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A b s t r a c t  Time delays in queueing networks are assuming increasing importance with 
the proliferation of transaction processing and time-critical real time systems. Mean val- 
ues are insufficient and it is necessary to estimate time intervals that are not exceeded 
with a specified probability, i.e. quantiles. This paper presents results on time delay 
distributions in single server queues of various types and extends these to networks of 
queues. In particular, the class of Jackson networks that permit exact solution are anal- 
ysed in both the open and closed cases, and approximation techniques for more general 
networks are proposed. 

I I n t r o d u c t i o n  

The time delays experienced by tasks passing through a sequence of processing nodes 
define an important class of performance measures in computer-communication systems. 
Their mean values provide a good overall description of performance and are readily 
obtained by conventional techniques, but means alone are often insufficient. For example, 
we may wish to predict the variability of response time in a multi-access system or various 
reliability measures, such as the probability that a message transmission time will exceed 
a given value. The importance of obtaining quantiles of distributions--i.e, time intervals 
that  are not exceeded with a specified probability--is becoming increasingly recognised, 
in particular in transaction-processing systems where quantiles are specified as minimal 
performance requirements in international standards, such as TPC. 

Queueing network models which compute queue length distributions in a steady state 
network are well established and from the mean queue lengths, mean passage time along 
a given path can be determined directly. There is now, therefore, a need to consider the 
more difficult problem of finding the probability distribution of passage-times along a path 
in a queueing network. MathematicaLly, the simplest type of network to analyse is open, 
acyclic and Markovian, i.e. has external arrivals from independent Poisson processes and 
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fixed-rate servers with exponentially distributed service times. The arrival process at 
every server is then independent and Poisson. Unfortunately, even these assumptions 
are too weak to allow the distribution of the passage-time along an arbitrary path to be 
obtained in a simple form. For paths on which a task cannot be overtaken, we can consider 
passage time as the sum of waiting times at independent single-server (M/M/t)  queues 
and obtain a simple solution. H any of these assumptions is violated, e.g. for any closed 
network of servers, independence is lost and the above approach fails. However, a more 
complex result can be derived for overtake-free paths in Markovian closed networks. To 
derive time delay distributions in more general networks requires approximate methods. 

Rather than the distributions themselves, it is generally easier to work with their 
Laplace transforms. This is because a time delay is a sum of sojourn times (i.e. times 
spent in some state or at some server) and, if these are independent, the required dis- 
tribution is a mixture of convolutions of sojourn time distributions. But the Laplace 
transform of a convolution is the product of the Laplace transforms of the constituent 
distributions, which is much easier to manipulate than a convolution-integral. To obtain 
quantiles, of course, it is necessary to be able to invert the Laplace transform of the 
passage time distribution so as to recover the distribution itself. In general, inversion 
is by numerical methods which may be difficult to implement accurately. This may be 
especially so at high quantiles, i.e. in the tail of a distribution--often the most important 
region. However, analytic inversion is possible in the solvable networks referred to above, 
including closed, overtake-free, Markovian networks. 

This paper is organised as follows. In the next section we consider the waiting time 
distribution at a single-server queue, beginning with first-come-first-served queueing dis- 
cipline (i.e. an M/M/1 queue) and then examining the effect of non-exponential service 
times (i.e. M/G/1 queue), different queueing disciplines and, very briefly, negative cus- 
tomers (of the Gelenbe type, [3]). We then look at passage time distributions through 
an open, tandem network of M/M/1 queues in section 3; this result extends immedi- 
ately to open tree-like networks. The Laplace transform of passage time distribution on 
overtake-free paths in closed Markovian networks is given in section 4 and its analytic 
inversion is considered in section 5. A case study--transmission time distribution in a 
packet-switched, multistage interconnection network--may be found in [6]. The paper 
concludes in section 6 which includes discussion of approximations for Laplace trans- 
forms in more general networks. The material is presented in more detail, including proofs 
of theorems, in Chapter 9 of the book "Performance Modelling of Communication Net- 
works and Computer Architectures" by Harrison and Patel, published by Addison-Wesley 
(1993). 

2 T i m e  delays  in the  s ingle  server queue  

There are many intervals of time that are of interest in queueing systems. We begin 
with the waiting and queueing times of a customer in M/M/1 and M/G/1 queues with 
FCFS discipline. Another important time interval is the busy  per iod (or busy  t ime)  
of the server, i.e. the interval between successive idle periods. In fact, the analysis of 
busy times will prove a powerful technique and lead, in particular, to the waiting time 
distribution of an M/G/1 queue with LCFS queueing discipline. PS queueing discipline 
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will also be considered, but only for M/M/1 queues where we can make use of properties 
of the underlying continuous time Markov chain. In fact, we will see that  the method 
used for PS can also be used for other queueing disciplines in an M/M/1  queue. 

2 .1  W a i t i n g  t i m e  d i s t r i b u t i o n  i n  t h e  M / M / 1  q u e u e  

In this section we investigate the time interval between the instants at which a given 
customer arrives at an M/M/1  queue and departs after completing service. This random 
variable is called the customer's wa i t ing  t i m e  and is denoted by Tw; it includes the time 
spent being served. The corresponding interval from the arrival instant to the instant 
at which the customer first enters service is called the queue ing  t ime ,  denoted T';  it 
excludes the service time. We consider the classical M/M/1 queue with arrival rate 
and service rate/~ independent of the queue length. First, we can calculate the mean 
waiting time (and queueing time) quite easily using Little's result as follows. We know 
that the mean equilibrium queue length is p/(1 - p) ,  where p = A/g, and that  the mean 
arrival rate is A. Hence, mean waiting time W is the ratio of these quantities, 1/(# - A). 
For FCFS queueing discipline, we can now find the expected queueing time, Q, from the 
relation Tw = T'  + S where S is the service time random variable, i.e. exponential with 
parameter/~. Taking expectations gives 

( .  - :,)-~ = E[Twl = E[T'I + E[S] = Q + u -~ 

so that Q = p l o t  - A). 
Notice that  the result for W holds regardless of the queueing discipline. However, we 

no longer have this invariance when we consider the probability distribution of waiting 
time. First, suppose the queueing discipline is FCFS and that  immediately after a new 
arrival, the queue length is n + 1; i.e. the arrival "faces" a queue of length n > 0. The 
arriving customer's waiting time is now a sum of n + 1 random variables: 

{U+S,+S2+...+S~ if n>__l 
Tw = $1 if n = 0 

Each Si is independent and distributed as the service time, i.e. exponential with param- 
eter #, and U is the residual service time of the customer being served at the arrival 
instant. But, by the residual life (memoryless) property of exponential distributions, U 
has the same exponential distribution as service time. Thus, Tw is a sum of n + 1 in- 
dependent exponential random variables with parameter # when the queue length faced 
on arrival is n > 0. Similarly, T '  is a sum of n such random variables. Since the arrival 
process is Poisson, by the Random Observer Property, the probability that  the queue 
length faced by an arrival is n is the same as the equilibrium probability that  the queue 
length is n, here (1 - p)pn. Thus, by the law of total probability, 

Oo 

P ( T w  < t) = ~-~ (1 - p)p~F("+*)'(t) 

where F(t )  = 1 - e -"t  is the service time distribution function and F k" (k >__ 1) denotes 
the k- fo ld  convolution of F with itself. But F ("+x)" is the Er lang- (n  + 1) distribution 
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with parameter # and so the waiting t ime density function fw is defined by 

r - .  (/~t) ~ ,t  
fw(t) = ~(1 - p): .~e- 

(O.O" 
= (1 - ?)/ le  - ~  n! 

.=0 
= (/~ - )~)e-(~-~)t 

Wa~ting time is therefore exponential with parameter/~ - A, as expected from our 
derivation of the mean waiting time. The fact that  waiting time is exponential can ac- 
tually be deduced by a purely probabilistic argument, using the memoryless properties 
of both the geometric distribution (of the queue length) and the exponential distribu- 
tion. We then need only the mean waiting time, which we have already determined, to 
characterise completely the waiting time random variable. This approach is taken by [11]. 

We can obtain waiting time distributions for variants of the M/M/1 queue, revealing 
the sensitivity to different queueing disciplines, for example. If we have a load dependent 
server, i.e. one with rate depending on the instantaneous queue length, waiting time 
distribution is much more difficult to obtain. In particular, the derivation of the result 
for PS discipline is lengthy, even when the arrival and (total) service rates are both 
constant; we consider this problem below. However, We can quite easily find the waiting 
time density for the multi-server queue, i.e. the M / M / m  queue. In this case, a new 
arrival has to queue iff the queue length faced on arrival is at least m. Waiting time is 
now given by: 

Tw = S XI  + X2 + . . .  + X,_,~+I + S if n >_ m 
S i fn  < m  

where .u (1 < i < n - m + 1) is distributed as the service time of a single exponential 
server with rate m# and S is distributed as a single exponential server with rate #. 
This follows because when the number of customers ahead of the customer being traced 
is n , n -  1 , . . . , m ,  there are m parallel servers active and the superposition of their 
departure processes is a Poisson process with rate m~ (i.e. the time to the next service 
completion is exponential with parameter rn/~). But this is exactly the situation with an 
M/M/1 queue with service rate m/~. When there are fewer than m customers ahead of 
the customer being traced, including when the queue length faced on arrival is n < m, 
the remaining waiting time is just one service time, S. In this way we obtain (see [7, 
page 181]): 

fQ(t)  -- a + (1 - a)[1 - e -(m"-~}'] = 1 - (1 -- a)e -(m"-~)' 

where a is the equilibrium probability that the queue length is less than m, i.e. the 
equilibrium probability of not having to queue (by the random observer property of the 
Polsson process). 

E x a m p l e  2.1. A telephone exchange with holding facilities can be modelled as an 
M / M / m  queue; calls arrive as Poisson processes with total rate A and each has exponen- 
tial duration with mean 1//~. How many lines are necessary such that the probability 
of a caller being "on hold" for more than 1 minute is less than 0.1? We can simply use 
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the above formula for FQ(t) since the probability of holding time exceeding 1 minute is 
1 - FQ(1). Thus we require 

(I - a )e  - ( m " - ~ )  < 0.1 

i.e. 

i.e. 

ml~ - ,~ > log~lO(1 - c~) 

logolO(1 - a) + ,~ 
rn> 

# 

We already knew that m had to be bigger than )~//~ for stability--the above inequality 
says by how much in order to get the required performance. Of course, a is a non-trivial 
function of rn, and numerical methods are needed to obtain particular solutions. 

2 . 2  W a i t i n g  t i m e  d i s t r i b u t i o n  i n  t h e  M / G / 1  q u e u e  

The waiting time distribution for FCFS discipline is readily obtained from the following 
observation. For n > 1, the queue, of length X, ,  existing on the departure of the nth 
customer~ Ca, comprises precisely the customers that arrived during that customer's 
waiting time. In equilibrium, denoting the waiting time distribution of each customer Ca 
by Fw, the generating function for the queue length may be expressed as: 

H(z) = E[E[zXlW]] = Z[e -~w('- ' l ]  = W'(~(1 - z)) 

since X,  conditional on W, has Poisson distribution. Writing 8 = A(1 - z) so that 
z = (A - 8)/A, we now have 

w ' ( 0 )  = n ( ( ~  - 0 ) / ~ )  = (1 - p ) 0 B ' ( 0 )  
0 - ~[1  - B - ( 0 ) ]  

by substituting into the Pollacek-Khintchine formula for 1"I. 
Note that we can now easily check Little's result for the M/G/1  queue since -W*'(0)  = 

- ,~ -qI ' (1 ) .  Notice too that we get the required exponential distribution in the case of 
an M/M/1 queue where II is the generating function of the geometric random variable 
with parameter p. 

E x a m p l e  2.2. A rotating disk can be modelled by an M/G/1 queue as follows. Sup- 
pose that read/write requests arrive at the head as a Poisson process with parameter ,~, 
requiring blocks of data of fixed length 1 sector, beginning at a random sector boundary. 
The disk spins at rate r revolutions per second and has s sectors. We make the approxi- 
mation that the next request to be served always finds the head at a boundary between 
two sectors--this will in general be violated by arrivals to an empty queue. We require 
the probability that a request takes more than t time units to complete. There are essen- 
tially two problems: to find the Laplace transform of the service time distribution, B'(O), 
and then to invert the resulting expression for W*($). To obtain the solution requires 
numerical methods and we just give the analysis. First, the service time distribution 
function Fs is defined by 

f n / s  if n < r s t < n + l ( 0 < n < s - 1 )  Fs(t)  
1 if t > 1/r 
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so that the density function is 

' '  ( n) 
fs(t)= ~ 6 t -  

= 

The Laplace transform of this density is therefore 

B' (o )  = l ~=ze-"e/'~= 

from which the Laplace transform of the required waiting time density is 

(i - p )o  E~,=~ e - ' ~  
w ' ( o )  = s o  - ~ ( s  - E~=l e-.0/,,) 

by substitution into the above formula. 

2 .3  B u s y  p e r i o d s  

To investigate the busy period, we first observe that its distribution is the same for all 
queueing disciplines that are work conserving and for which the server is never idle when 
the queue is non-empty. Suppose that, in equilibrium, whilst an initial customer C1 is 
being served, customers C2,..., Cz+l arrive, where the random variable Z, conditional 
on service time S for C1, is Poisson with mean AS. Without loss of generality, we assume 
a LCFS queueing discipline with no preemption so that, if Z # 0, the second customer 
to be served is Cz+l. Any other customers that arrive while Cz+l is being served will 
also be served before Cz. Now let N be the random variable for the number of customers 
served during a busy period and let Ni be the number of customers served between the 
instants at which Ci+t commences service and Ci commences service (1 < i < Z). Then 
N1,... ,Nz are independent and identically distributed as N. This is because the sets 
of customers counted by Nz, Nz-1,...,.V1 are disjoint and (excluding Cz+I, Cz,.. . ,  C2 
respectively) arrive consecutively after Cz+,. Thus, 

N... f I + N z + N z - I + . . . + N 1  if Z_>I  
1 if Z=O 

(The symbol - denotes "equal in distribution") Now, denoting the busy time random 
variable by T, its distribution function by H and the Laplace-Stieltjes transform of H by 
H ' ,  we have 

{S+Tz+Tz_,+...+T~ if Z > I  
T-~ S if Z=O 

where Ti is the length of the interval between the instants at which C~+I commences 
service and 6'/ commences service (1 < i < Z). Moreover, the T/ are independent 
random variables, each distributed as T, and also independent of S. This is because the 
customers that arrive and complete service during the intervals T~ are disjoint Thus 

H=(q) = E[E[E[e-~ S]IS]] 
= E[E[E[e-~ S]IS]] 
= E[E[e-eSE[e-~ 
= E[e-~ 
= E[e-OSe-~SO-lt'(e)) ] 
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since Z (conditioned on S) is Poisson with mean AS. Thus we obtain 

H*(8) = B ' (8  + $(1 - H*(0))) 

Although this equation cannot be solved in general for H*(0), we can obtain the moments 
of busy time by differentiating at O = 0. For example, the mean busy period, m say, is 
given by 

- m  = H*'(0) = B*'(0){1 + $[-H*'(0)]} = - ( 1  + Sin)# -1 

since g=(0) = 1, and so m = (g - )~)-1 the M/M/1 queue result. The above technique, 
in which a time delay is defined in terms of independent, identically distributed time 
delays, is often called "delay cycle analysis" and is due to [13]. 

2 . 4  W a i t i n g  t i m e s  i n  L C F S  q u e u e s  

Now let us consider waiting times under LCFS disciplines. For the preemptive-resume 
variant, we note that a task's waiting time is independent of the queue length it faces 
on arrival, since the whole of the queue already there is suspended until after this task 
completes service. Thus without loss of generality we may assume that the task arrives 
at an idle server. Waiting time then becomes identical to the busy period. We therefore 
conclude that the waiting time distribution in a LCFS-PI~ M/G/1  queue has Laplace- 
Stieltjes transform H'(8) = B*(8 + ~(1 - H*(8))). 

For LCFS without preemption we can modify the busy period analysis. First, if a 
task arrives at an empty queue, its waiting time is the same as a service time. Otherwise, 
its queueing time Q is the sum of the residual service time R of the customer in service 
and the service times of all other tasks that arrive before it commences service. This 
definition is almost the same as that of a busy period given above. The only differences 
are that the time spent in service by the initial customer C~ (C1 above) is not a service 
time but a residual service time and the random variable Z'  (Z above) is the number of 
customers that arrive whilst C~ is in (residual) service. Proceeding as before, we obtain 

{ R + T z + T z - I + . . . + T 1  if Z > I  
Q -  R if Z = 0  

We can now derive the Laplace-Stieltjes transform Q* of the distribution function of Q 
similarly to obtain: 

Q'(e)  = w ( 0  + - H ' ( e ) ) )  

where R* denotes the Laplace-Stieltjes transform of the probability distribution of R. 
But since R is a forward recurrence time, R'(O) = ~t[1 - B'(O)]/O. Thus, 

Q'(8)  = #(1 - B ' ($  + s - H'(8))))  _ #(1 - H ' (0))  
8 Jr ~(1 - g ' ( 0 ) )  8 + ~(1 - g ' ( 8 ) )  

Finally, since a customer arrives at an empty queue with probability 1 - p in equilibrium, 
we obtain for the transform of the waiting time distribution 

W'(8)  = (1 - p)B'(O) + pB'(O)Q'(e) 
)~(1 - H*(0)) 

= B'(e) 1-p+07-i : (el) ] 
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since waiting time is the sum of queueing time and service time and these two random 
variables are independent. 

Example  2.3. Let us compare the response time variability in a computer system, 
modelled by an M/G/1 queue, with FCFS and LCFS scheduling policies. We can do this 
to a great extent by comparing the first two moments which are obtained by differentiating 
the respective formulae for W'(8) at 0 = 0. We obtain the same result for the mean 
waiting time, which is as expected from Little's result since the mean queue lengths are 
the same under each discipline. However, it turns out that the second moment of waiting 
time for FCFS discipline is 1 - p times that for LCFS. Thus, LCFS discipline suffers a 
much greater variability as p approaches 1, i.e. as the queue begins to saturate. The 
qualitative result is quite obvious, but the preceding analysis enables the load at which 
the effect becomes serious to be estimated quantitatively. 

2.5 Waiting times with Processor-Sharlng discipline 

The problem with PS discipline is that the rate at which a customer receives service during 
his sojourn at a server varies as the queue length changes due to new arrivals and other 
departures. Thus, we begin by analysing the waiting time density (or rather its Laplace 
transform) in an M/M/1 queue of a customer with a given service time requirement. 

P ropos i t i on  2.1 In a PS M/M~1 queue with fized arrival rate A and fized service rate 
It, the Laplace transform of the waiting time density, conditional on a customer's service 
time being x is 

(1 - p)(1 - pr2)e -[~(I-')+']= 
w ' ( , l = )  = ( I  - pr)~ - p(1 - r )~e - ( . / ' -~ ' l~  

where r is the smaller root of the equation Ar 2 - (), + p + s)r + It = 0 and p = A/it. 

This result, proved in [7], was first derived by [1]. We can obtain the Laplace transform 
of the unconditional waiting time density as 

w'(s) = W'(sl=)ite-~d= 

The essential technique used in the proof of Proposition 1 splits the waiting time in an 
M/M/1 queue into an infinitesimal initial interval and the remaining waiting time. In 
fact the technique is quite general, applying to more disciplines than PS. In particular, 
it can be used to find the Laplace transform of the waiting time density in an M/M/1 
queue with random discipline or FCFS discipline with certain queue length dependent 
service rates and in M/M/1 queues with "negative customers", [8]. 

3 T i m e  d e l a y s  in o p e n  n e t w o r k s  o f  q u e u e s  

Networks of queues present an entirely different kettle of fish to the case of a single server 
queuc cven a stationary Markovian network. This is because, although we know the 
distribution of the queue lengths at the time of arrival of a given (tagged) customer at the 
first queue in his path (by the Random Observer Property or the Job Observer Property), 
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we cannot assume this stat ionary distribution exists upon arrival at subsequent queues. 
The reason is that  the arrival times at the subsequent queues are only finitely later than 
the arrival t ime at  the first queue. Hence, the state existing at the subsequent arrival 
times must be conditioned on the state that  existed at the t ime of arrival at the first 
queue. Effectively, a new time origin is set at the first arrival time~ with known initial 
joint queue length probabili ty dis t r ibut ion-- the  stationary distribution. Even in open 
networks with no feedback, where it is easy to see that  all arrival processes are Poisson, 
this conditioning cannot be overlooked and we cannot assume all queues on a path  are 
independent and in an equilibrium state at the arrival times of the tagged customer. 
The situation appears even more hopeless in open networks with feedback and closed 

networks. 
However, things are not quite as bad as they seem when we have fixed arrival and 

service rates. First ,  we can prove that  the FCFS queues in an o v e r t a k e - f r e e  path in 
a Markovian open network behave as if they were independent and in equilibrium when 
observed at the successive arrival times of a tagged customer. By an overtake-free path, 
or a path  with no  o v e r t a k i n g ,  we mean that a customer following this path  will depart  
from its last queue before any other customer that  joins any queue in that  path after 
the said custromer. Surprisingly, a similar result holds for overtake-free paths in closed 
networks, e.g. all paths in networks with a tree-like structure---see Figure 2. In the 
next subsection, we consider those open networks for which a solution for the time delay 
density along a given path  can be derived. This is followed by a discussion of the problems 
that  confront us when we at tempt  to generalise the network structure. Closed networks 
are considered in the next main section. 

3 . 1  T a n d e m  n e t w o r k s  

The simplest open network we can consider is a pair of queues in series. However, it is 
almost as easy to analyse a tandem series of any number of queues, as shown in Figure 
1. In fact, we can be more general than this, as we will see shortly. 

Figure h A tandem series of queues 

Now, the distribution of the time delay of a customer passing through a tandem series 
of queues is the convolution of the stationary waiting time distributions of each queue in 
the series considered in isolation. This follows from the following result. 

P r o p o s i t i o n  3.1 In a series of stationary M/M/1 queues with FCFS discipline, the 
waiting times of a given customer in each queue are independent. 

Proof 

First  we claim that  the waiting time of a tagged customer, C say, in a stat ionary M/M/1  
queue is independent of the departure process before the departure of C. This is a direct 
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consequence of reversibility since C's waiting time is clearly independent of the arrival 
process after C's  arrival under FCFS disdpline at a single server. Applying this property 
to the stochastically identical reversed process, a corresponding customer C'  arrives at 
the negative time of departure of C and departs at the negative time of arrival of C. It 
therefore has the same waiting time as C and the claim follows in the original process by 
the duality between the processes. 

To complete the proof, let Ai, Ti denote C's time of arrival and waiting time respec- 
tively at queue i in a series of m queues (1 < i < m). Certainly, by our claim, TI is 
independent of the arrival process at queue 2 before A2 and so of the queue length faced 
by C on arrival at queue 2. Now, we can ignore customers that leave queue 1 after G 
since they cannot arrive at any queue in the series before C, again because all queues 
have single servers and FCFS discipline. Thus, T2 is independent of T1 and similarly T1 
is independent of the arrival process at queue i before Ai and so of Ti for 2 < i < m. 
Similarly, T~ is independent of Tk for 2 _< j < k < m. & 

From this proposition it follows that, since the waiting time probability density at 
the stationary queue i, considered in isolation (1 < i < m), has Laplace transform 
( # ; -  A)/(s + g~ - A), the density of the time to pass through the whole series of m queues 
is the convolution of these densities, with Laplace transform l-I;~l(g~ - A)/(s + g; - A). 

There is one obvious generalisation of this result: the final queue in the series need 
not be M/M/1 since we are not concerned with its output. Also, the same result holds, 
by the same reasoning, when the final queue is M / G / n  for n > 1. Moreover, Proposition 
3.1 generalises to treelike ne tworks  which are defined as follows, and illustrated in 
Figure 2. A treelike network consists of: 

�9 a linear t r u n k  segment  containing one or more queues in tandem, the first being 
called the r o o t  queue; 

�9 a number (greater than or equal to zero) of disjoint sub t rees ,  i.e. treelike subnet- 
works, such that customers ca n pass to the roots of the subtrees from the last queue 
in the trunk segment or else leave the network with specified routing probabilities 
(which sum to 1). 

The leaf  queues (or leaves) are those from which customers leave the network. 
The proof of Proposition 3.t, extended to treelike networks, carries through unchanged 

since every path in the network is overtake-free. Hence we can ignore the customers that 
leave any queue on the path after the tagged customer. Indeed, we can generalise further 
to overtake-free paths in any Markovian open network for the same reason. Conditional 
on the choice of path of queues, numbered, without loss of generality, 1 , . . . , m ,  the 
Laplace transform of the passage time density is the same as for the tandem queue of m 
servers considered above. 

To generalise the network structure further leads to serious problems and solutions 
have been obtained only for very special cases. The simplest case of a network with 
overtaking is the following three-queue network. 

In this network, the path of queues numbered {1,3} is overtake-free and so the pas- 
sage time density can be obtained as described above. However, overtaking is possible 
on the path {1,2,3} since when the tagged customer C is at queue 2, any customers 
departing queue 1 (after C) can reach queue 3 first. The arrival processes to every queue 
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Figure 2: An open tree-like network 

Figure 3: A three-node network with overtaking 
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in this network are independent Poisson, by Burke's theorem together with the decom- 
position and superposition properties of Poisson processes. However, this is not sufficient 
for the passage time distribution to be the convolution of the stationary sojourn time 
distributions at each queue on a path with overtaking: the proof of Proposition 3.1 breaks 
down. This particular problem has been solved, by considering the state of the system at 
the departure instant of the tagged customer from server 1 and using complex variable 
methods; see [10]. A similar analysis is required--for similar reasons-- to analyse a tan- 
dem pair of queues with negative customers, [12]. In this case, negative arrivals at the 
second queue allow the first queue to influence the sojourn time of a tagged customer in 
the second; departures from the first queue offer a degree of "protection". More general 
networks appear intractable. 

4 T i m e  de lays  in c losed  n e t w o r k s  

As for the case of open networks, we begin with the simplest case, a cyclic network that 
comprises a tandem network with departures from its last queue fed back into the first 
queue. There are no external arrivals and hence a constant population. Again, all service 
disciplines are FCFS and all service rates are constant. 

We solve for the Laplace transform of the cycle time density by considering a dual 
network, viz. the tandem, open network consisting of the same servers 1 , . . . , m  with 
no external arrivals. Eventually, therefore, the dual network has no customers, i.e. its 
state is e = (0,0, . . . ,0),  the empty state, with probability 1. All other states with one 
or more customers are transient. Now, given that the state immediately after the arrival 
of the tagged customer at queue 1 is i, the ensuing cycle time in the closed network 
is the same as the time interval between the dual network entering states i and e- - the  
(first) passage time from i to e. This is so because there is no overtaking and service 
rates are constant. Thus the progress of the tagged customer in its cycle cannot be 
influenced by any customer behind it. We only need consider customers ahead of the 
tagged customer and can ignore those recycling after leaving the last queue. Observe 
that  if service rates varied with queue length, we could not ignore customers behind the 
tagged customer, even though they could not overtake, because they would influence the 
service rate received by the tagged customer. 

We therefore seek the density of the first passage time from state i to e in the dual 
network, f(t[i), where i is a state of the form ( i l , . . .  ,i,~) with il > 0, corresponding to 
the tagged customer having just arrived at server 1. We know the probability distribution 
of the state seen by the tagged customer on arrival at the first queue by the Job Observer 
Property and so can calculate the cycle time density by deconditioning f .  

Given a cyclic network of population n, let the state space of the dual network be 
Sn = {(ul , . . . ,um)[O < ui < n, 1 < i < m;~i~=lul < n} and define, for u E Sn, 

m 

A. = ~ ~,,(u,) 
i---1 

where/~i is the service rate of server i, e(n) = 1 i f n  > 0 and  e(0) = 0. Thus A~ is 
the total service rate in state u~ i.e. the instantaneous transition rate out of state u 
in the Markov process defining the queueing network. The holding time in state u is 
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an exponential random variable with parameter A~ and so has a density with Laplace 
transform )~/(s  + A~). Now, given that the network next enters state v after u, the 
passage time from u to e is the sum of the holding time in state u and the passage time 
from v to e. Thus, the density of the passage time from u to e has Laplace transform 
L(slu ) given by the equations 

1 
L(sIu) -- ~ q~--S~ L(slv) u ~ e 

vES,~ 

L(s le )  = 1 

where q~v is the one-step transition probability from state u to v. Now let #(u, v) denote 
the rate of the server from which a departure causes the state transition u --* v. Then 
q=~ = #(u, v)/  A~. Thus, writing q~, = I~(u, v)/(s q-.A~), we have the matrix equation 

L = Q ' L  + le 

where L = (L(slu)lu E S,), Q" = (q~,Iu, v E S,)  and le is the vector with component 
corresponding to state e equal to 1 and the rest 0. 

Using this equation and deconditioning the state u seen on arrival via the Job Observer 
Property, we can obtain a product form for the Laplace transform of the cycle time 
probability density function. More generally, however, we consider cycle times in closed 
tree-like queueing networks. Such networks are defined in the same way as open tree- 
like networks except that customers departing from leaf-queues next visit the root queue. 
Clearly such networks have the no-overtaking property and if paths are restricted to start 
at one given server (here the root), they define the most general class for which it holds. 

Now let Z denote the set of all paths through a closed tree-like network A, i.e. se- 
quences of servers entered in passage through A. For all z = (z l , . . .  ,z~) E Z, zl -- 1, zk 
is a leaf-server and the order of Z is the number of leaf servers since there is only one 
path from the root to a given leaf in a tree. The probability of choosing path z is equal 
to the product of the routing probabilities between successive component centres in z. 
The Laplace transform of cycle time density is given by the following Proposition. The 
most general result, viz. the multidimensional Laplace transform of the joint density of 
the sojourn times spent by the tagged customer at each server on any overtake-free path 
in a network with multiple classes is given lJy [9]. The proof given in [7] is simpler, being 
based on the recursive properties of trees. At the same time the result is almost as general 
in that any overtake-free path must be tree-like (although several such intersecting paths 
could exist in the whole network) and the extension to multiple classes and joint sojourn 
times is straightforward. 

P ropos i t i on  4.1 For ihe closed tree-like network A of M servers, the Laplace transform 
of cycle time density, conditional on choice of path z E Z is 

L(slz)= II 7, 
uES(n-1) i=1 j=l 

where [z[ is the number of servers in path z, S(k) is the state space of the network when 
its population is k >_ 1, ei and #i are the respective visitation rate and service rate of 
server i, and G is the network's normalising constant function. 
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In fact Proposition 4.1 holds for any overtake-free path in an arbitrary closed Jackson 
queueing network (recall the preceding discussion) and this form of the result is used in 
[6]. 

5 Inversion of the Laplace transforms 

The majority of results on distributions of time delays in queueing networks and passage 
times in more general stochastic processes are given as Laplace (or Laplace-StieItjes) 
transforms. The preceding is no exception. In general, numerical methods must be used 
to invert the Laplace transform which can be expensive to implement and are sometimes 
unreliable. However, in certain cases, analytical inversion is possible, typically when a 
stochastic model is based on exponential distributions. The result of Proposition 4.1 is 
a good example. First, we can simplify the summation giving L(s]z) by partitioning 
the sum over S(n - 1) according to the total number of customers, p, at servers in 
the overtake-free path 1,2 . . . .  ,m (say, without loss of generality). Now, the Laplace 
transforms in the inner sum are products of the Laplace transforms of Erlang densities. 
Moreover, their coefficients are geometric. Such transforms can be inverted analytically. 
In the simplest case, all the servers on the overtake-free path are identical, i.e. have the 
same rate, and the inversion can be done by inspection. In the case that the/~i are all 
distinct (1 _< i _< m), the density function is derived in [5] and the question of degenerate 
/~i is addressed in [6]. These results are considered in the next two sections. 

5.1 O v e r t a k e - f r e e  p a t h s  w i t h  i den t i ca l  s e rve r s  

When all the rates /q in the path are the same, equal to # say, the above Laplace 
transform is a mixed sum of terms of the form [/~/(s +#)]P+" since in the inner summation 
~ 1  ui + 1 = p + m. Each term can therefore be inverted by inspection to give a 
corresponding mixture of Erlangians for the passage time density. We therefore have: 

P ropos i t i on  5.1 If  the centres in overtake-free path 1, 2 . . . .  , m in the network of Propo- 
sition 4.1 all have service rate #, the path's time delay density function is 

[irne--~t ~n--1 ( ~, tP+m-I 
e - ~  -- ~) ~ v ~ ( n =  - p  - X)G~m.P(p  + m - i)! 

where G'~( k ) is the normalisln9 constant for the subnetwork comprisin 9 servers 1 , . . . ,  m 
only, with population k > O, and G,~(k) is the normalising constant of the whole network 
with servers 1 , . . .  , m  removed and population k > O. 

From this result we can immediately obtain formulae for moments higher than the 
mean of a customer's transmission time. 

Coro l l a ry  

For a path of equal rate servers, message transmission time has kth moment equal to 

1 n,--I 
a~Cn - p - z)a~Cp)(p + ~)... (p + ~ - k + z) 1) T==o 
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5.2 O v e r t a k e - f r e e  p a t h s  w i t h  d i s t i n c t  s e r v e r s  

The case of paths with equal rate servers is easy, involving only some algebraic manipula- 
ton of summations. However, even when the rates are different, the inversion can be done 
analytically to give a closed form result. The analysis is now rather more difficult, how- 
ever, and we just state the main result after giving a sketch of its derivation. The result 
was first derived by the author, [5], for the case where all the service rates on the overtake- 
free path are distinct, the opposite extreme to the previous section. The first step is to 
invert the Laplace transform L(n, s) = ]-I~=:[/*i/(s +/*,)]m where n = (n : , . . . ,  n,,), n, >_ 1 
and the/*is are distinct. This yields the density function 

r r t  tn 

: (n , t )  = I I  /*~' ~ h j (n , t )  
i=1 j = l  

where the Dj(n,  t) are given by the following recurrence on n: 

(nj - l)Dj(n, t) = tDj(nj, t) - ~ nkDj(n~, t) 
k#j 

with boundary condition 

e-V-fl 

Oj(n,  t) = l'Iiej(/*i -/*j)~' (hi > 1, nj = 1) 

where nj = ( n : , . . . , n j -  1 , . . . , n , , )  and n~ = ( n : , . . . , n j -  1 , . . . , nk  + 1, . . . ,nm).  
Next, given real numbers a: , . . .  ,aM for integer M _> m, define 

M 

Him(z) = DAn, t) 1-I(a,z,)"'-' 
nES(M+m) i = '  

so that passage time density is obtained from the Hi , , (1 , . . . ,  1) with ai = eJ/*i. The 
central result is an expression for Hi,~(z) from which follows: 

P ropos i t i on  5.2 I f  the servers in an overtake-free path 1, 2 , . . . ,  m have distinct service 
rates/.1,/ .2, . . . ,  #m, the passage time density function, conditional on the choice of path, 
is 

[I~=1/*i =-1  ~ e - . i t  
G-~ -- D )-~ G., ( n - p - l)j__~, ~=o .= 1-Lej(m -/*j) 

i = o  ( P  - i)! nes~,(~+;).=,=: :<k#j<,~ \/*k - / * j /  

where Sin(k) denotes the state space for the subnetwork of servers 1 , . . . ,  m with population 
k. 

The summations over S,= (m + i) are just normalising constants that may be computed 
efficiently along with the G,,(n - p  - 1) and G(n - 1) by Buzen's algorithm. 
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E x a m p l e  5.1. For a cyclic network of M exponential servers and population N, cycle 
t ime distribution is 

M N-1 (y]iffil #/) t M e-t~, 
- ( g  - - 

This follows by setting el = . . . .  eM = 1 in Proposition 5.2, so that  all terms are zero 
in the rightmost sum except when nk = 1 for all k, i.e. when i = 0. Finally, note there 
is only one part i t ion of the state space, namely the one with all N - 1 customers at the 
servers 1 , . . . , M .  Thus we have GM(n) = 1 if n = 0 and GM(n) = 0 if n > 0, so that 
only terms with p = N - 1 give a non-zero contribution. 

Proposition 5.2 can be generalised to allow arbitrary service rates at  the nodes on 
an overtake-free path: not necessarily all the same nor all distinct. Essentially, we start  
with the case of distinct rates and successively combine any two servers with equal rates. 
The combination inolves manipulation of the summations and reduces the problem to 
two similar problems on networks with one less node in the overtake-free path. Thus, in 
each step, one degenerate server is removed until all the remaining problems are on paths 
with distinct rate servers. The details may be found in [6]. 

6 Conc lus ion  

We have seen that  finding time delay densities is a hard problem, often with complex and 
computationally expensive solutions when they can be found at  all. Consequently, in most 
practical applications, the performance engineer requires approximate methods. There 
is no single established methodology for such approximation and most of the techniques 
used are ad hoc. In increasing order of sophistication, the following techniques have been 
used. 

�9 A particular form is prescribed for the required distribution and its parameters 
are determined by matching moments. Moments may be predicted by an analyti- 
cal model or estimated by simulation or actual measurement. Typical distributions 
include Coxian (with a small number of phases), Generalised Exponential and (mix- 
tures of) Erlang. Although adequate for some purposes, involving probabilities near 
the median, for example, this approximation lacks a cause and effect relationship 
and is likely to be poor in the tail region in particular. 

�9 A common simplifying assumption is that  the queues in the path  of a tagged cus- 
tomer in a queueing network behave as if independent, isolated and in equilibrium 
at the times of arrival of that customer; often called the i n d e p e n d e n c e  a p p r o x l -  
m a t l o n .  The assumption is always true for the first queue in the path by the arrival 
theorem (with one less customer in the case of a closed network) but approximate 
for all the other queues, except in the case of simple open networks of the type 
we considered in section 3. The approximation is poorest when the ordering of 
customers in the network is most highly constrained, since then the independence 
assumption is clearly invalid. For example, in a 2-node cyclic network with FCFS 
queues and population N, it is known with probability one that if there are k cus- 
tomers at server 1 at any time, then there are N - k at  server 2. In particular, 
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suppose server 1 is fast and its queue is empty on arrival of the tagged customer. 
Then it is very unlikely that queue 2 will be empty on arrival there and very likely 
that  it will contain N - 1 or N - 2 customers. It does turn out that cyclic networks 
with FCF$ queues give poor results under the independence approximation, but in 
networks where the ordering of customers has few constraints, for example richly 
connected networks or networks with PS discipline at many queues, it is usually 
quite accurate. 

�9 An enhancement of the independence approximation admits limited dependence of 
the queue lengths faced by the tagged customer at successive servers. It is assumed 
that the queue length faced at any queue entered after the first in the path (which 
is independent by the arrival theorem) depends only on that faced at the previous 
node. This is called the Pa i r ed  C e n t r e  A p p r o x i m a t i o n  and gives accurate 
results in a variety of queueing networks [4]. 

�9 Finally, it might be possible to use maximum entropy methods in continuous time 
to give the "least surprising" density function for a time delay subject to the con- 
straints imposed by its moments. The maximum entropy method has been used 
mainly for discrete random variables in computer performance modelling and has 
produced accurate approximations for the state space distributions in a variety of 
networks. A continuous time analogue exists and appears well suited to predicting 
time delay distributions efficiently, given the expected values of certain functions of 
the state random variable. As usual, the most important step would be to identify 
and estimate the crucial constraints, but this is an open problem. The reader is 
referred to Kouvatsos~s tutorial on this subject. 

As with any approximate model, the above methods are subject to validation. The 
exact results described in the previous sections provide valuable benchmarks for this 
purpose. An approximation that passes these tests should be subjected to simulation 
testing and compared with real observations before being accepted as a performance 
engineering tool. 
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