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A b s t r a c t  
The power-series algorithm (PSA) is a flexible device for computing performance mea- 
sures for systems which can be modeled as multi-queue/multi-server systems with a 
quasi-birth-and-death structure. An overview of this technique is provided, including 
a motivation of the principles of the PSA, the derivation of recursive computation 
schemes, discussions of efficient implementation of the PSA, of methods for improving 
the convergence of the power series, of the numerical complexity of the PSA, and of 
the computation of derivatives with respect to system parameters, and examples of 
application of the PSA. 

1 I n t r o d u c t i o n  

The performance analysis and control of many computer/communication systems lead 
to the formulation and study of multi-queue models. The stochastic processes under- 
lying these systems are generally very hard to treat by analytical methods. Therefore, 
it is important to develop numerical methods for computing performance measures 
for such systems. The power-series algorithm (PSA) is one of the available methods. 
It requires a Markov representation of the queueing process, possibly with the aid of 
some supplementary variables. It is based on power-series expansions of the state prob- 
abilities in terms of the load of a system for (recursively) solving the global balance 
equations satisfied by these probabilities. It is a flexible method which is applicable 
to a wide class of multi-queue/multi-server models, with Markovian Arrival Processes 
(MAPs) and phase-type (PH) service time distributions. The PSA is also suitable for 
optimization purposes, since it allows the computation of derivatives of performance 
measures with respect to system parameters and control variables. For moderately 
sized systems, the PSA favourably compares with simulation and numerical methods 
based on truncation of the state space. This is mainly so because the PSA involves re- 
cursive schemes and allows the application of the so-called e-algorithm which improves 
the convergence of the power series considerably. Since the memory requirements grow 
exponentially with the number of queues, the PSA can only produce accurate results 
for systems with a limited number of queues. Being an aid for studying the interaction 
between queues on a reduced scale and for developing and testing approximations of 
performance measures and optimal values of control variables for systems of a larger 
size is therefore the main contribution of the PSA. 

1 Postal address: Dept. of Econometrics, P.O. Box 90153, 5000 LE Tilburg; e-mail: 
blanc@kub.nl. 
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An important  class of multi-queue models to which the PSA is applicable consists of 
polling models in which several users compete for service by a single server (e.g., a 
single communication channel in a computer network). The server switches from one 
queue to another in order to provide service. It is a very rich class of models which 
allows many visit-order rules and service disciplines, and may involve switch-over times, 
set-up times, etc.. Other examples of models to which the PSA can be apphed are 
models with parallel servers, such as coupled-processor models, load-balancing models 
("join the shortest queue" and variants) and parallel-processor models (fork systems 
in which jobs split into partial jobs which are to be processed on parallel machines), 
and networks of queues in which jobs move from one queue to another for sequential 
processing. 
An s-dimensional state space is required to describe the joint queue-length process for 
a queueing system or network with s queues. For a large class of such systems, this 
process can be modeled as a multi-dimensional birth-and-death process (BDP), i.e., 
interartival and service times are exponentially distributed and arrivals and departures 
occur one by one, or as a multi-dimensional quasi-birth-and-death process (QBDP), i.e., 
a BDP to which one or more finite-state supplementary variables are added to render 
the queue-length process Markovian. These supplementary variables can be used, e.g., 
to model MAPs or PH-distributions, or to indicate the position or the status of a 
moving server. Global balance equations can still be formulated for these processes, as 
in the one-dimensional case. But local balance equations often do not exist due to the 
multiple of paths which may exist between pairs of neighbouring states. 
In section 2 the computation scheme of the PSA is derived for the case of BDPs. Section 
3 contains discussions on the implementation of the PSA and on the improvement of 
the convergence of the power series by means of the c-algorithm. Section 4 concerns the 
extension of the general principle of the PSA to QBDPs. The application of the PSA 
to parallel-server systems is discussed in section 5. Since the queue-length process in a 
fork system is not a birth-and-death process because of the grouped arrivals of partial 
jobs, the PSA has to be adapted for this model. Section 6 is devoted to the application 
of the PSA to polling systems. The PSA is extended to QBDPs with migration, with 
application to networks of queues, in section 7. Section 8 deals with the computation 
of derivatives of performance measures with respect to parameters of a system. The 
overview is concluded by an annotated bibliography on the PSA. 
In order to keep the exposition as simple as possible Poisson arrival streams and ex- 
ponential service times will be assumed in all models which will be discussed in some 
details, except for the tandem model in section 7. It should be kept in mind, however, 
that all these models can be generalized with MAPs and PH service time distributions. 
The increased complexity of the PSA will be indicated in terms of the number of stages 
of these processes and distributions. All systems are assumed to be in steady state, 
and each queue may contain an unbounded number of jobs. 
At the end of this introduction some notations will follow which will be used through- 
out this overview. The number of queues in the system will be denoted by s; n = 
( n l , . . . ,  n ~) will denote a vector with non-negative integer entries, i.e., in IN ~, the state 
space of the joint s-dimensional stationary queue-length process N = (N1, . . . ,  N~). 
The sum of the components of the vector n will be denoted by [ n [, i.e., I n [--" 
nl  + .. �9 + n~. Further, ej will denote the unit vector consisting of all zero components 

except a component of 1 at the j th  position, j = 1 , . . . , s ,  and 0 -- ( 0 , 0 , . . . , 0 )  the 
empty state. Finally, I{E} will denote the indicator function of an event or condition 

E. 
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2 T h e  P S A  f o r  b i r t h - a n d - d e a t h  p r o c e s s e s  

Consider the class of mul t i -queue systems of which the underlying stochastic queue- 
length  processes are mul t i -d imensional  BDPs. Let paj(n) be the arrival rate to queue 
j ,  and d j (n )  the depar ture  rate from queue j ,  j = 1 , . . . ,  s, in state n E IN s. Of course, 
da(n)  = 0 if n j  = 0, for n E IN ~, j = 1 , . . . ,  s. The parameter  p, the load of the system, 
will be  used as variable in power-series expansions. The relative arrival rates a j (n ) ,  
n E IN S, j = 1 , . . . ,  s, are assumed to be normalized such that  the system is s table for 
0 _< p < 1. In  section 2.1 it will be shown that  the s ta t ionary s tate  probabili t ies of a 
mul t i -d imensional  BDP possess power-series expansions in  terms of the load p at p = 0, 
and tha t  the  coefficients of these power-series expansions can be computed recursively. 
How other performance measures can be computed will be discussed in section 2.2. 

2.1 A recurs ive  c o m p u t a t i o n  scheme 

Let p(n)  denote  the probabi l i ty  tha t  the process N is in state n E IN ~. A state n E IN ~ 
is left if either an arrival occurs at one of the queues or if a service at one of the queues 
is completed; it  is entered if either an arrival occurs at queue j and the system was in 
s tate  n - e j  (only if nj > 1) or if a service is completed at queue j and the system was 

in s tate  n + ej ,  j = 1 , . . . ,  s. Hence, the global balance equat ions for the flows out of 

and into s ta te  n re~d: for n E IN s , 

8 s / 8 

P E a j ( n ) + E d ' ( n )  p ( n ) = P E a j ( n - e j ) I { n j  >_l}p(n-ej) 
j= l  j= l  j=l  

8 

+ E d j ( n  + e j ) p ( n  + ej) .  
j=l  

The s ta te  probabil i t ies  sum to 1. This  can be wri t ten as 

~ . . .  p(n) = p(n) = 1. 

(2.1) 

(2.2) 
n~=0 n s = 0  m = 0  I n l = m  

First,  i t  will be  shown tha t  the following l imits exist for all states n E INS: 

b(0; n )  --' l im p - l n l p ( n ) ,  (2.3) 
pJ, o 

if the depar ture  rates are such tha t  no t  all servers are idle when jobs are present  in the 
system, i.e., if for each state  n E IN s, n 7~ 0, the following condit ion holds: 

8 

y~. a,(n) > o. (2.4) 
j = l  

For tha t  purpose,  introduce,  for m = 0, 1 , 2 , . . . ,  

A(p;m)-- E P(n)  E a a ( n ) '  D(p;m)-- E p(n)  d j (n ) .  (2.5) 
Inl=m j= l  Inl=-~ a=l 

Sum mat ion  of equat ions  (2.1) over states n E IN ~ with I n 1 :  m leads to: 
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pA(p;O)= D(p;1); p A ( p ; m ) + D ( p ; m ) = p A ( p ; m - 1 ) + D ( p ; m + l ) ,  m = 1 , 2 , . . . .  
(2.6) 

By induction, balance relations between all states with I n I= m and with I n I= m + 1 
follow: 

p A ( p ; m ) = D ( p ; m + l ) ,  m = 0 , 1 , 2 , . . . .  (2.7) 

It will be clear from (2.2) and (2.7) that the limit (2.3) exists for n = 0, and equals 
1. Now, suppose that  the limits (2.3) exist for all n with I n I_< M for some M > 0. 
Then, because the coefficients a~ (n) are non-negative, also the following limits exist: 

ft(m) -- lim p-mA(p; m), m = O, 1,. . . ,  M. (2.8) 
p~0 

A similar argument and equation (2.7) imply that the following limits exist: 

D ( m ) - l i m p - m D ( p ; m ) ,  m = 0 , 1 , . . . , M + l .  (2.9) 
pl0 

Because all state probabilities and all departure rates are non-negative, assumption 
(2.4) implies that the limits (2.3) exist for all n with I n I= M + 1. By induction it 
follows that  the limits (2.3) exist for all states n �9 IN s. Next, introduce the functions 

qo(n) -- p-lnlp(n), n �9 IN ~. (2.10) 

Substitution of these functions into the balance equations (2.1) leads to the equations: 
for n �9 IN s , 

p ai(~) + dj(~) q0(~) = a j ( ~ -  ej)I{nj > 1}q0(n- ej) 
j = l  

+ p ~ d j ( n + e j ) q o ( n + e j ) .  (2.11) 
j=l  

Notice the different position of the factor p in the righthand sides of (2.1) and (2.11). 
The law of total probability (2.2) can be rewritten as: 

~-~pm E q 0 ( n ) = l .  (2.12) 
m=o ]nl=rn 

It has been shown above that the functions q0(n) possess finite limits as p vanishes. 
The foregoing equations imply that these limits satisfy: 

s 

b(0;o) = 1; d~(n)b(0; n) = ~ aj(n-ej)I{n~ > 1}b(0;n-ej), 
j=~ j=l 

Now, subtract the limits at p :- 0 from the functions q0(n): 

q~(~) - q0(n) - b(0;~), ~ �9 ~ .  

Then, we obtain from (2.11) with (2.13) the relations: for n �9 IN s, 

I n  [_> 1. (2.13) 

(2.14) 
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•  • p ~5(n) + ds(n) ql ( - )  + p ~5(-)b(o;-)  
j=l j=l / j=l 

= ~ a s ( ~  -- e j ) I{n  5 _> 1}ql(n -- ej) 
j = l  

s 

+P ~ d5 (n + ej )[ql (n + ej) + b(0; n + ej)], (2.15) 
j = l  

and from (2.12) the relation 

oo 

ql(O)+~pm ~ [ql(n) T b(0; n)] ---- 0. (2.16) 
m=l Inl=m 

Because the functions q~(n) vanish as p ~ 0 by (2.14), it follows readily by induction 
from the above relations that the limits 

b(1; n) - lim p-lql (n), (2.17) 
plO 

exist for all states n E IN ~. In a similar way we can successively, for k = 2, 3, . . . ,  define 
the functions 

qk(n) -- qk-l(n)  - pk-lb(k- 1;n), n e IN ~, 

and show that the limits 

(2.18) 

exist for all states n E IN ~. 
k = 1, 2 , . . . ,  

b(k; n) - h~m ~ p--kqk(n), (2.19) 

By induction it follows that these fimits satisfy: for 

b(k; O) = - 
l<lnl_<k 

and for k = 1 ,2 , . . . ,  for n E IN ~, n ~ 0, 

b(k- I~ I;~); (2.20) 

s 8 

d~(~)b(k; ~) = ~ a~(~ - ej)I(=~ _> lib(k; ~ -  oj) 
j = l  j = l  

- ) - -~  ai(n)b(k - 1;n) + ds(n+ej)b(k-1;n+ej). (2.21) 
j = l  j = l  

Consequently, we can formally expand the state probabilities as power series in terms 
of the load of the system, p: 

p(n) = pinl Z Pkb(k; n), n e IN ~. (2.22) 
k=O 
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The coefficients of these power-series expansions can be recursively computed from 
(2.13) and (2.20), (2.21). Notice that  assumption (2.4) is necessary to allow the com- 
putat ion of the coefficients b(k; n) according to this scheme. There is still quite some 
freedom in the order in which the coefficients can be computed. One convenient or- 
der is: compute b(0;n) recursively for increasing value of [  n I up to [ n [= M for 
some value of M, then compute b(1;n) recursively for increasing value of [ n I up to 
I n I = M -  1, and so on, until b (M;0)  is reached. Another approach is to compute the 
coefficients b(k; n) according to increasing values of m = k +  I n [ for m = 0, 1 , . . . ,  M, 
where at each level m the coefficients have to be computed in increasing order of k, 
for k --- 0, 1 , . . . ,  m. The la t ter  approach implies that  the coefficients are computed 
according to increasing power of p. 

2.2 Computat ion  of performance measures 
For multi-queue systems, the (numerical) information of the individual state proba- 
bilities is usually too complex to be of much interest in itself. Of more interest are 
sometimes (aggregated) probabilities, such as the probabilities that  a queue is empty, 
or that  a queue exceeds some threshold. In most cases, however, one is interested in 
the first few moments of the queue length distribution, in particular,  in the mean and 
the s tandard deviation of the queue lengths, and possibly in the correlation between 
the queue lengths. Let g(n) be a function from IN s to ]N. The expectation of the 
random variable g(N) is defined as 

E { g ( N ) } -  ~ . . .  ~ g ( n ) p ( n ) =  ~ ~ g(n)p(n).  (2.23) 
nl=O ns=O m=O Inl=m 

By subst i tut ing the power-series expansions (2.22) of the state probabilities into this 
relation and by changing the order of summation this expectation can be writ ten as 

oo  'oo ~o k 

m=o InI=m k=O k=O m=O [nl= rn 
(2.24) 

This relation shows tha t  E{g(N)} possesses a power-series expansion at p = 0 of the 
form 

E{g(N)} = ~ pk fg(k), (2.25) 
k----0 

with coefficients given by 

fg(k)= ~ g(n)b(k-lnl;n) ,  k = 0 , 1  . . . . .  (2.26) 

0_<lnl<k 

By appropriate  choices of g(n) various performance measures can be computed, e.g., 
i I{n 3 = i} for the marginal probabil i ty that  Nj = i, g(n) = nj for the i th moment of 

Nj, i = 0, 1 , . . . ,  and g(n) = nhnj for the cross moment of Nh and Nj,  h , j  = 1 , . . . , s .  
It  is more efficient for obtaining such performance measures to compute first their 
coefficients via (2.26) and then to use (2.25) than to compute first the state probabilities 
via (2.22) and then the performance measures directly from the state probabilities. In 
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the first way, algorithms for accelerating the convergence can be applied directly to 
part ia l  sums of the series (2.25) and the storage requirement for the coefficients can 
be reduced, cf. section 3. For many systems, characteristics of the waiting or response 
time distr ibutions can be computed once the joint queue-length distribution has been 
determined, e.g., by Litt le 's  law for mean waiting or mean response times. These 
relations will not be discussed here. 

3 O n  t h e  i m p l e m e n t a t i o n  o f  t h e  P S A  

This section concerns some more technical issues of the PSA. Section 3.1 discusses a 
modification of the computat ion scheme by means of a conformal transformation in 
order to enlarge the radius of convergence of the power series. Further improvement 
of the convergence of these series can be obtained by applying the e-algorithm; this 
matter,  is discussed in section 3.2. Section 3.3 is devoted to issues concerning the 
efficient storage of the coefficients of the power series. 

3.1 E n l a r g i n g  t h e  r a d i u s  of  c o n v e r g e n c e  of  t h e  p o w e r  se r ies  

Experience has taught  us that  the power-series (2.22) and (2.25) usually do not converge 
for all values of p for which a system is stable (by definition for p < 1). One way to 
overcome this difficulty is to introduce the following bilinear mapping of the interval 
[0,1] onto itself, 

e = r~(p) - (1 + c)p e 
1+ Gp ' P = F a ' ( 8 )  - 1+  G -  GS" (3.1) 

1 1 Any singularity outside the circle ] p - $ I= ~- may be removed from the unit disk by 
this procedure with an appropriate  choice of the parameter  G. Another computat ion 
scheme is then obtained by introducing, instead of (2.22), the following power-series 
expansions of the s ta te  probabil i t ies as functions of 8: 

oo 

p ( n ) = e  I n l ~ o k b c ( k ; n ) ,  n � 9  *. (3.2) 

k = 0  

Replacing p by /~ in the balance equations (2.1) according to (3.1), substi tuting the 
above power-series expansions in 8 into these equations, and equating coefficients of 
corresponding powers of 8 in the resulting equations leads to the following set of re- 
cursive relations: for k = 0, n �9 IN s, 

ha(0; 0) = 1; 
8 8 

( l + G ) ~ - ~ d j ( n ) b G ( 0 ; n ) = ~ a j ( n - e j ) I { n j  > _ l } b a ( O ; n - e j ) ,  ] n l >  1; (3.3) 
j = l  j = l  

for k = 1 ,2 , . . . ,  for n = 0, 

b~(k;o)=- ~ b~(k-I'1;~); (a.4) 
l<lnl<k 

and for n �9 IN ~, n -7(: 0, 
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8 

(1 + G) ~ dj(n)ba(k; n) = ~ a j (n  - e j ) I { n j  ~ 1} 
j = l  j = l  

+ s  - a j ( ~ ) } b ~ ( k  - 1; n ) 6 o ( k ;  ~ - ~j)  
j = l  

8 

+~_ej(~+~j){(l+e)b~(k-1;~+~j)-aI{k>_2}b~(k-2;~+ej)}. (3.5) 
j = l  

Relation (3.5) mainly differs from (2.21) through the occurrence of terms with coeffi- 
cients of the form b(k - 2; n + e j ) ,  j = 1 , . . . ,  s. An appropriate choice of the parameter 

G depends on the radii of convergence of the power series. Since the latter usually 
are not known for models to which the PSA is applied, a good practical policy is the 
following. If only a few terms of the power series (say, 12-15) will or can be computed, 
take G = 0; otherwise, execute a test-run with G = 0 and 5-10 terms, estimate the 
smallest radius of convergence, and take a value of G such that the power series are 
not too strongly divergent for the highest value of the load p for which performance 
measures will be evaluated. The power series do not need to be convergent when the 
c-algorithm, which will be discussed in the next section, is applied. 

3.2 Improving the convergence of the power series 

Another technique for removing singularities from inside the unit disk is application 
of the e-algorithm. The e-algorithm aims to accelerate the convergence of slowly con- 
vergent sequences or to determine a value for divergent sequences, cf. [17], [14]. It 
converts a polynomial into quotients of two polynomials. The e-algorithm consists of 
the following recursive scheme: 

c(~ ~ - -  c (~+1>~_~ + te~_~' (~+~> - c(2_)d - ~ _  , ~ >_ - ~ ,  ~ = 1, 2 , . . .  , (3 .6)  

with initial conditions: 

m 

-~ -1 -o ,  ~=o,1,  ..; c(_3~-0, c~ ~ - ~ c k e  k, ~ = o , 1 , .  ; (a.r) C_z,; �9 , , 

k=O 

here, the ck, k = 0, 1, 2 , . . . ,  stand for coefficients of a series such as defined in (2.22), 

(2.25) or (3.2). Only the even sequences l.(m) t~2~ ,m ---- 0, 1, . . .} ,  ~ ---- 1, 2 , . . . ,  may be 
sequences which converge faster to a limit than the initial sequence. The odd sequences 
are only intermediate steps in the calculation scheme. The e-algorithm turns a divergent 
series into a convergent series if the analytic continuation of the function defined by 
the series at O = 0 possesses only a finite number of poles as singularities inside the 
unit  circle I O l< 1. It transforms the initial sequence of polynomials into sequences of 

(-~-2~) will be a quotient of a polynomial quotients of two polynomials. More precisely, e2~ 
of degree m - n over a polynomial of degree n, and 

[ e~) (m-~) -e=~ I - - O ( e m + l ) ,  8--+0, .  ~ = l , 2 , . . . , m ,  m = 1 , 2  . . . . .  (3.8) 
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When the heavy traffic behaviour of the moments of the queue length distr ibution is 
known beforehand, the performance of the e-algorithm can be improved by a modi- 
fication of the initial  values e~ m), cf. [5]. Before application of the e-algorithm the 
coefficients of the power series are extrapolated to take into account the pole at p = 1 
(8 = 1). I t  means tha t  we take for first order poles 

o~+i e(om)= m = 0 , 1 , 2 , . . . ,  (3.9) 
k=0 

and for second order poles 

m 8 r n +  1 8 m + i  

c~ m) = E ckOk-t-CrnT----_O -t-[Cm--Cm_l]-(i---~)2, m = 1 , 2 , . . . ,  (3.10) 
k----O 

instead of the last relation of (3.7). The pole at 0 = 1 is preserved in other even 
sequences produced by the c-algorithm. It should be noted that  not every queue grows 
without bound as p ~ 1 in some systems; modifications (3.9) and (3.10) should only 
be applied to those moments which do have a pole at 8 = 1 in order to accelerate 
the convergence, although the modified sequences will converge to the same limit as 
the original sequence if the lat ter  is convergent. For probabilities which are known to 
vanish as p T 1 (8 T 1), the initial sequence of the c-algorithm can be replaced by 

m m 

e ~ m ) = E  ckSk-Sm+lEck = ( 1 - 8 )  E 0 k E  ci' m = 0 , 1 , 2 , . . . .  
k=O k=O k=O i=O 

(3.11) 

It may happen tha t  the power series are so strongly divergent that  numerical insta- 
bilities occur when a large number of terms is computed. In that  case, a conformal 
mapping as discussed in section 3.1 should be used together with the e-algorithm. Nu- 
merical instabili t ies of the PSA may also occur, because a large number of coefficients 
have to be summed to obtain the coefficients of the state O, cf. (2.20), and the coeffi- 
cients of aggregated performance measures, cf .  (2.26). This problem can be impaired 
by spli t t ing these large summations into smaller part ial  sums. 
The number of terms M of the power-series expansions, and the number of steps 
in the e-algorithm, cf. (3.6), which are needed to reach a certain accuracy, depend 
on various propert ies of the models. Generally, these quantities increase with increas- 
ing load, with increasing number of queues, with increasing coefficient of variation 
of distributions,  and with increasing asymmetry between the parameters  of the vari- 
ous queues. Numerical experience has taught us that  application of the e-algorithm 
strongly improves the performance of the PSA and that,  in some cases, it  even leads 
to good est imations of heavy traffic limits. For most systems it is very difficult to 
derive tight upper  bounds on errors for the PSA together with the e-algorithm. The 
order of magni tude of the errors usually has to be est imated from differences in perfor- 
mance measures computed on the basis of M and of M - 1, M - 2 , . . .  terms of their 
power-series expansions. Further,  exact relations between performance measures, such 
as pseudo-conservation laws for polling systems, have proven helpful in estimating the 
order of magni tude of errors. 
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3.3 On t h e  implementat ion  of the  P S A  

For most models, l imitations on storage capacity for the coefficients of the power- 
series expansions are more impor tant  restrictions on the applicability of the PSA than 
l imitations on computing time. The evaluation of power-series expansions up to the 
M t h  power of p (or 0, cf. (3.1)) requires the computat ion of 

(M't-s-I-I) (3.12) 
B , ( M ) =  \ s + l  

coefficients b(k; n), namely those with k+  ] n [< M. The complexity of the computa- 
tion of a single coefficient b(k; n) depends on the structure of the model, in part icular on 
the number of non-zero transit ion rates. In order to make an efficient use of the avail- 
able memory space we map the multi-dimensional region of lat t ice points (k, n) with 
k+  [ n ]_< M onto the set of integers {0 , . . . ,  Be(M) - 1} by means of the one-to-one 
mappifig 

C ( k ; n ) -  \ s +  + + . (3.13) 
j=lnl+l  J j=2 s- - j+1 

This mapping has the property that  points (k - 1; n), (k; n - e j) ,  (k - 1; n + ej) ,  

(k - 2; n + ej) ,  j = 1 , . . . ,  s, all have a lower value than the point (k; n), k = 0, 1 , . . . ,  

n E IN s. Another  mapping with this property has been discussed in [5], but the la t ter  
mapping has some disadvantages in more complicated models. The above procedure 
enlarges the number of terms of the power-series expansions which can be computed 
with a given storage capacity at the costs of increased computation time needed for the 
determinat ion of the location of the coefficients in the array in which they are stored. 
A further reduction of storage requirement can be realized when only a limited number 
of performance measures has to be evaluated. In most cases, one is not interested in 
all individual s tate probabilities. Then, the coefficients of the power-series expansions 
of the impor tant  performance measures can be aggregated during the execution of the 
PSA, cf. (2.26), and stored in separate (relatively small) arrays, while the coefficients 
of the state probabili t ies can be deleted as soon as they are not needed anymore in 
further computations.  This approach reduces storage requirement for calculating M 
terms of the power-series expansions from Bs (M) to D~ (M),  where D~ (M) is the largest 
distance (in terms of the mapping C(k; n), cf. (3.13)) between coefficients occurring in 
a single equation of (2.21) or (3.5), cf. [5], 

, i f  G = 0 ,  D~(M)= + , i f  G > 0 .  

(3.14) 
Notice tha t  the PSA considers a parametrized set of systems with the same service rates 
and with the same proportions between their arrival rates, i.e., with arrival rates paj(n) 
where p varies between 0 and 1. Hence, the fact that  the PSA adds a dimension (of the 
power-series expansions) to the s ta te  space IN s is compensated for by the fact that  once 
the coefficients of the power series have been computed, performance measures can be 
determined with relatively l i t t le effort for various values of the load p. Moreover, by 
deleting coefficients which are not needed anymore in further i terations the storage 
requirement is reduced to the original dimension. 
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4 G e n e r a l i z a t i o n s  o f  t h e  P S A  

The concept of the PSA is generalized to QBDPs in section 4.1. Other generalizations 
of the PSA are briefly indicated in section 4.2. 

4.1 The  P S A  for quas i -b i r th -and-dea th  processes 

In this section the PSA will be generalized to the class of multi-queue systems of which 
the underlying stochastic queue-length processes are multi-dimensional QBDPs. The 
finite supplementary space will be denoted by 1/and the supplementary variable by F.  
Let, in state n E INs and phase r E V, pajin, r r  be the arrival rate to queue j causing 
a transition to phase r dj ( n, r r  the departure rate from queue j causing a transition 
to phase r and u(n, r r  the phase-transition rate to phase r for j = 1 , . . . ,  s, r E 1/. 
Again, dj(n, r 1 6 2  = 0 if nj -- 0, for n E INs, j = 1 , . . . , s ,  r 1 6 2  E V. Let p(n , r  denote 
the probability that the process (N, F)  is in state (n, r n e IN s, r E Y. The global 
balance equations for the flows out of and into state ( n, r read: for n E IN~, r E 1/, 

Z [paj(n,r162162162162162 p(n, r 

8 

= ~ ~(., r O)pin, r + y ~  ~ pa~i- - ej, ~, O)I(nj > 1}pi- - ej, r 
eEV eEV j=l 

+ ~ Z d, (n + ej, r O)p(n + ej, r (4.1) 
e E V  j = l  

The state probabilities sum to 1. This can be written as 

m=O Inl=m eEY 

In a similar way as in section 2 it can be shown that the state probabilities possess 
power-series expansions in terms of the load p: for n E IN s, r E Y, 

oo 

p(n, r = plnl Z Pkb(k; n, r (4.3) 
k=0 

Substituting these power-series expansions into the global balance equations (4.1) and 
equating coefficients of corresponding powers of p leads to: for k = 0, 1, 2 , . . . ,  for 
n E IN s , r E l/, 

CEV CE~ 
s 

+ ~ ~-~[aj (n - ej, r r > 1}bik; n - ej, r 
~bEl2 j = l  

- a j ( n ,  r r  > 1}b(k - 1; n, 0) + dj(n + ej, r r  > 1}b(k - 1; n + ej, r (4.4) 
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These equations allow the computat ion of the sets of coefficients {b(k; n, r r E 1;} for 
vectors (k; n) with n # 0 in order of increasing value of C(k; n), cf. (3.13), if for each 
n E ]N s, n ~ 0, there is at least one r e ]2 with, cf. (2.4), 

> o, (4.5) 
j = l  CEV 

and if the set of transit ion rates {u(n, r r  ~, r E 1)} is such that  from any r E )) for 
which (4.5) does not hold there is a path to a r E ]2 for which (4.5) does hold. Then, 
the coefficients {b(k; n, r ~ E ])} can be computed from (4.4), possibly by solving a 
set of at most ] ]2 ] linear equations. That  the state probabilities sum to 1 implies the 
following relations for the state 0: 

Z b ( 0 ; 0 ' r  Z b(k;O'r Z Z b ( k - i n l ; n ' r  k=1,2,.... 
~,ev r l_<lnl_<k CeV 

(4.6) 
For QBDPs there does not need to be a unique empty state. The equations (4.4) 
become for n = O: for k = 0, 1, 2 , . . . ,  for r E V, 

u(0, r r 0, r = ~ u(n, r r 0, r 
Cev r 

+I{k > l} Z Z[dJ(ej,r162162162162162 (4.7) 
~bE)) j = l  

For fixed k, k = 0, 1, 2 , . . . ,  this is a dependent set of equations. Replacing one of 
these equations by (4.6) yields an independent set of equations if the Markov chain 
with transit ion probabil i t ies u(0, ~b, r  ~b, r E Y, is irreducible. If one of the foregoing 
conditions is not satisfied then the order in which the coefficients of the power-series 
expansions are computed has to be modified. This rather technical issue will not be 
elaborated upon. The reader is referred to [13] for an example of how the PSA can be 
modified if one of these conditions is not satisfied. The complexity of the PSA mainly 
depends on the number of stations s and on the size of the supplementary space Y. 
If coefficients of the power-series expansions (4.3) are computed up to the Mth  power 
of p, then the number of coefficients to be computed is at most B s ( M ) x  ] Y I, with 
Bs(M) given by (3.12) and I l;  I the number of states in Y. For some states n e IN ~, 
the supplementary space may be smaller than I Y h e.g., for the state n = 0 if part  of 
Y is used to describe PH service time distributions. 

4.2 Other generalizations of the P S A  

Further generalizations of the PSA are possible to QBDPs with migration and with 
finite buffer sizes, and to Markovian models with batch arrivals. An example of a 
QBDP with migration is the tandem queueing system to be discussed in section 7.1. 
Finite buffers can be incorporated into the models by taking aj(n, r r  = 0 for r r C ]2 
and for all n E IN ~ with nj >_ Lj, Lj being the buffer size for queue j ,  j = 1 , . . . , s .  
However, if all queues have finite capacity then the system is stable for all values of 
the offered load p, and this requires modification of the conformal mapping (3.1) and 
other aspects of the implementat ion of the PSA. It is still an open question if or under 
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which circumstances the PSA in conjunction with the e-algorithm is more efficient than 
solving the finite set of global balance equations for such systems directly. Admission 
of batch arrivals disturbs the bir th-and-death structure, and thereby property (2.22). 
An example of a system with multiple arrivals is discussed in section 5.3; see further 
[16]. 

5 P a r a l l e l - s e r v e r  s y s t e m s  

The PSA will be applied in this section to models with several queues in parallel, 
and with a server assigned to each queue. The coupled-processor systems in section 
5.1 and the load-balancing systems in section 5.2 are examples of BDPs. The fork 
systems in section 5.3 have multiple arrivals. It turns out that  the leading terms in the 
power-series expansions of the state probabilities are different from those for BDPs. 
This leads to a different, but  recursive, computat ion scheme for the coefficients of the 
power-series expansions. 

5.1 Coupled processor systems 
This section deals with a system consisting of S parallel servers (processors), each with 
its own queue. At queue j ,  jobs arrive according to a Poisson process with intensity 
)~j = paj, j = 1 , . . . ,  s. Jobs arriving at queue j require an amount of service which is 
exponentially dis tr ibuted with parameter  #5, J --- 1 , . . . ,  s. The service rate at queue 
j depends on the s ta te  of the system: it is equal to rs(n  ) if the system is in state n, 
n E ]N ~, j ---- 1 , . . . ,  s. The stat ionary state probabilities p(n)  satisfy the following set 
of global balance equations: for n E IN s, 

,itS(n) p(n)=  sp(n-ej)+ ,SrS(n+ej)p( +ej). (5.1) 
\ j = l  j=l  j=l  j=l  

Further,  the law of to ta l  probabil i ty (2.2) holds. The queue-length process is an s- 
dimensional BDP and, hence, the PSA can be applied directly, as in section 2.1. The 
only condition for the s tandard application of the PSA is that,  cf. (2.4), 

~ r ~ 5 ( n ) > 0 ,  i f n r  n E I N  ~. (5.2) 
5=1 

If this condition which is not necessary for stabili ty is not fulfilled, the computat ion 
scheme of the PSA has to be modified. This technical issue will not be discussed here. 
Finally, if the model is generalized with a MAP with Oj states at processor j and a PH 
service requirement distr ibution with ~5 stages for jobs at  processor j ,  j = 1 , . . . ,  s, 
then the size of the supplementary space becomes 

' ]2 '---- r X  Oh • f f I  ~ 5. (5.3) 
h=l j=l  

5.2 Load-balancing systems 
Consider a system consisting of s parallel servers, each with its own queue. There is 
one Poisson arrival s t ream with rate )~=pa. Jobs are routed to one of the queues upon 
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arrival. The service rate of server j is #5, J -- 1 , . . . ,  s. The balance equations for the 
state probabilities p(n) read: for n C IN s, 

a / a a 

j = l  j = l  .1'=1 
(5.4) 

here, 7 j (n)  stands for the probability that an arriving job joins queue j when the 
system is in state n upon its arrival, n E IN s, j =- 1 , . . . ,  s. Further, the law of total 
probability (2.2) holds. For general allocation functions 7j (n) the queue-length process 
is a BDP so that  it is possible to use the power-series expansions (2.22). If this function 
is such that  7j(n)  -- 0 if nj > min{n~; i = 1 , . . . ,  s), i.e., if every arriving job chooses 
one the shortest queues, then many coefficients b(k;n) in (2.22) vanish. For this case, 
the following power-series expansions hold for the state probabilities: 

c,o 

p(n) = p,(n))-]  pkb(k;n); l(n) "-- s j ~ a x  { - A = ,  - #(~;n~ < jmax { , ~ } } , _ _  , ,  n e ~s.  
k = 0  

(5.5) 
Notice that  l(n) >[ n [ for all n e IN s, while l(n) =] n ] iff max{ni ; i  ~- 1 , . . . , s }  - 
min{n~; i = 1 , . . . ,  s} _< 1. By using (5.5) the PSA can handle systems with much more 
queues than that  it can handle without this property, especially if all service rates are 
equal and the allocation function 7j(n)  is symmetrical, and if also this symmetry is 
used to reduce the number of coefficients to be computed and stored. The number of 
coefficients to be computed if coefficients of the power-series expansions are computed 
up to the Mth  power of p, is given in [10] for the asymmetrical as well as the symmet- 
rical case. If the model is generalized with a MAP with O states and PH service time 
distributions, with kgj stages for service at queue j ,  j = 1 , . . . ,  s, then the size of the 
supplementary space is 

I Vl--O x T ~ .  
j--1 

(5.6) 

5.3 Fork sys tems  
Fork systems are models for parallel computing devices. The system consists of s 
parallel processors, each with its own queue. There is one arrival stream of jobs. Jobs 
split upon arrival. Suppose for simplicity that every job sends a partial job to each 
queue. Let A = pa denote the arrival rate, and let #j be the service rate of processor 
j ,  j -- 1 , . . . ,  s. The queue-length process of this model is a Markov process, but not 
a birth-and-death process, because an arrival leads to a transition in each component 
of the state space. The arrival process is a special kind of batch arrival process. The 
balance equations for the state probabilities p(n) read: for n E IN ~, 

( ) ~ , + E l ~ j I { n j  > 0 }  p ( n ) - - - - A p ( n - e ) I { V j  nj ~_ 1 } §  (5.7) 
j----1 j = l  

here, e -- (1, 1 , . . . ,  1) denotes the s-dimensional unit  vector. Further, the law of total 
probability (2.2) holds. For these systems, the following power-series expansions for 
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the state probabilities hold: 

p(n)=p~(n)~pkb(k;n); / ( n ) -  max {nj}, n E I N  ~. (5.8) 
k=O 

Notice that  / (n - e) = l(n) - 1, and that l (n + ej) = l(n) + 1 if nj = /(n) while 

/ (n + ej)  = / ( n )  if nj < l(n), for n �9 IN ~, j = 1 , . . . ,  s. Hence, substituting (5.8) into 

(5.7) and equating coefficients of corresponding powers of P leads to: for n �9 IN s, 

8 

E # j I { n  j > 1}b(k;n) ---- ab(k;n- e)I{Vj nj > 1} - aI{k > 1}b(k - 1;n) 
j=l 

+ #jllnj < l (n ) }b (k ;n+e j )+E#j I {k> 1,n,.=l(n)}b(k-1;n+ej). (5.9) 
j = l  j=l  

The fact that the state probabilities sum to 1 implies the following relations 

b ( 0 ; 0 ) = l ;  b ( k ; 0 ) = -  E b(k-l(n);n), k = l , 2 , . . . .  (5.10) 
l<l(n)<k 

The order of calculation has to be chosen such that coefficients b(k; n + ej) for j with 

nj < /(n) are computed before b(k;n), cf. (5.9). This means that for fixed k and 
/(n), coefficients b(k; n)  have to be computed first for the vector n with nj  = l(n) for 
all j ,  j = 1 , . . . , s ,  and then successively for vectors n with rain {ni;i = 1,...,s} = 
l ( n ) -  1, /(n) - 2 , . . . ,  0. In this way, the coefficients b(k; n) can be recursively computed 
in order of increasing value of m = k + / (n ) ,  and for fixed m in order of increasing value 
of k. The number of states n E IN s wi th / (n )  = m for some m is equal to (m + 1) s - ms. 
If coefficients of the power-series expansions (5.8) are computed up to the Mth  power 
of p, then the number of coefficients to be computed is 

M M~-I  

Bs(M) = E ( M  + 1 - m)[(m + 1) ~ - m s] = E ms" (5.11) 
r r ~ 0  r n = l  

The coefficients of the power-series expansions of moments of the joint queue-length 
distribution can be computed in a similar way as in (2.26), but with I n I replaced 
by l(n). If the model is generalized with a MAP with O states and PH service time 
distributions with ~ j  stages for service at processor j ,  j = 1 , . . . ,  s, then the size of the 
supplementary space is given by (5.6). 

6 Mult i -queue  systems with switching servers 
An important  class of models to which the PSA is applicable is the class of polling 
models. Polling systems are systems with several stations, each generating a stream 
of jobs or messages, and one or more servers which are not devoted to a specific class 
of jobs, but  which alternately serve jobs from one of the stations. Usually, the times 
needed to switch service from one station to another are non-negligible. Polling systems 
form a very rich class of queueing systems due to the many priority or visit rules and 
service disciplines that they allow. Important  areas for application of these models are 
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computer-communication systems, in which several stations share a single communica- 
tion channel and compete for access to this channel, e.g., local area networks. Section 
6.1 contains a general introduction of the PSA for polling systems, the sections 6.2 and 
6.3 are concerned with specific polling models. 

6.1 T h e  P S A  for various polling strategies 
The service strategies for polling systems can often be divided into three parts, which 
can be chosen independently of each other: a rule for the order in which the server 
visits the queues; rules for the number of services per visit to the various queues; and 
a rule for the behaviour of the server when the system is empty. 
Examples of order-of-visit rules are: polling in a fixed periodic order (cyclic: 1, 2, . . . ,  s, 
1, 2 , . . . ;  star: 1, 2, 1, 3 , . . . ,  1, s~ 1, 2, 1 , . . . ;  scanning: l, 2 , . . . ,  s - l ,  s, s - l , . . . ,  2, 1, 2 , . . . ;  
or according to some general finite polling table); random or Markovian polling: the 
next queue to be visited is determined by a random mechanism which may depend 
on the current position of the server (Markovian polling) or not (random polling); 
polling according to fixed priorities attributed to the queues; or polling according to 
a dynamic (state-dependent) rule such as priority for the longest queue, priority for 
the queue with the most expected work, elevator-type polling, i.e., in principle as 
scanning above, but  skipping queues which are empty, or a greedy strategy, choosing 
the closest non-empty queue. The choice of the order-of-visit rule will depend on the 
availability of information about the presence of jobs at the various stations. Further, 
this choice may depend on the configuration of the system, i.e., on whether or not 
direct connections between pairs of stations in the network exist, and on the distances 
between the stations, in terms of mean switching times. The PSA can handle all these 
rules, but  in each case a supplementary variable is needed to indicate the position of 
the server. For the case of periodic polling this variable has to indicate the current 
entry of the table, for all other cases it has to indicate the station which is being visited 
by the server. 
Examples of number-of-services rules are: exhaustive service (the server remains serv- 
ing until  a queue becomes empty); limited service (a fixed number of jobs is served, at 
most); Bernoulli service (after each service another service may be started with a fixed 
probability); gated-type service (only jobs present in a queue at the instant at which 
the server arrives at that queue are eligible for service); time-limited service (during a 
time interval of fixed length new services may start). The number-of-services rules may 
be different for the various queues or visits. The PSA can be applied to systems with 
Bernoulli service, including exhaustive and l-limited service as special cases, without 
additional supplementary space. For general limited service an additional supplemen- 
tary variable is needed to keep track of the number of services completed during the 
current visit. Time-limited service can only be approximated by Erlang distributed 
timers, and requires a supplementary variable to keep track of the stage of the timer. 
Gated-type disciplines cannot be modeled by an s-dimensional QBDP, because they 
require an unbounded supplementary space, but they can be modeled by an (s A- 1)- 
dimensional QBDP, where the additional queue contains the jobs which are eligible for 
service during the current visit. 
Examples of empty-system rules are: the server keeps on switching according to the 
order-of-visit rule; the server remains at the last served queue; the server goes to a 
state of rest; the server goes to a specific queue (e.g., the queue with the highest arrival 
rate), or to one from a specific set of queues. The choice of the empty-system rule 
will also depend on the availability of information. The first rule requires only local 
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information, the other rules require information from all stations. The PSA can be 
applied to systems in which the server keeps on switching or in which the server goes 
to one specific queue or state of rest in a straightforward manner. If the server may 
rest at several queues, then the computation scheme has to be modified, cf. [13]. 
In the next sections the PSA will be discussed in more detail for some specific polling 
strategies. The following notations will be used. A polling system will consist of s 
queues and a single server. Jobs arrive at queue j according to a Poisson process with 
rate Aj = xa j ,  j = 1 , . . . ,  s. The sum of the arrival processes at the various queues is 
a Poisson process with rate A = x A  = X ~ aj. Service times of jobs arriving at queue 
j are assumed to be exponentially distributed with rate #j,  j = 1 , . . . , s .  The load 
offered at queue j is pj -- ) , j /# j ,  j = 1 , . . . ,  s, and the total offered load to the system 
is p "- ~ pj. The number-of-services rules are limited service, i.e., during a visit of the 
server to queue j at most Kj  jobs will be served; if this number has been reached or 
queue j has been emptied, the server chooses the next queue according to the order- 
of-visit rule (j = 1 , . . . ,  s). The times which the server needs for switching from queue 
i to queue j are assumed to be exponentially distributed with rates vii, i, j = 1 , . . . ,  s. 
Two supplementary variables will be used to render the queue-length process into a 
QBDP. The supplementary variable H will indicate the position of the server, i.e., the 
queue to which the server is switching or to which the server is attending, and Z will 
indicate the status of the server; more specifically, Z = - i ,  i = 1 , . . . ,  s, indicates that 
the server is switching from queue i (to queue H) and Z --- x, x = 1 , . . . ,  KH, indicates 
that the server is performing the gth service during the current visit to queue H. If 
it is not necessary to keep track of the queue from which the server is switching, then 
Z = 0 will indicate the mere fact that the server is switching. The state probabilities 
of the QBDP (N, H, Z) will be denoted by p(n, h, ~). In general, the condition for 
stability of a polling system depends, besides on the offered load p, also on the service 
strategy and the switching time distributions. Therefore, the PSA for polling systems 
will be based on power-series expansions of the state probabilities as functions of the 
occupancy X of the system: for n E IN s, h = 1 , . . . ,  s, x = - s , . . . ,  Kh, 

oo 

p(n, h, to) -= X Inl E xkb(k; n, h, to); (6.1) 

k=-0 

here, the occupance X is defined in such a way that the system is stable for 0 _< X < 1. 
It is also possible to work with power-series expansions as functions of the offered load 
p, but then the conformal mapping (3.1) and the modifications (3.9), (3.10), (3.11) of 
the initial sequence of the e-algorithm have to adapted. 

6.2 Systems with cyclic polling strategies 
This section is devoted to polling systems with limited service in which the order-of- 
visit rule is cyclic polling and in which the server continues to move along the queues 
when the system is empty. The condition for stability of these cyclic-polling systems 
r e a d s :  

X - - P + 6 t  max { ) t j / K j } < l ;  (6.2) 
j=l , . . . , s  

here, 6t is the mean total switch-over time during one cycle of the server along the 
queues. For the case of cyclic polfing it is not necessary to keep track of the queue 
from which the server is switching (this is queue j - 1 ff the server is switching to queue 
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j ,  j = 1 , . . . ,  s; read here and below queue s for queue 0). Therefore, it  is sufficient to 
have Z = 0 indicate that  the server is switching. The switching rate from queue j - 1 
to queue j will be denoted by vj,  j = 1 , . . . ,  s. There is no unique empty s tate  in this 
system, because the server continues to switch when the system is empty. The balance 
equations for the state probabilit ies p(n,  h, ~) are: for n E IN s, h = 0 , . . . ,  s - 1, 

s 

[A + Vh+l]p(n, h + 1, O) = E )~jI{nj  > 1}p(n - ej ,  h + 1,0) 
j = l  

K h  

"q-VhI{nh = 0}p(n, h, 0) + #h E I { ~  = g h  V nh = 0}p(n + eh,  h, ~); 

and for n E IN s, h = 1 , . . . ,  s, nh ~ 1, ~ = 1 , . . . , / s  

(6.3) 

8 

[A + #hiP(n, h, ~) = E )~jI{nj  > 1}p(n - ej ,  h, ~) + VhI{~ = 1}p(n, h, 0) 
j = l  

+#hI{~  >_ 2}p(n + eh ,  h, ~ - 1). (6.4) 

Further, it  holds by the law of total  probabili ty that  

oo c~ s K h 

E. . .  E 1. 
nl=O ns=O h = l  ~:=0 

It should be noted that  p ( n , h , ~ )  = 0 if nh = 0, for all n E IN ~, ~ = 1 , . . . , K h ,  
h = 1 , . . . ,  s. Subst i tut ing the power-series expansions (6.1) into the balance equations 
(6.3) and (6.4), and equating the coefficients of corresponding powers of X in the 
resulting equations leads to the following set of equations for the coefficients in (6.1): 
for k = 0,1, 2 , . . . ,  for n E INs, h = 0 , . . . , s -  1, 

8 

Vh+lb(k;n,  h + 1,0) = E a j I { n j  > 1 } b ( k ; n -  ej ,  h + 1,0) 
j = l  

- A I { k  > 1}b(k - 1; n, h + 1, 0) + VhI{nh = 0}b(k; n, h, 0) 

K h  

+ # h I { k  > 1} E I { ~  = I(h V n h  = 0}b(k - 1;n  + e h , h , ~ ) ;  

and for k = 0 , 1 , 2 , . . . ,  for n E IN s , h = 1, . . . , s, nh >_ 1, ~ = 1, . . . , Kh,  

(6.6) 

s 

# h b ( k ; n , h , ~ )  = E a j I { n j  > 1 } b ( k ; n -  ej ,h, t~) - A I { k  > 1}b(k - 1;n, h, t~) 
j = l  

+ V h I { ~ =  l }b (k ;n ,h ,O)  + /~hI {~  _> 2, k > l } b ( k - 1 ; n  + e h ,  h , ~ -  l) .  (6.7) 

It is readily verified that  the set of equations (6.6) and (6.7) expresses coefficients 
b(k; n, h, t~) in terms of coefficients of lower order with respect to the mapping (3.13), 
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or of the same order but with lower value of a, g = 0, 1 , . . . ,  Kh, with the exception 
of the term b(k; n, h, 0) in (6.6). The latter term only plays a role when nh = 0 for 
some h, h = 1 , . . . ,  s. However, if n ~ 0, the set of coefficients b(k; n, h, 0), for k and 
n fixed, can still be recursively computed by starting at a value h = j with nj  > 0 
and by proceeding the computations of the coefficients b(k; n, h, 0) then sequentially 
for h = j + 1 , . . . ,  s, 1 , . . . ,  j - 1. Hence, the only states which require further attention 
are those with n = 0 and g = 0. The equations (6.6) read for these states: for 
k = 0, 1 ,2 , . . . ,  h = 0 , . . . , s -  1, 

Vh+lb(k; O, h + 1, O) = Vhb(k; O, h, O) 

+ I { k > l }  # h E b ( k - 1 ; e h ,  h , ~ ) - A b ( k - 1 ; O , h + l , 0  ) . (6.8) 

It is readily seen, that these sets of equations are dependent for each k, k -- 0, 1, 2 , . . . .  
Substi tuting the power-series expansions (6.1) into (6.5) and equating the coefficients 
of corresponding powers of X in the resulting equation leads to the following equations: 

~L~ b(0; 0, h, 0) = 1; 
h = l  

s 

k=1,2 , . . . .  (6.9) 
h = l  l_<lnl_<k h = l  g = 0  

For each k, k = 0, 1, 2 , . . . ,  equation (6.9) and s - 1 equations of (6.8) form together 
a set of s linear equations by which the s coefficients b(k; O, h, 0), h --- 1, . . . ,  s, are 
uniquely determined. 
If the model is generalized with a MAP with Oj states at station j ,  a PH service time 
distribution with kOj stages for jobs at station j ,  and a PH switch-over time distribution 
with flj stages for switches from station j - 1 to station j ,  j = 1 , . . . ,  s, then the size 
of the supplementary space is 

I V I= oh  x n~ + ~ j  . (6.10) 
h=l X j=l j=l / 

Systems with general periodic polling orders can be treated in a similar way as above, 
cf. [9]. It is rather straightforward to extend the PSA for cyclic-polling systems (as 
well as for polling systems with other order-of-visit rules) to systems with set-up times 
at the beginning of each visit to a station, cf. [1]. In particular, the sets of equations 
for the empty states remain similarly as above. 

6 . 3  Systems with random polling strategies 
This section is devoted to polling systems with limited service in which the order-of- 
visit rule is Markovian polling and in which the server continues to move along the 
queues when the system is empty. The probability that the server will switch to queue 
j after completion of a visit to queue i will be denoted by rij, i , j  = 1, . . .  ,s; these 
probabilities should be such that  each queue is positive recurrent. The condition for 
stability of Markovian polling systems is 
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X - P + 5a max  {A j / ( y j K j ) }  < 1; (6.11) 
j = l , . . . , s  

here, 5,, is the  mean  of an a rb i t r a ry  switch-over t ime,  and {yj,  j = 1 , . . . ,  s} is the 
s t a t iona ry  d i s t r ibu t ion  of the  Markov chain with t rans i t ion  probabi l i t ies  {r l j ,  i , j  = 
1 , . . . ,  s}. The  ba lance  equat ions  for the s ta te  probabi l i t ies  p(n ,  h, ~) of the Q B D P  
(N,  H, Z)  are, for n E IN s, h,t~ = 1 . . . . .  s, 

[A + V,~h]p(n, h, - to) = E ;~JI{nJ >- 1}p(n - e j ,  h, - ~ )  
j = l  

$ 

+ ~ vj~r~hI{n~ = O}p(n,  ~, - j )  
j----1 

K~ 

i = l  

and for n E IN s, h = 1, . . . ,  s, nh > 1, ~ = 1 , . . . ,  Kh, 

(6.12) 

[h + #h]p(n,  h, g) ---- ~ AjI{n j  > 1}p(n - e j ,  h, ~) 
j = l  

$ 

+ E VjhI{tr ---- 1}p(n, h, - j )  + #hI{~ > 2}p(n + eh ,  h, ~ - 1). (6.13) 
j = l  

Fur ther ,  i t  holds  by the law of to ta l  p robabi l i ty  tha t  

) . . .  p ( n , h , - j )  + ~ p ( n , h , ~ )  = 1. (6.14) 

n l = 0  r t s=0  h = l  tr 

As in sect ion 6.2, p(n ,h ,~ )  = 0 if nh = O, for all n C IN s , ~r = 1 , . . . , K h ,  h = 1 , . . . , s .  
Fur ther ,  p ( n , h , - j )  = 0 if r jh  = 0, for all n E IN s , j , h  = 1 . . . . .  s. Subs t i tu t ing  
the  power-series expansions  (6.1) in to  the balance equat ions  (6.12) and (6.13), and 
equat ing  the coefficients of corresponding powers of X in the resul t ing equat ions  leads 
to  the following set of equat ions:  for k = 0, 1 , 2 , . . . ,  for n E IN s, h, ~ = 1 , . . . ,  s, 

$ 

V,chb(k; n, h, - ~ )  = E a j I {n j  > 1}b(k; n - e j ,  h, - ~ )  
j = l  

s 

- A Z { k  >_ 1}b(k - 1; n, h , - ~ )  + E vj,~r,,hl{n,~ = 0}b(k; n, ~ , - j )  
j = l  

Kh  

+tt,~r,,hI{k >_ 1} E I{ i  = K~ V n~ = 0}b(k -- 1; n + eh ,  ~, i); 
i=1  

and for k = 0, 1, 2 , . . . ,  for n E IN', h = 1 , . . . ,  s, Vth ~_ 1, ~ = 1 , . . . ,  Kh, 

(6.15) 
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8 

#hb(k; n, h, ~) = E a j I {n j  > 1}b(k; n - ej,  h, x) - A I { k  > 1}b(k - 1; n,  h, n) 

j = l  

$ 

+ ~ ~jhI(~ = 1}b(k; n, h, - j )  + u h I { ~  > 2, k > 1}b(k - 1; n + % ,  h, ~ - 1). (6.16) 
j = l  

As in section 6.2, the set of equations (6.15) and (6.16) expresses coefficients b(k; n, h, ~) 
in terms of coefficients of lower order with respect to the mapping (3.13), or of the same 
order but with lower value of ~, g = - s , . . . ,  - 1 ,  1 , . . . ,  Kh, with the exception of the 
terms b(k; n, h, - j )  in (6.15). In contrast with the cyclic-polling system, sets of linear 
equations may have to be solved for the present model also for states n # O, with size 
depending on the denseness of the transition matrix {r~j, i, j -- 1 , . . . ,  s}, but at most 
equal to z2(n); here, z(n) stands for the number of zero components of a state n. For 
n = 0 the set of equations (6.15) is dependent, and has to be supplemented by an 
equation stemming from (6.14), cf. section 6.2: for k = 0 

b(0; 0, h,-j) = 1; (6.17) 
h = l  j = l  

respectively for k = 1 ,2 , . . . ,  

$ s s 

: -  E EE ( -Jnl, 
h=l j=l l<lnl<k h=a j=l 

s K h 

l< ln l_<k h = l  ~;=1 

Then, for each k, k = 0, 1, 2 , . . . ,  a set of at most s 2 independent linear equations is 
obtained for the same number of non-vanishing coefficients b(k; O, h, - j ) ,  j, h = 1 , . . . ,  s. 
If the model is generalized with a MAP with | states at station j ,  a PH service time 
distribution with # j  stages for jobs at station j,  and a PH switch-over time distribution 
with flij stages for switches from station i to station j, i , j  = 1 , . . . ,  s, then the size of 
the supplementary space is given by 

I ~; ]= I I O h  • ~-~I{rij>o}aij+ KjI~j . (6.19) 
h = l  i=1 j = l  j = l  

7 N e t w o r k s  w i t h  j o b  t r a n s i t i o n s  

This section is devoted to open networks of queueing centres or stations in which the 
servers have been allocated permanently to one of the centres, and in which jobs may 
circulate through the network from centre to centre before they ultimately leave the 
network. The queue-length process for such a network is a (Q)BDP with migration. 
It will be shown that straightforward extension of the PSA to such processes leads to 
recursive computation schemes if migration occurs in one direction only. Section 7.1 
deals with the extension of the PSA to tandem queueing systems, section 7.2 contains 
a discussion on more general networks. 
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7.1 The  P S A  for tandem queueing systems 
The system consists of s single server centres in series. The queue-length process of the 
model with a Poisson arrival process and exponential service time distributions has a 
product form solution. To avoid discussion of this trivial model it  is assumed that  jobs 
arrive to the system at queue 1 according to a MAP. This MAP is defined as follows. 
It is governed by a Markov process with O stages. The transition rate from stage w is 
py~, and when the process leaves stage w it goes to stage r with probabili ty ~ r  while 
an arrival is generated with probabili ty g~r w, r = 1 , . . . ,  O. It is assumed that  the 
service times at centre j are exponentially distr ibuted with rate #j,  j --- 1 , . . . ,  s. The 
state probabili t ies p(n,  r of the process (N, (I)), where ~ indicates the actual stage of 
the MAP, satisfy the following global balance equations: for n E ]N ~, r -- 1 , . . . ,  | 

( s ) o 
P'~r + E I~jI{n3 ~- 1} p(n, r = p E y,p~r162162162 > 1}p(n - e l ,  r  

j = l  r 

| 

+p ~ .~r - gr r 
r 

+.~.p(n+es,r247 __ 1}p(n+ej-ej§162 (7.1) 
j----1 

Further, the law of total  probabili ty holds. But a stronger property holds for models 
with MAPs which stems from the autonomy of the MAPs. For the present model this 
implies that  

. . .  ~ p ( n , w ) = v ~ ,  r (7.2) 

nl~-0  ns-~O 

here, v~ is the s tat ionary probabili ty that  the MAP is in stage w, w = 1 , . . . ,  O; i.e., 
these probabilit ies are the solution of the set of equations 

| | 

. . . .  , o ;  (7 .3)  
r  w = l  

Substi tut ion of power-series expansions (4.3) into (7.1) yields: for k = 0, 1, 2 , . . . ,  n E 
IN ~ , r  

s | 

E #jI{n.i >_ 1}b(k; n, r = E yeS, cOcci{n1 >_ 1}b(k; n - e l ,  r  
j = l  r 

| 

+I{k >_ 1} E nr162162 - g~v)b(k - 1; n, r  - yr >_ 1}b(k - 1; n, r 
r  

+#sI{k ~_ 1}b(k - 1; n + es,  r + E #jI{nj+l ~_ 1}b(k; n + ej - e j + l ,  r 
j = l  

From (7.2) it follows in a similar way that  for w = 1 , . . . ,  | 

(7.4) 
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b ( 0 ; 0 , w ) = v ~ ;  b ( k ; 0 , ~ o ) = -  E b ( k - I  n l ; n , w ) ,  k = l , 2 , . . . .  (7.5) 

l_<lnl_<k 

Because C ( k ; n  + ej - e j + l )  < C(k;n) ,  cf. (3.13), for all n E IN s with nj+l  > 1, 

for j = 1 , . . . ,  s - 1, k = 0, 1, 2 , . . . ,  the set of equations (7.4), (7.5) allows recursive 
computation of the coefficients b(k ;n ,w) ,  w = 1 , . . . ,  O, in order of increasing value of 
C(k; n).  If the model is generalized with PH service time distributions with kgj stages 
for service at centre j ,  j = 1 , . . . ,  s, then the size of the supplementary space is given 
by (5.6). 

7.2 T h e  P S A  for ne tworks  of queues 

In more general networks, arrivals from outside the network may occur at each centre. 
Suppose that when the service of a job has been completed at centre i, this job leaves the 
network with probability rio and moves to centre j with probability rij,  i, j = 1 , . . . ,  s. 
Because for k = 0,1,2 . . . .  , C ( k ; n +  ej - e l )  < C(k;n) ,  cf. (3.13), for all n e IN s 

with n~ _> 1, for i = j + 1 , . . . ,  s, j = 1 , . . . ,  s - 1, the recursive scheme for the tandem 
queueing model can be readily extended to acyclic networks, i.e., to networks with 
rij = 0 for j = 1 , . . . , i ,  i = 1 , . . . , s ,  with a MAP at each centre and with PH service 
time distributions. If a network is not acyclic then standard application of the PSA 
does not lead to a recursive computation scheme, but requires the solution of sets of 
linear equations of which the size increases strongly with s and ] n ]. 

8 Optimization and sensitivity analysis 
For optimization of a performance measure with respect to real-valued parameters of 
a system it is useful to be able to compute derivatives of the performance measure as 
function of these parameters. Then, optimization techniques as the conjugate gradient 
method can be used to determine optimal values of these parameters with respect to 
some objective function. Computation of derivatives may also be useful to study the 
sensitivity of performance measures for changes in system parameters. The method of 
extension of the PSA towards the computation of derivatives is discussed in section 8.1 
for cyclic-polling systems with Bernoulli service. Other possible applications of this 
extension are indicated in section 8.2. 

8.1 Der iva t ive s  w i th  the  P S A  

The computation of derivatives with the PSA is illustrated in this section for the case of 
polling systems with Bernoulli schedules in which the order-of-visit rule is cyclic polling 
and in which the server continues to move along the queues when the system is empty, 
cf. section 6.2. A Bernoulli schedule is a vector of s probabilities ( q l , . . . ,  qs) which are 
used as follows. When the server arrives at a queue, at least one job is served, unless 
this queue is empty (in which case the server directly proceeds to the next queue). 
After the completion of a service at queue j the server starts serving another job at 
this queue with probability qj if queue j has not yet been emptied; otherwise, the 
server proceeds to the next queue (j = 1 , . . . ,  s). Special cases are l-limited (qj = O) 
and exhaustive service (qj = 1). The notations are further the same as in section 6.2. 
The system is stable if (6.2) holds with I(j replaced by 1/(1 - qj), j = 1 . . . . .  s. For 
this model, Z = 0 indicates that the server is switching, and Z = 1 that the server 
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is serving. The  ba lance  equat ions  for the  s ta te  probabi l i t ies  p(n ,  h, ~) of the  process 
( N , H , Z )  are: for n E IN ~, h = 0 , . . . , s -  1, 

[A + vh+l]p(n,  h + 1, 0) = ~_~ )t~I{ni > 1}p(n - e j ,  h + 1, 0) 
j = l  

+VhI{nh = 0}p(n, h, 0) + #h[1 -- qhI{nh > 1}]p(n + eh ,  h, 1); 

and for n E IN ~, h = 1 , . . . , s ,  nh > 1, 

(8.1) 

[A + #h]p(n,  h, 1) = ~ AjI{nj > 1}p(n - e j ,  h, 1) + vhp(n, h, 0) + #hqhp(n + e h ,  h, 1). 
j=l  

(8.2) 
Further ,  the  law of to ta l  p robab i l i ty  holds, cf. (6.5), with Kh = 1, h = 1 , . . . ,  s. As in 
sect ion 6.2, p(n ,  h, 1) = 0 if nh = 0, for all n E IN s, h = 1 , . . . ,  s. The  equat ions  for 
the coefficients of the power-series expansions (6.1) are: for k = 0, 1, 2 , . . . ,  for n E IN s, 
h = 0 , . . . , s -  1, 

8 

h + 1,0) = E a i I { n j  > 1 } b ( k ; n -  e j , h  + 1,0) Vh+lb(k; n, 

j = l  

+vhI{nh = 0}b(k; n ,  ~, 0) 
+I{k > 1}#h[1 -- qhI{nh > 1}]b(k - 1; n + eh ,  h, 1) - Ab(k - 1; n, h + 1, 0); 

and for k = 0, 1, 2 , . . . ,  for n E IN ~, h = 1 , . . . ,  s, nh > l ,  

(8.3) 

.-2., 
I.thb(k; n, h, 1) = ~ ajI{nj > 1}b(k; n - e j ,  h, 1) + vhb(k; n, h, O) 

j = l  

+ I { k >  l }#hqhb(k -1 ;n+eh ,  h , 1 ) - A b ( k - 1 ; n , h ,  1 ). (8.4) 

The  law of to ta l  p robab i l i ty  leads to relat ions similar  to (6.9), wi th  Kh = 1, h = 
1 , . . . ,  s. Next,  consider  der ivat ives  of the s ta te  probabi l i t ies  with respect  to the 
Bernoull i  pa rameters .  I t  can be shown tha t  these derivat ives possess power-series 
expansions  of the form: for n E IN s, r, h = 1 , . . . ,  s, ~ = 0, 1, 

k = 0  

~.(k; n, h, ~) - o - ~ ( k ; . ,  h, ~), k = 0, 1, 2 . . . . .  (8.5) 

Taking der ivat ives  of bo th  sides of equat ions  (8.1) and (8.2), subs t i tu t ing  power-series 
expansions  (8.5) and equat ing corresponding powers of X, or taking derivat ives di rect ly  
in re la t ions (8.3) and (8.4), leads to the following set of equations:  for r = 1 , . . .  ,s ,  
k = 0 , 1 , 2 , . . . , f o r n E ] N  ~, h = 0 , . . . , s - 1 ,  
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t,h+lbr(k; n, h + 1, 0) --= E ajI{nj  > 1}br(k; n - ej, h + 1, 0) 
j ~ l  

+t, aI{nh = 0}br(k; n, h, 0) + I{k  > 1}#h[1 -- qhI{nh > 1}]b~(k - 1; n + eh,  h, 1) 

--tthI{r =h ,  nh > 1}b(k -  1 ; n + e h ,  h, 1 ) - A b , ( k - 1 ; n , h  + l,O); (8.6) 

and for r = 1 , . . . ,  s, k = 0, 1 ,2 , . . . ,  for n E IN s, h = 1, . . .  , s, nh _> 1, 

s 

tthbr(k; n, h, 1) -- E ajI{nj  > 1}b~(k; n - ej, h, 1) + vhbr(k; n, h, O) 
j = l  

-4-I{k > 1}tthqhbr(k -- 1; n ~- eh,  h, 1) -4- lthI{r = h}b(k - 1; n + eh,  h, 1) 

-Ab~(k - 1; n, h, 1). 

The law of total probability leads in a similar way to: for r = 1 , . . . ,  s, 

~b~(0;0, h,0)=0; 
h ~ l  

(8.7) 

 br(k;0, h,0)---  k=1,2,.. . .  (S.S) 
h----1 l_<]n] '<k  h~-I  t~-0 

By means of (8.6), (8.7) and (8.8) the coefficients br(k; n, h, t:) can be computed recur- 
sively, but only in conjunction with the coefficients b(k; n, h, g). Derivatives of other 
performance measures with respect to the Bernoulli parameters can be computed by 
taking term by term derivatives in relations (2.25) and (2.26). It is readily verified 
that br(0; n, h, g) = 0 for all n E IN ~, h = 1 , . . . , s ,  ~ = 0,1, and r = 1 , . . . , s .  By this 
property, the evaluation of power-series expansions of the state probabilities and their 
derivatives with respect to d Bernoulli parameters up to the Mth power of X requires 
the computation of Bs,d(M)• I V I coefficients, with 

\ s + l  + d k s + l  ) .  (8.9) 

The above computation scheme is readily extended to the computation of second order 
derivatives but the latter require still more additional storage space. 

8 .2  Optimization with gradient methods 
Derivatives of performance measures with respect ' to Bernoulli service parameters can 
be computed for polling systems with arbitrary order-of-visit rules. Alternatively, 
derivatives with respect to the (mean) time limit can be computed for polling systems 
with time-limited service. For systems with Markovian polling, cf. section 6.3, also 
derivatives with respect to routing probabilities can be determined. Other examples 
of models which lend themselves to optimization with respect to real-valued parame- 
ters are load-balancing systems (routing probabilities) and tandem queueing systems 
(service rates at subsequent stations). When using the PSA together with an optimiza- 
tion procedure it is often a good strategy for reducing computation time to start the 
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search with a moderate  number of terms of the power-series expansions, and then to 
improve the approximated optimum by using more terms. Generally, the evaluation of 
power-series expansions of the state probabilities and their derivatives with respect to d 
parameters  up to the M t h  power of p or X requires the computat ion of B~,d(M)x ] Y [ 
coefficients, with 

M + s + l  B,,d(M)=(d+l)\ s + l  ' (8.10) 

9 A n n o t a t e d  bibliography on the power-series 
a lgori thm 

The basic idea of using power-series expansions of s tate probabilities as function of the 
load of a system to solve the global balance equations stems from Keane. About  a 
decade ago, Keane and his co-workers did some preliminary studies concerning state 
probabili t ies for exponential  coupled-processor and shortest-queue models. Their re- 
sults were presented at a 1985 workshop at Delft University of Technology, The Nether- 
lands. In [2] the concept of the PSA has been extended with a first order extrapolat ion 
of the coefficients of the power-series expansions of the moments of a queue-length dis- 
tr ibution,  cf. (3.9), (3.10), and applied to exponential shortest-queue models. General 
conditions for applicat ion of the PSA to bir th-and-death models are derived in [3]. 
Coupled-processor models in which the total  number of jobs in the system behaves as 
in an M / M / 1  queue are considered in [15]; for these very special models it  has been 
proven tha t  the state probabifities are regular functions of the load on the interval (0,1), 
and it has been experimentally found that  their power-series expansions converge inside 
the unit circle. The la t ter  property does not hold for most other models. Two coupled 
processors with general service speeds and phase-type service requirement distributions 
are considered in [4]; moreover, a second order extrapolation for the computation of 
moments is proposed in this paper.  The application of the PSA has been extended to 
exponential  cyclic-polling systems with zero switching times and Bernoulli schedules as 
service disciplines in [5]. This paper also introduces the combination of the G-algorithm 
with the PSA. Further,  it proposes a linear ordering of the state space which leads to 
efficient implementat ion of the PSA. In [6] it has been described how the PSA can be 
used in a symbolic manner to derive light-traffic asymptotes for performance measures; 
further, this report  contains a study of the differences and resemblances of Bernoulli 
schedules and limited-service disciplines for cyclic-polling systems. The PSA has been 
extended to exponential  cyclic-polling systems with non-zero switching times in [7]. 
This concerns the first model which does not possess a unique empty state. Compu- 
tat ions with the PSA are compared with simulations in [7] and [8]. It has turned out 
that  (pseudo)conservation laws for mean waiting times are much bet ter  fulfilled by 
computat ions with the PSA than by estimations obtained by simulations of compara- 
ble durat ion as required by the PSA. The review paper [9] discusses the PSA in its 
generality for QBDPs, and in details for periodic-polling systems with Bernoulli sched- 
ules and with Coxlan dis t r ibuted service and switching times; moreover, it  discusses 
the applicabili ty and complexity of the PSA for polling systems with other visit rules 
and service disciplines. In [1] the PSA has been extended to cyclic-polling systems 
with switch-over and switch-in times. Thespec ia l  property (5.5) has been exploited in 
[10] to obtain numerical results with the PSA for exponential shortest-queue models 
with much more queues than the number that  can be handled for models without this 
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property. The problem of optimizing a cost function with respect to the Bernoulli 
schedules has been addressed in [11] and [12] for cyclic-polling systems. In [11] sev- 
eral properties of the optimal schedules have been found using the PSA together with 
the conjugate gradient method; the gradients of the cost function are determined on 
the basis of finite differences. The extension of the PSA towards the computation of 
derivatives of performance measures with respect to parameters of the system has been 
discussed in [12]. Cyclic-polling systems in which the server rests at one or more spe- 
cific queues when the system is empty are considered in [13]; application of the PSA 
to such models requires a slight modification of the order in which coefficients of the 
power-series expansions are computed. In all above mentioned studies Poisson arrival 
processes are assumed. Generalization of the concept of the PSA to models with Batch 
Markovian Arrival Processes (BMAP) is the goal of [16]. The stationary distribution of 
the underlying Markov process of the BMAP is needed to determine the coefficients of 
the power-series expansions of the empty-state probabilities. Batch arrivals require an 
adaptation of the computation scheme similar to that for the fork system, cf. section 
5.3. The discussions of the PSA for networks of queues and for fork systems have not 
been published previously. 
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