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A b s t r a c t .  The need to model dynamic behavior in information systems 
arises in many contexts, such as characterizing the locality of file access 
patterns, evaluating the dynamic behavior of scheduling algorithms, and 
identifying performance problems by their time serial behavior. This pa- 
per provides an introduction to time series analysis (a statistical tech- 
nique), and applies it to analyzing the performance of information sys- 
tems. The autoregressive, moving average (ARMA) model is discussed 
in detail, with an emphasis on identifying time series models from mea- 
surement data using the autocorrelation and partial autocorrelation func- 
tions. The paper concludes with a case study in which time series analysis 
is used to diagnosis a performance problem in a large computer system. 

1 I n t r o d u c t i o n  

The need to model dynamic behavior in information systems arises in many 
contexts. Some examples include: 

1. Designing a disk cache is facilitated by having a characterization of the time 
serial behavior of file access patterns. 

2. Evaluating the dynamic behavior of a scheduling algorithm requires assessing 
its response to transients in arrival rates and service times. 

3. Identifying performance problems in computer  systems can often be accom- 
plished by relating the dynamic behavior of the problem to the dynamic 
behavior of applications running on the computer  system. 

This paper  describes t ime series anMysis, a statistical approach to modeling 
dynamic behavior, and applies it to measurements of information systems. Con- 
sidered are the autoregressive and moving average (ARMA) models, with an 
emphasis on model identification and evaluation. The paper  concludes with a 
case study that  applies t ime series analysis to diagnosing a performance prob- 
lem in a large computer  system. 

A time series consists of serial measurements of a process, such as sequences 
of response times of computer  system interactions. Herein, we assume that  time 
is discrete (e.g., thirty second intervals) and that  measurement  values are con- 
tinuous (i.e., we can, in theory, obtain an unlimited number of digits to the right 
of the decimal point). Throughout,  ~ is used to denote the time index (or ob- 
servation), and y, denotes the value of the ~-th observation. A time series can 
be displayed in either a tabular or a graphical manner.  For example, Table 1 
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displays the first four observations of response times over a nine hour shift at 
a large computer  installation, and Fig. 1 plots the response time da ta  for the 
entire nine hour shift. 

Table  1. Illustration of a Time Series 

Itl Time 
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3 8:02:00 
4 8:02:30 
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Fig. 1. Time Series Example 

Constructing a t ime series model involves expressing Yt in terms of (i) pre- 
vious observations (e.g., Yt-i ,  Yt-2) and (ii) shocks to the system, which are 
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unobserved random variables that represent external events (e.g., changes in ar- 
rival rates and/or  service times). In order to construct a time series model, yt 
must be s t a t i o n a r y .  This means that (a) all terms in the series have the same 
mean and variance, (b) the covariance between terms in the series only depends 
on the number of time units between them (not their absolute position in the 
series), and (c) all of the foregoing are finite. The random shocks, which are de- 
noted by a,, ~re assumed to be independent and identically distributed (i . i .d.) 
with E(a,)  = 0 and VaT(a,) = ~o~. 

A t i m e  ser ies  m o d e l  specifies an algebraic relationship between random 
variables representing terms in the series; the t-th such random variable is de- 
noted by yr. (In contrast, the yt are measured values, which are constants.) Since 
all terms in the series have the same mean, it is convenient to view ~ as the 
deviation from the population mean; that is, E(9~) = 0. Herein, we consider 
linear time series models that have the general form 

Y$ : r  + ' ' "  -{" ~p~.I t -p  "{- a$ --  ~ l a t - 1  . . . . .  O q a t - q .  (1)  

(It is a convention that a~-k (k > 0) be subtracted.) This equation states that 
the t-th term depends on the preceding p terms and on the preceding q random 
shocks. 

Linear time series models are classified by the values of p and q in Eq. (1). 
Specifically, 

- p > 0 and q -- 0 defines a p parameter a u t o r e g r e s s i v e  mode l ,  which is 
denoted by AR(p). 

- p = 0 and q > 0 specifies a q parameter mov i n g  ave rage  mode l ,  which is 
denoted by MA(q). 

- p, q > 0 designates a n f i x e d  m o d e l  that has p autoregressive parameters 
and q moving-average parameters; this is denoted by ARMA(p,q). 

- p = 0 = q is a model in which there no time serial dependency; this is 
referred to as the w h i t e  noise  mode l ,  and is denoted by either AR(0) or 
ARMA(0,0). 

Our discussion of time series analysis is based largely on the classical Box- 
Jenkins approach [3]. This approach employs a five-step methodology for con- 
structing time series models: 

1. handling non-stationarities in the series 
2. identification: determine the values of p and q in Eq. (1) 
3. estimation: estimate the unknown constants r ", ep, 01, . . . ,  0q in Eq. (1) 
4. evaluation (diagnostics): assess the model constructed 
5. forecasting: predict y~+k (k > 0) given previous values in the series 

In practice, steps (1)-(4) are applied repeatedly before proceeding to step (5). 
Herein, we focus steps (1)-(4), with particular emphasis on the first two steps. 

Applying time series analysis in practice requires that the analyst obtain val- 
ues of a metric of interest (i.e., the yt) and then apply the foregoing methodology 
to construct a time series model. How the model is used depends on the task 
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at hand. In the case of workload characterization, y, is a workload parameter, 
such as CPU consumption or input/output  rates; the time series model can be 
used to generate a synthetic workload for a more complex system by using a 
random number generator to obtain the a:. When evaluating the transient be- 
havior of a scheduling algorithm, yt is the performance of the system studied 
when the algorithm is employed; the time series model is used to evaluate the 
effect of transients by predicting Yt+j when the a, are varied. For diagnosing 
performance problems, y, is a metric that is used to detect performance prob- 
lem; the cause of the problem can sometimes be deduced from the terms in the 
time series model. 

Numerous books and articles have been written on the theory of time se- 
ries analysis (e.g., [3], [12]). Unfortunately, it has been rare to apply time series 
analysis to information systems. One case in which it has been employed is fore- 
casting the growth of workloads in computer systems (e.g., [6] and [8]), which 
is an important part of capacity planning. Another case in which time serial 
behavior is important is characterizing packet interarrival times in communica- 
tions networks. Frequently, these interarrivals are not i.i.d, due to "train" effects 
induced by large transmissions (e.g., file transfers). For the most part, dependen- 
cies in interarrival times have been addressed using Markov modulated processes 
(e.g., [1], [4], [10], and [11]). However, time series techniques have been employed 
occasionally (e.g., [71). 

The remainder of this paper is organized as follows. Section 2 discusses how 
to identify and evaluate time series models given measurements of a stationary 
stochastic process. Section 3 addresses how to handle non-stationary data, which 
are common in information systems because of variations in workload. Section 4 
contains a ease study of applying time series analysis to diagnosing a performance 
problem. Our conclusions are contained in section 5. 

2 T i m e  S e r i e s  M o d e l s  

This section discusses how to construct ARMA(p,q) models, with an emphasis 
on AR(1) because of its importance in modeling dynamic behavior in queueing 
systems. We focus on the identification step in time series analysis, although the 
estimation and evaluation steps are considered as well. Throughout this section 
it is assumed that the underlying stochastic process is stationary. (Section 3 
addresses non-stationary processes.) 

A simple and very intuitive way to express time serial dependencies is to state 
that the current observation depends only on the previous observation and an 
i.i.d, random shock. This is the one parameter antoregressive model, or AR(1), 
which is expressed algebraically as 

9, = + (2) 

where r = r in Eq. (1). (Readers familiar with the theory of stochastic processes 
will recognize the AR(1) model as a dlscrete-time, continuous-state Markov 
chain.) Key to this equation is the parameter r which determines how related 
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successive observations are. If [ r 1~ 1, we know much more about Yt given /)t-1 
than is the case if [ r 1~ 0. 

More insight into AR(1) processes can be obtained by expanding the recur- 
rence relationship in Eq. (2). 

9t = r  + at 
= r  + e a t - 1  + at 

o o  

= Ek=0 ekat-k 

This equation suggests that r should be constrained so that [ r [< 1. If this were 
not the case, shocks to the system that occurred in the distant past would have 
a larger effect on yt than shocks in the recent past (due to the exponent k of r 

The importance of the [ r 1< 1 constraint can be demonstrated analytically 
by computing the variance of an AR(1) process. Since E ( ~ )  = 0, we have 

V~r(~,) = ~(~,~,)  
E o o  i a  oo 

= [(E~=0 ~ , - , ) (Es=0  r  
v~~ A2kEta a Z...,,k=O'r L t - - k  t - - k )  

r162 2 
= 1_r 

(3) 

(The third equation follows from the at being i.i.d.) Thus, unless [ r ]< 1, the 
variance of Yt is infinite, which means the process is nonstationary. 

The AR(t)  model is often effective at characterizing the dynamic behavior 
of queueing systems. To illustrate this, we develop an approximation for the 
dynamic behavior of a single server, first-come first-served (FCFS) queuelng 
system. Let Rt, At, and St denote (respectively) the response time, interarrival 
time, and service time of the / - th  customer arriving at the queueing system. For 
a lightly loaded system, we have 

and for a saturated system 

Rt = Rt-1 - At + St. 

Thus, the general situation can be approximated by 

R, = r - A,) + s,,  

where 0 _< r < 1 (to ensure finite response times). Put differently, 

Rt - E[R, ]  = r  - E[Rt l )  - CA, + St + C, (4) 

where C is a constant. Letting 9, = R , -  E(Rt)  and a, = •  + St + C, Eq. (4) 
becomes Yt = r + at, which is an AR(1) model. 

How accurately does Eq. (4) model the dynamic behavior of a single server, 
FCFS queueing system? Commonly used statistics such as the sample mean, 
variance, and distribution do not answer this question since they provide no in- 
sight into time serial dependencies. An alternative is to compare plots of time 
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serial FCFS response times with realizations of potential AR(1) models. Figure 2 
contains such plots for an M / M / l ,  FCFS queueing system (with an arrival rate 
of .7 and a service time of 1) and three AR(1) processes with different values 
of r in all cases, initial transients have been deleted and so the values plot- 
ted constitute a stationary series. Unfortunately, it is unclear how these plots 
should be compared, and so it is unclear which AR(1) model (if any) adequately 
characterizes the dynamic behavior of the FCFS queueing system. 

NORMALIZED M/M/l, UTIL=.7 

"I 
? 

+--.5 

,il I PI ' If I I I " I I I I I ! 
II 'I0r ~ ~ 4W a:O 

~ T I O N  

I,=.9 

Fig. 2. Comparison of Several Time Series 

The foregoing motivates the first step in time series analysis - model identifi- 
cation. The objective of this step is to use measuremeflts of a stochastic process 
to determine a good choice for p and q in Eq. (1). Doing so requires having a 
way to characterize the time serial behavior of a stochastic process. One ap- 
proach is to quantify the relationship between all observations separated by the 
same number of time units or lags. For example, lag 1 "relatedness" can be as- 
sessed from the pairs (?),, ~)t-1), (?),-1, Y,-2)," "" and lag 2 "relatedness" from the 
pairs (~ ,  ?)~-2), (Y~-I, Yt-3),"" ". Relatedness can be quantified by the covariance 
function; since this is applied to elements of the same series, it is referred to as 
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autocovariance. The lag k a u t o c o v a r i a n c e  is denoted by 7k, and is defined as 

7k = E(~,~)~-k). 

(Since yt is assumed to be stationary, 7k does not depend on 4.) ?k can be 
computed directly from a time series model. For AR(1), this calculation is 

7k [AR(1)I = Et~,~,-kl 
: 1 § 

= CkVa~(~) 

7k is a number in the interval ( - c o ,  co). The lag k a u t o c o r r e l a t i o n  nor- 
malizes 7k to a value in the interval [ -1 ,  1]. Denoted by pk (an unfortunate 
conflic,t with the notation used for utilizations in queueing theory), the lag k 
autocorrelation is defined as follows: 

7k 
pk - V~r(~,) 

Thus, 
pk[AR(1)] = ek (5) 

The a u t o c o r r e l a t i o n  f u n c t i o n  ( A C F )  of a series is a mapping from a set of 
lags 1 , 2 , . . . , K  to P l , P 2 , ' " , P I ; .  

So for we have described how to characterize the dynamic behavior of a time 
series model by using the ACF. Our strategy is to characterize the time series 
data  in a similar manner and then compare this characterization to the ACFs 
of several time series models. As before, we are interested in autocovariances 
from which we obtain autocorrelatlons. However, these metrics are est imated 
from the data  instead of being computed analytically from a time series model. 
A commonly used estimator for 7k is 

1 lv-k 
c~ = ~ ~ (y~ - ~)(y,+~ - ~), (6) 

i = l  

where ~ is the sample mean. An estimator for pk is 

Ck 
r k = - - .  

Co 

(Note that co is the sample variance.) Since rk only est imates  pk for the stochastic 
process that produced the time series data, it is important  to know when rk 
values are truly significant and when, due to randomness in the measurements 
collected, an r~ is approximately 0. Such concerns are addressed by the Bart let t  
bound [3], which tests the hypothesis (at each lag) that rk = 0 at a specified 
significance level. Figure 3 displays autocorrelations (vertical bars) versus lags 
for the time series data  in Fig. 1. The Bart let t  bounds (at the 5% significance 
level) are depicted by the dotted lines; bars that lie within the bounds are not 
considered different from 0. Note that the M/M/1  data  have an ACF that has 
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Fig. 3. Empirical ACFs with Bartlett Bounds 

the form of a damped exponential, and all three AR(1) models have an ACF that  
decays in a similar manner  (as suggested by Eq. (5) with 0 < 4 < 1). However, 
none of the AR(1) models has a decay that  is as long as that  for the M / M / 1  
data,  which suggests that  r > .9. 

One drawback of using the ACF for model identification is that  terms in 
the ACF are highly correlated. For example,  the AR(1) model expresses a direct 
relationship between ~ and Y~-I. However, depending on r ~ may also have a 
large correlation with y~-2 ff~-3, and so on. This situation can be remedied by 
using the p a r t i a l  a u t o c o r r e l a t i o n  f u n c t i o n  ( P A C F ) ,  which computes the lag 
k autocorrelation after having removed autoeorrelations for lags l, 2 , . . . ,  k -  1. As 
with the ACF, bounds can be computed for the PACF; herein, a 5% significance 
level is used. The PACF is commonly displayed in combination with the original 
thne series and the series' ACF; together, we refer to these as the i d e n t i f i c a t i o n  
p lo t s .  Figure 4 contains the identification plots for a realization of an AIR(I) 
process with r = .9. Note that  the PACF is a single splke; this follows from the 
fact that  once the lag 1 autocorrelation is removed from ~ ,  only a, remains and 
the a~ are i.l.d.. 

After model identification, we proceed to the estimation step. Algorithms 
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Fig. 4. Time Series, ACF, and PACF (Identification Plots) for an AR(1) Process 

used for estimating model parameters are discussed in [3], although such details 
are typically not required in practice since many software packages implement 
these algorithms (e.g., [9], [13]). In the case of AR(1), there is only one parameter 
to estimate. The estimator, which is denoted by r is computed as follows: 

~ = C l .  
C O  

Applying this calculation to the M/M/1  data in Fig. 2, we determine that r = 
.94, which confirms our suspicion that r > .9. 

Before proceeding to the evaluation step, we introduce a key concept: the  
model res idua ls .  Denoted by e~, the model residuals are the difference between 
the observed and estimated values of the yr. For example, AR(1) residuals are 
computed as follows: 

e t  = ( Y t  - -  ~/) - -  ~ ) ( Y t - 1  - -  ~/) 

The residuals provide a way to assess what is not explained by the model. 
Model evaluation requires some negative logic. A good statistical model ex- 

plains M1 patterns in the data. Thus, in a good model, the e~ should have no 
time serial dependencies since removing the effect of the time series model from 
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Fig. 5. Evaluation of the AR(1) Model of the M/M/1 Data 
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the data  should leave no patterns in the residuals. Put  differently, the residuals 
should be white noise, which means that both the ACF and the PACF should be 
0 (since in a white noise model the terms are i.l.d.). A common way of assessing 
if the residuals are white noise is to display the identification plots for the st. For 
example, Fig. 5 contains the identification plots for the residuals of the M/M/1  
data  using an AR(1) model with ~ = .94 (as obtained from model estimation). 
Note that both the ACF and the PACF are close to 0, which suggests that the 
residuals have no time serial dependency. Hence, we conclude that an AR.(1) 
model with 4 = .94 provides a fairly good approximation to the dynamic behav - 
ior of the M/M/1  time series in Fig. 2. Had the residuals not been white noise, 
we would have revised the model to include the time serial behavior present in 
the residuals. 

Our focus has been AR,(1) models. Other models are often of interest as well. 
In particular, the one parameter  moving average model, or MA(1), sometimes 
arises. The time series equation for MA(1) is 

~lt = a t  - ( ~ a t - 1 .  

The ACF of an MA(1) model has a single spike at lag 1, and the PACF has values 
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that decay exponentially. This is the opposite of AR(1) and is a consequence Of 
the fact that an AR model can be expressed as an MA model and vice versa. 
ARMA(1,1) models have the form 

Here, both the ACF and PACF consist of values that decay exponentially. Table 
2 summaries the characteristics of several time series models. This table is used 
in following sections to relate the empirical ACF and PACF of measurements to 
the ACF and PACF of time series models. 

Table 2. Characterizations of Several Time Series 

AR(1) d.e. s.s. 
MA(1) s.s. d.e. 
ARMA(1,1) d.e. d.e. 
White Noise! 0 0 

- d.e.- damped exponential beginning at lag 1 
- s.s. - single spike at lag 1 

To summarize, the key to model identification is characterizing the time series 
in terms of its autocorrelation function (ACF) and its partial autocorrelation 
function (PACF); these functions describe the relationship between terms in 
the series that are separated by the same number of time units (or lags). The 
identification step of time series analysis chooses a model whose theoretical ACF 
and PACF (as computed from the equation for the model) most closely matches 
the empirical ACF and PACF of the data. The evaluation step involves looking 
at the residuals obtained for the model chosen. A good model has residuals that 
show no evidence of time serial behavior; that is, the residuals are white noise. 
Time serial behavior in the residuals is detected by applying the identification 
step to the residuals. 

3 Handling Non-Stationary Data 

Constructing an ARMA model requires that the undeHying process be station- 
ary. Often, this is not the case, especially for measurements of information sys- 
tems. For example, in time-shared computer systems, usage tends to peak in the 
mid-morning and just after lunch; as a result, the mean response time is larger 
at these times. A commonly used approach for handling non-stationary data  is 
to develop two separate models. The first models the non-stationarity. The resid- 
uMs from this model (i.e., what remains after the effects of the non-stationarlty 
have been removed) should be stationary; otherwise the model is inadequate. 
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The second model applies the techniques described in section 2 to the residuals 
of the first model. 

One approach to modelling non-stationary behavior is the i n t e g r a t e d  (I) 
model. To motivate this approach, consider an AR(1) process for which r = 1. 
That  is, ~t = Yt-1  -4- a t .  From Eq. (3), we see that this process has an infinite 
variance and so is non-stationary, ttowever, the difference between successive 
terms in ?)t is statior, ary. Specifically, if ~bt = ~), - ~t-1, then @t = at. The ~ 
series is called the first difference of the ~t series. In theory, a series can be 
differenced an arbitrary number of times. Recovering the original series requires 
the inverse operation - summation or integration, which motivates the name 
integrated model. 

N 

bJ 

D 

N 
I 

0 I OO 200 300 400 500 

OBSERVATION 

Fig. 6. Illustrative Data 

How effective is differencing for handling non-stationarities? To answer this 
question, consider the data  in Fig. 6. A cursory glance raises doubts about the 
station~rity of these d~ta since there are several sequences that seem to be 
well above or well below the overall mean. Figure 7 plots the first difference 
of this data; the result lacks the long sequences of values that tend away from 
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Fig. 7. Differenced Series 

the sample mean, which suggests that differencing produced a stationary series. 
Next, we construct an ARMA model for the differenced series; its identification 
plots are displayed in Fig. 8. Note that the ACF has a single spike at lag 1, 
and the PACF is a damped exponential. From Table 2, such characteristics are 
consistent with an MA(1) model. Indeed, the residuals obtained by applying 
MA(1) to the differenced series have an ACF and PACF that are white noise 
(although due to space limitations these plots are not included.) Thus, it appears 
that the data  in Fig. 6 come from a one parameter  integrated, one par.~meter 
moving average process, which is denoted by IMA(1,1). 

The foregoing illustrates a common mistake in time series analysis - apply- 
ing differencing before non-stationarity has been confirmed. To confirm that a 
series is non-stationary, its ACF and PACF should be plotted; the data  are non- 
stationary if the ACF and/or  PACF do not stay within the significance bounds 
at large lags. Figure 9 contains the identification plots for the data  in Fig. 6. We 
see that the original series is stationary; in f~ct, this series is white noise since 
both the ACF and PACF are in essence 0. In other words, differencing created 
an MA(1) process! To see why, let t5~ denote the differenced series. Since the 
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original series is white noise, y, = a,, and so 

~ - -  0 , ~ _  1 

= a, - -  Olaf_l . 

Consider0~ble judgement is required when interpreting the ACF and PACF 
plots to determine if a series is stationary. Is there a way to eliminate non- 
stationarities without inadvertently creating an MA(1) model? One approach 
is to partition the series into multiple sub-series, each of which represents a 
different operating region. This too requires judgement, and so the ACF and 
PACF of each sub-series should be examined to confirm that the sub-series is 
stationary. This could be done by constructing identification plots for each sub- 
series. An alternative is to use least squares regression [5] to fit a moderate degree 
polynomial of time to the data. If this fit accounts for a small fraction of the 
variability in the data  (say under 5%), no trend is present and so we feel more 
comfortable that the data  are stationary. Both of these techniques are illustrated 
in the next section. 
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4 Case Study 

This section illustrates time series analysis by applying it to the diagnosis of a 
performance problem in a large time sharing system at a major utility company. 
Users of this system complained of intermittently poor performance. In order 
to diagnosis the underlying problem, response times were measured every thirty 
seconds over a nine hour shift when there were performance complaints; Fig. 1 
plots the measurements obtained. Herein is developed a time series model of these 
measurements with the objective of characterizing the cause of the performance 
problem. 

The first step in developing a time series model is to detect and resolve non- 
stationarities in the data. Stationarity is an unreasonable assumption for the 
data in Fig. 1 in that there appear to be multiple operating regions: a relatively 
stationary (although highly variable) region from 8:00 AM until 10:30 AM, an 
abrupt increase in response time from 10:30 to 11:30, and an upward trend that 
starts at 12:00 FM and continues for the rest of the series. The identification 
plots in Fig. 10 confirm that these data are non-stationary since the ACF remains 
outside the significance bounds at large lags. 
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One approach to resolving non-stationarities is to partition the data. This is 
particularly appropriate when there are multiple operating regions, as in Fig. 1 
tlowever, selecting a stationary sub-series requires some judgement. We focus on 
the sub-series from 8:00 AM to 10:30 AM (180 observations); Fig. 11 contains 
its identification plots. For the most part, the ACF and PACF lie within the 
significance bounds at larger lags. So, we could proceed with the identification 
step. Doing so might lead us to conclude that there is an AR(1) component in 
the time series since the first lag of the ACF is just above the significance bound. 
On the other hand, a lag 1 autocorrelation that is significant might be clue to 
the sub-series being non-stationary. 

To determine if the sub-series chosen is stationary, a second technique is 
applied: fitting a moderate degree polynomial of time to the data. Figure 12 
displays a fifth degree polynomial of time (the dashed line) superimposed on 
the sub-series that we are modeling. The fitted curve, which we denote by ] ( t ) ,  
accounts for approximately 10% of the variation in the sub-series, which sug- 
gests that the sub-series is not stationary. If f(t) adequately models the non- 
stationary behavior, the residuals of this model are stationary. Thus, our focus 
is these residuals. Denoted by w,, the residuals are computed as w, = Yt - ] ( t ) .  
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Fig. 11. Identification Plots for the Sub-series (First 180 Observations) 

Figure 13 displays the identification plots for w,. The lag one autocorrelation 
now lies within the Bart le t t  bounds, and so we conclude that  there is no AR(1) 
component  ill w,. However, there are several partial  autocorrelations that  lie just 
outside the significance bounds. Here some judgement is required. Since we have 
already taken several steps to e]iminate non-stat ionary behavior and the offend- 
ing values are just barely significant, we only consider the partial autocorrel~tion 
at lag twenty to be non-zero. 

We now proceed to the identification step, which requires matching the ACF 
and PACF of the da ta  with that  of a time series model. The ACF plot in Fig. 13 
has non-zero values at l~gs 20, 40, and 60; further, these autocorrel~tions show 
a gradual decline as the lag increases. The PACF consists of a single spike at 
lag 20. None of the models in table Fig. 2 have this kind of pattern.  However, 
if we delete the non-zero lags from the ACF and PACF, the identification plots 
would look like an AR(1) model. In fact, what we have is an A R ( 1 )  s e a s o n a l  
model; seasonal models indicate the presence of a periodicity. Algebraically, this 
is expressed as: 

where s is the seasonality parameter  that specifies the number of lags between a 
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periodic event. In our case, s = 20; that is, there is an event every twenty time 
units (or ten minutes) that  has a significant effect on performance. Using the 
facilities of the AGSS statistical package [13], an estimate of .497 was obtained 
for ~. Thus, we have the following model for the first 180 observations of the 
data  in Fig. 1: 

(~h --  i f ( t ) )  = (.497)(.Y,-2o -- f ' ( t  - 20)) + a,, (7) 

where i f ( t )  = ] ( t )  - f/. We evaluate this model by using the identification plots 
for its residuals, where 

e ,  = ( y ,  - f ( t ) )  - ( . 4 9 7 ) ( y , - ~ 0  - ] ( t  - 2 0 ) ) .  

From Fig. 14 we see that the residuals are white noise; so Eq. (7) seems to be a 
reasonable model. 

Eq. (7) indicates that performance is degraded significantly by a process that 
executes every tert minutes. This information allowed the operations staff to focus 
on a small subset of their applications; relatively quickly they discovered an 
inefficiently written application that executed every ten minutes. After changing 
a search routine in this application, system performance improved substantially. 
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Fig. 13. Identification Plots for the Residuals of the Curve Fit 

5 S u m m a r y  

Modeling the dynamic behavior of information systems is of importance in many 
situations, such as characterizing the locality of disk accesses, evaluating the 
dynamic behavior of scheduling algorithms, and diagnosing intermittent per- 
formance problems. Time series analysis is a statistical approach to modeling 
dynamic behavior; a time series model is an algebraic expression that relates 
the t-th term to the proceeding p terms and to q random shocks (which repre- 
sent random events that cannot be measured). Developing a time series model 
involves the following steps: (1) resolving non-stationarities in the data, (2) iden- 
tifying the values {or the parameters p and q, which determine the type of model 
such as autoregressive (AR) or moving average (MA), (3) estimating unknown 
constants, (4) evaluating the model constructed, and (5) forecasting future val- 
ues. In general, model development is an iterative process in which steps (1) 
through (4) are applied repeatedly before proceeding to step (5). 

Key to constructing a time series model is characterizing dynamic behavior. 
One commonly used approach employs the autocorrelation function (ACF) and 
partial autocorrelation function (PACF). For example, the second step in time 
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F~g. 14. Identification Plots for the Residuals of the Final Model 

series analysis can be accomplished by comparing the empirical ACF and PACF 
of the time series da ta  with the ACF and PACF of several time series models. 
(The lat ter  are computed from the algebraic expression of the time series model). 

There are several related topics that  are worthwhile pursing. The case study 
in section 4 touched on Al l ( l )  seasonal models. Seasonality can be incorporated 
into any ARMA model, and may appear  in either (or both) the autoregressive 
or the moving average components.  Another topic is transfer function models in 
which one time series is modelled in terms of one or more other time series (e.g., 
modelling response times in terms of interarrival and service times). Lastly, the 
area of stochastic control may be of particular interest to designers of information 
systems since it provides a formal approach to constructing optimal  controls in 
the presence of random noise. The first two topics are discussed in depth in [3]; 
[3] touches on the third topic, but more details are contained in [2]. 
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