62, 68,691. 

Approximation methods are often based on the forced application of the exact 
aggregation technique to queueing networks with blocking for product-form queueing 
networks with infinite capacity [22]. This approach has a low computational cost and 
the accuracy observed by experimental results makes such approximate aggregation 
techniques suitable for many practical cases. However, the error introduced by the 
approximation is unknown. 
Many approximation methods based on the decomposition approach require the 
iterative solution of subsystems or subnetworks to derive the approximate solution. 
Hence for such techniques, conditions and the speed of convergence should also be 
considered, as in [26]. 

Although few approximate solution techniques with known accuracy have been 
proposed, this is still an important issue which should be considered in the definition 
of approximations. 
Another issue concerns bound solutions which can be used as approximate solution 
methods with known accuracy. A bounded aggregation technique has been defined for 
Markov processes and applied to queueing networks with blocking in [25] by 
exploiting the special structure of the underlying Markov process. Extending this 
work to more general classes of networks with finite capacities and different blocking 
mechanisms are challenging issues which are still open. 

3 P r o p e r t i e s  o f  q u e u e i n g  n e t w o r k s  w i th  b l o c k i n g  

In this section we discuss some properties of queueing networks with finite capacity 
and blocking, which arise from the comparison of different models. 
We consider insensitivity and equivalence properties in queueing network with 
blocking. 
Insensitivity concerns how the characteristics of the service requirements affect the 
network performance. 
Equivalence properties are the basis of problem reducibility. Equivalencies include 
both identity and reducibility relationships and can be defined between networks with 
and without blocking, between both homogeneous and non-homogeneous networks 
with different blocking types, and between open and closed networks. 
Note that identifying these equivalencies depends on the performance indices involved. 
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Insensitivity and equivalence properties provide the basis for comparing the 
performance of system models with different parameters and with different blocking 
mechanisms. 
These results can be applied, for example, in the study of the impact of the blocking 
type on system performance, by referring to a given set of performance indices and 
network parameters. 
Another important consequence of these properties is that solution methods and 
algorithms already defined for a certain class of networks could be extended to other 
classes of network models with different blocking types and/or network parameters. 
For example, equivalence between networks with and without blocking immediately 
leads to the extension of efficient computational solution algorithms defined for 
BCMP networks such as MVA and ConvoIution algorithm to queueing networks 
with finite capacity queues. 

3.1 Insensit ivi ty  

Insensitivity is the property which states that stationary characteristics of the 
stochastic process underlying the queueing network depends on the service 
requirements only in terms of their averages. Product-form queueing networks 
without blocking have been proved to be insensitive [16], i.e., the stationary joint 
queue length has been proved to depend on the service time distributions only in 
terms of their means. 
Insensitivity can be extended to a certain class of queueing networks with finite 
capacity and blocking. 
Referring to product-form networks with finite capacity, Tables I and II and product- 
form definitions show the cases where the stationary state distribution at arbitrary 
times depends on the distribution of the service time only in terms of the mean value 
(or the service rate bti). 
Specifically, this insensitivity property holds for product form solutions PF1 which 
allow BCMP nodes, and for product-form PFi, i=3,4,5 and 6 which allow A-type 
nodes, as defined in Section 2.2. 
Insensitivity for a two-node network with multiple class and RS blocking has been 
shown both for the joint stationary state distribution and lbr the call congestion of a 
job, i.e., the stationary probability that a job is blocked when requesting service at 
the next node [66]. 
Insensitivity of the joint queue length distribution for the central server and for 
reversible routing networks with A-type nodes and RS-RD and Stop blocking types 
has been discussed in [2-4, 50, 64, 68, 69]. 

3.2 Equivalence propert ies 

Equivalence can be defined by referring to different perlormance indices. Most of the 
equivalence properties have been defined in terms of identity of the underlying 
Markov process of the queueing networks, which leads to an identical solution of the 
state probability vector n obtained by system (3). 
However, note that network state S definition depends on the blocking type, as 
discussed in Section 2. Therefore although a bijective function between two state 
spaces of two networks can be identified such that the Markov process are identical, 
the meaning of corresponding states may be different and hence performance measures 
may be not equivalent. Moreover the identity of the joint queue length distribution 
between two networks does not necessarily imply that mean performance indices are 
identical as well. 
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Network with RS-RD blocking 

reversible routing, solution PF4 

arbitrary routing, solution PF2 

Relationship 

rc~ l / r e *  

Network without blocking: 
parameters 
~i* = bti 
q* (k)= fi (k) / b i (k-l) 

1 <k<Bi 
p * = p  

lai* = gi hi 
fi* (k)= 1 / b i (k-l) 

l<k<B i 

p* = P 
~i* = max j ~j 
fi* (k)= b i (k-l) 

1 _<k_<B i 

p* = II P*ij II, P*ij=~tjpji/lai* 

i~j, P*ii = 1-52i~ip* ii' l<i,j<M 

Table 11I - Equivalence between networks with and without blocking. 

We shall now survey equivalence relationships expressed in terms of state probability 
~. These equivalence in some cases can be extended to average performance indices 
such as throughput, utilization, mean queue length and mean response time. 
Then, we consider some equivalence properties in terms of passage time distribution. 

�9 Mean performance indices and joint queue length distribution at arbitrary times 

Some equivalence properties can be defined between networks with and without 
blocking. They allow us to analyse queueing networks with finite capacity by 
applying standard computational algorithms for queueing networks with infinite 
capacity, e.g., MVA and Convolution. 
By comparing product-form solutions of queueing networks with and without 
blocking one can define a non-blocking network with appropriate parameters such 
that the stationary state distributions of the two networks are identical. 
Let W denote the network with finite capacity, and W* the network identical to W 
except for infinite capacity queues and with the following different parameters: load 
dependent service rate g*if*i(ni), and routing matrix P*. Let re* denote the stationary 
state distribution of network W*. Single class exponential networks with RS-RD 
blocking have been shown to be equivalent, in terms of stationary state distribution, 
to a corresponding network without blocking, as defined in Table III [8]. 
The two cases of product-form networks with blocking considered refer to solutions 
PF4 and PF2, respectively, defined in Section 2.2. Table IlI shows the type of 
relationship between the two state distributions and the definition of the parameters of 
the network without blocking. Note that load dependent function f*i(k) can be any 
positive arbitrary function for k>B i, and in the second case h i is defined as follows: 
hi= ~:i Yi where ~i is given in PF2 definition in Table II and Y=(Yl,--~YM ) is 
obtained by the solution of y=y A, where A=IL aij II, aij=pj i , j~i, aii=l-2.,j:~i a i j ,  
l_<i,j<M. 
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network performance blocking types assumptions 
topology indices 

no-node 

cyclic 

BBS-SO=BBS-O 
RS-RD=RS-FD 
BBS-SO=-RS-RD= 
=RS-FD=BBS-O 

BBS-SO=BBS-SNO 

(I) : multiclass networks 
BCMP type nodes 
class independent capacities 

assumption (I) and 
if N<B 1+B2-2 

assumption (I) and with 
BiBBS-SO=BiBAS+ 1, l_<i<M 

BBS-SO----~BAS 

n BBS-SO=BBS-SO= (II) : single class networks 
Ui,Xi,Li,T i =RS-RD exponential nodes 

load independent service rates 
n BBS-SO----~BAS assumption (II) and with 
Ui,Xi BiBBS-SO=BiBAS+ I, l<i_<M 
n BBS-SO=BBS-O 

RS-RD=RS-FD 
BBS-SO=RS-RD 

BBS-SO=BBS-SNO 

7~ 

Ui,Xi,Li,Ti 
assumption (II) 

assumption (II), M>2 and 
N_<min{Bi+Bj : Pij>0} - 1 

n BBS-SO-+BAS assumption (II) and with 
Ui, Xi BiBBS-SO=BiBAS+I, l_<i<M 
n B B S - S O = - B B S -  assumption (II) and 
Ui,Xi Li,Ti SNO= =BBS-O= if only BI<~ and Bi=~, 2<i_<M 

central =RS-RD=RS-FD 
server ' n BBS-SO=RS-RD= 

=BBS-SNO 

BBS-O---->BAS 

assumption (II) and 
if B 1=~ 

assumption (II) and 
if B 1=~ and 
BiBBS-O=BiBAS+I, 2_<i<M 

Table IV - Equivalence between closed networks with different blocking types. 

Note that since the product-form for queueing networks with finite capacity has a 
similar structure to the product-form solution of networks with infinite capacity, this 
type of equivalence could be extended to other cases of product-form networks with 
blocking, including multiclass networks with different types of nodes. Equivalencies 
between networks with both homogeneous and non-homogeneous blocking types 
have been identified both for open and closed networks. 
They include both identity relationship and reducibility. Identity states that the state 
distributions of the two networks are identical, while reducibility allows a 
correspondence between the two distributions to be defined. Most of the reducibility 
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network performance blocking types assumptions 
topology indices 

tandem 

split 

merge If; 

BBS-SO=BBS-O 
RS-RD=RS-FD 
BBS-SO=RS-RD=RS-FD 
BBS-SO=BBS-SNO 

BBS-SO--)BAS 

BBS-SO=RS-RD=RS-FD 

BBS-SO=BBS-SNO= 
=RS-FD 
BBS-SO=-BBS-O 
RS-RD=RS-FD 
BBS-SO=RS-RD=RS-FD 

BBS-SO=RS-RD= 
=RS-FD= 
=BBS-SNO=BBS-O 

assumption (II) 
assumption (II), M=2 and 

ifBl=oO 
assumption (II) and with 

BiBBS-SO=BiBAS+I, 
2<i<M 

assumption (II) and 
if only BI<~ and Bi=~,  

2_<i<M 
assumption (II) and if BI=~, 

assumption (II) and if BI=~, 

assumption (II) and 
if only BI<~ and Bi=~, 

2_<i<M 

Table V - Equivalence between open networks with different blocking types. 

network 
topology 
reversible 
routing 

arbitrary 
routing 

performance blocking types assumptions 
indices 
rc RS-RD=Stop 

BBS-SO=RS-FD 

Stop=Recirculate 

BBS-SO=RS-RD= 
=RS-FD=BBS-O 
BBS-SO--BBS-SNO 

Stop-->BBS-O 
(open) (closed) 

single class closed/open networks 
A-type nodes 
load independent service 
(II): single class networks 

exponential nodes 
load independent service rates 

multiclass ()pen Jackson networks 
with class type fixed 
assumption (II) and condition (B) 

assumption (II) and 
N_<min{Bi+B,i �9 Pij>0} - 1 

single class Jackson networks 

Table VI - Equivalence between networks with different blocking types. 
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between networks can be defined by modifying the buffer capacities. A detailed 
definition of reducibility and of the definition of the correspondence function for 
equivalent exponential closed networks is given in [9]. Let X=Y and X + Y  
respec~vely denote identity and reducibility of blocking types X and Y. 
Let B i denote the buffer capacity when node i works under blocking type X and rc X 
the stationary state distribution of the homogeneous network with blocking type X. 
Tables IV, V and VI show equivalences of state distribution and, in some cases, of 
average performance indices between some blocking types for certain special topology 
networks. 
Tables IV and V concern some closed and open networks, respectively, while Table 
VI refers to both open and closed networks. 
Closed networks with two-node, cyclic and central server topologies are considered in 
Table IV. The central node in central server networks is denoted by 1. 
Tandem open networks and two special cases of open networks denoted as split and 
merge topology are reported in Table V. 
Split topology can be defined as follows: P01=l, P0i=0, 2<_i<_M, Pij>0 for i=l and 
2_<j<M_ _ ' P'U--0 otherwise,~ P 10=0, Pi0 = 1 for 2<i<M, 
i.e., an external arrival enters the network only at node 1, from which it can go to 
nodes 2 .... ,M and from which it eventually exits from the network. 
Merge topology can be defined as: 
P01=0, P0i>0, 2<i_<M, Pij>0 for 2<i<M and j=l,  Pij=0 otherwise, Pl0=l ,  Pi0=0 for 
2_<i_<M, 
i.e., an external arrival enters in any of nodes 2 ..... M and then it goes to node 1 from 
which it leaves the network. 
Tables IV, V and VI show the conditions under which equivalence properties between 
networks with different blocking types hold, including network characteristics and 
special conditions on system parameters. More specifically, for reducible networks 
with different blocking types the relationships between finite capacities are shown. 

Remark. Note that non-homogeneous networks where service centers work under 
different and equivalent blocking mechanisms are also equivalent to homogeneous 
networks with one of the considered blocking types. 

The last equivalence reported in Table VI is a special case which relates an open 
network with M nodes and Stop blocking, which allows a total network population n 
in the range L<n_<U, with a closed network, with an additional node with appropriate 
parameters and BBS-O blocking, as proved in [10]. Specifically, the closed network is 
defined by adding a node, denoted by 0, with service rate P0(n0)=a(n), finite capacity 

B0=U-L, blocking function b0(n0)=d(n), where n0=U-n, 0<n0_<B 0 and a(n) and d(n) 
are the arrival rate and the network blocking functions of the open network with Stop 
blocking. Hence the following correspondence between state distributions holds: 
rcStop (S)=r~BBS-O(no,S) for each state S of the open network. 

For the special class of symmetrical networks introduced in the previous section, 
some equivalence results have been obtained for BBS-SO blocking type in terms of 
throughput. Specifically, closed cyclic networks have the same throughput for N and 
N-B customers, as showed for exponential service times in [29] and generalised to 
phase-type distributions in [28]. Moreover, the relationship between this symmetry 
property and reversibility is discussed in [28]. Some monotonicity properties of the 
network throughput for this class of networks has been proved in [611 by considering 
increasing service rates or finite capacities or the overall network population. 
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�9 Passage time distribution 

Equivalence between networks defined in terms of joint queue length distribution and 
average performance indices does not necessarily lead to equivalence in terms of 
passage time distributions. 
Some equivalence results have been obtained in terms of cycle time distributions for 
cyclic networks with BAS and BBS-SO blocking types. 
The extension of such results to other networks with different parameters including 
blocking type, service distribution and routing topology is an open issue. 

Consider a two-node cyclic exponential network with N customers, finite capacities 
B 1 and B2 and either BBS-SO or BAS blocking. LetfN.B l,B2 (t) denote the density 

function of the cycle time. The following equivalence property can be proved [11, 
12]: 

Theorem 3 
Consider two cyclic networks with two exponential nodes, N customers, service rates 
bti, i=1,2, BBS-SO or BAS blocking and finite capacities B i and Bi', respectively, for 
i=1,2. If 

BI+ B2 = BI'+B2' 
then the two networks are equivalent in terms of cycle time distribution, i.e.: 

fN,B1,B2 (t) =fN,B'I,B'2 (t). 

In other words this equivalence states that the distribution of the cycle time does not 
depend on the single buffer size of each node, but on the total buffer capacity of the 
network. The extension of these equivalencies to queueing networks with a more 
general topology and different blocking types is an open issue. 

Remark.  Note that since the two networks have the same number of customers but 
different capacities they are also equivalent in terms of throughput, but they are not 
equivalent in terms of joint queue length distribution and other average performance 
indices (mean response time, utilization and mean queue length). 

4 Conclusions 

Performance evaluation of systems with finite capacity resources represented by 
queueing network models with finite capacity queues and different blocking 
mechanisms has been discussed. 
The main analytical solution methods have been presented, by considering both the 
analysis of average performance indices and more detailed measures such as passage 
time distribution. 
Properties of queueing networks with blocking have been discussed including 
equivalence between networks with and without blocking, between models with both 
homogeneous and non-homogeneous blocking types, and relationships between open 
and closed queueing network models with blocking. 
Although product-form solutions have been proved for queueing networks with 
blocking under certain constraints, research must to be done to define efficient 
solution algorithms for general multiclass networks, and in particular approximate 
solutions with knowledge of the error and bounded algorithms for non product-form 
networks. 
Other open research issues include the analysis of discrete-time queueing networks 
with finite capacity queues and blocking which can be used to represent discrete time 



47 

systems, such as for example  ATM networks, and the performance comparison of  
queueing networks with different blocking types in order to identify optimal blocking 
mechanisms. 
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Appendix 

The system state definition of queueing networks with finite capacity and blocking 
depends both on network characteristics and on the blocking type. We shall now 
define system state for the single class network model introduced in Section 1. 
For the sake of  simplicity we consider exponential service time distribution and the 
First Come First Served discipline. 
The extension to more general service time distributions and policies leads to the 
introduction of  additional components  to system states in a similar way as in 
queueing networks with infinite capacity queues. For this reason in order to define 
such additional state components  which only depend on the node type and are 
independent of  the blocking mechanism, it is sufficient to refer to state definitions 
introduced for networks with infinite capacity. For example,  for queueing networks 
with BCMP-type  nodes one can refer to the state definition introduced in [16] to 
complete the state definition of queueing networks with blocking defined below. 

We consider the five blocking types introduced in Section 1. 
S=(S 1 .. . . .  SM) denotes the system state, S i the state of  node i, and n i the number of  
customers in node i, l_<i_<M. Due to the finite capacity of  the queues ni_<B i , l_<i<M, 
and if the network is closed with N customers the following condition holds: 

max 0 , N -  ~ B j  -< n i (A.1) 
j=l,j~i J 

BAS 
For BAS blocking, node i state can be defined as follows: 
Si = (ni,si,mi), si = 0,1 , mi= (m i .. . . .  mu(i)), 0<u(i)<M-1 
where si denotes the server state and mi is the vector of the nodes indices blocked by 
node i. The server state indicates whether the server is active (si = t) or blocked (si = 
0). Vector m i is non-empty only if node i is full, i.e., if n i = B i. When m i is not 
empty,  it contains the indices of  the nodes which have attempted to send a job to 
node i and which are still b locked by node i (i.e., Pji>0 and sj =0 for each 
j = m  i . . . . .  mu(i) ). The number  of  components  of  vector mi,  u(i), is at most equal to 
the number  of  possible sending (upstream) nodes of  node i: u(i) < # { i �9 m;>0  
I<_j<M, j*i} <_M-1. - J ' "J '  ' 
Vector  m i is ordered according to the time at which the upstream nodes will be 
unblocked, that is according to the unblocking scheduling. 

BBS-SO and BBS-SNO 
In BBS blocking, node i state definition can be defined as follows: 
Si = (ni, d i ) ,  l<di<M 
where di denotes the destination node of the next job that will exit from node i. 
Note that di is the destination node of the next job currently in service if ni>O, or of  
the next customer that will arrive at node i if ni=O. 
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When node i is not empty and the destination node di is full, i.e., when ni>0 and 
ndi=Bdi,  then by the blocking definition the server of node i is blocked and will be 

resumed as soon as a departure occurs from node di. 
In addition to constraint (A. 1) in BBS-SNO if node i is blocked (ndi=Bdi) then ni<B i, 

because the server cannot be occupied by a job. 

BBS-O 
For BBS-O blocking, node i state can be defined as Si = ni. When at least one of the 
destination nodes of  node i is full (i.e., there exists j : Pij>0 and nj=Bj),  then the 
server of  node i is blocked. 

RS-RD 
In RS-RD blocking node i state definition is simply Si = ni. Note that the server is 
always active and servicing a customer if ni>0. 

RS-FD 
For RS-FD blocking the state of node i can be defined as lk~r BBS blocking. Indeed in 
this case a customer that completes the service at node i and is not accepted by its 
destination node because of the full capacity does not change its destination as in RS- 
RD blocking. Hence the information on the destination node of the next customer 
that will exit from node i has to be included in state Si. 
However,  note that when node i is not empty and the destination node di is full for 
RS-FD blocking the server of node i is not blocked as in BBS. 
Like RS-RD the server of  each node is always active and servicing a customer if 
ni>0. 

Stop and Recirculate 
For Stop and Recirculate blocking node i state definition is Si = ni, like RS-RD and 
networks with infinite capacity. 
Note that for Stop blocking all the servers are blocked when the total network 
populat ion n = n l + . . . + n M  reaches its minimum value for which the (network) 
blocking function d(n)=0. 
For Recirculate blocking the servers are always active and the routing probabilities 
are state dependent. 

Note that even though the system state for RS-RD, BBS-O, Stop and Recirculate 
blocking types may have the same definition, the underlying Markov processes are 
different, i.e., the process transition rate matrices Q are defined differently according to 
the blocking type. 
For example  for RS-RD blocking matrix Q is defined as presented in Section 2.1, 
while for Stop blocking Q= IIq(S,S')ll can be defined as follows for each pair of  states 
S,S '  with S:/:S': 

q(S,S')  = 8(nj) btj d(n) Pji if S '=  S + e i - ej 
q(S,S')  = 8(nj) btj d(n) Pj0 if S '=  S - ej 
q(S,S')  = ~. P0j bj(nj) if S '=  S + ej 

where d(n) is the network blocking function and 8 has been defined in Section 2. 
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