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Abstract

Considerable effort has been devoted to the development of accurate trace-driven
simulation models of today’s computer systems. Unfortunately many modelers do
not carefully inspect the input to their models. The fact is that the output of any
model is only as good as the input to that model.

This paper discusses the many issues associated with the input traces used in
trace-driven simulation. A description of the different types of traces is provided,
followed by survey and discussion of the following trace issues: trace generation
techniques, trace-length reduction techniques, trace selection and representativeness,
and common trace misuse.

The aim of this tutorial paper is to equip modelers with enough information about
the different trace types and tracing methodologies, so that they can be more critical
of the quality of the input traces used in their trace-driven simulations. Keywords:
instruction traces, address traces, trace-driven simulation, representativeness.

1. Introduction

Trace-driven simulation is a popular technique used to evaluate future
computer designs [1, 2]. Many times the modeler is so focused on the
problem being studied that the content of the input trace used in the
evaluation is overlooked. If the modeler is not critical of the input traces
chosen as input to his or her model, the output of the model may be of little
value.

Many different types of traces can be used as input to models. The content
of the input trace is dictated by the particular elements of a computer that the
modeler chooses to study, and also by the level of detail that is of interest.
Next, a review of the different trace types is provided.
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1.1 Address Traces

Address traces are probably the most commonly used kind of trace. An
address trace is a record of memory reference activity at some level of the
memory hierarchy. An address trace typically contains the following
information:

* virtual/physical address
» stride (the number of types transferred)
* type or identification (e.g., instruction vs. data, fetch vs. store, etc.)

The trace can contain all or a subset of the above fields. Other fields
frequently captured in an address trace are updates to translation lookaside
buffers, process identifiers, and program state indicators.

Typical uses of address traces include memory hierarchy studies, program
pathlength analysis, and page size sensitivity studies. More papers have been
published on trace-driven memory hierarchy studies (using address traces as
input), than on any other topic in computer architecture [3, 4, 5, 6].

Address traces contain a snapshot of the memory reference activity during a
time interval. One problem encountered when attempting to capture address
traces on current microprocessors is the inability to collect memory references
that are resolved on the on-chip cache [7]. Either the on-chip cache must be
disabled (which will introduce some perturbation into the trace) or the input
address lines to the cache must be surfaced to the external world (i.e., to I/O
pins). The ability to capture traces on these microprocessors must be
included in the design process.

1.2 Instruction Traces

Instruction traces contain the actual instructions executed during a
snapshot of time. These traces contain similar information to that found in
address traces, with the addition of instruction opcodes, interrupts, and
exceptions. These traces, while being substantially “wider” than address
traces, are also commonly used in memory hierarchy studies. Other common
uses of instruction traces are:

» processor pipeline studies,

* branch prediction studies,

+ floating-point unit evaluation, and
* instruction profiling

Instruction traces are considerably more difficult to collect, since instruction
opcodes must be captured as well as memory reference addresses. This can
pose a technological challenge on current superscalar microprocessors, where
multiple instructions can be executed on a single processor clock cycle [8].
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1.3 1/O Traces

A third type of trace used in trace-driven simulations is an I/O trace [9, 10,
11, 12]. This type of trace is a record of /O events, capturing a variety of
disk I/O activity. Other activity captured in I/O traces includes transfers
between devices on an external bus (e.g., LAN, video adapter, etc).

A typical I/O disk trace contains the following information:

» disk address (e.g., sector #, track #, etc.),
* # of blocks transferred, and
* memory address.

Typical uses for I/O traces are for tuning paging algorithms, studying disk
caches, and analyzing I/O subsystems. Many times, queuing models are used
in favor of trace-driven simulation for studying I/O performance issues [13].

Trace Type Summary

While address traces are the most common type of trace, all three of the
trace types just presented are frequently used to evaluate design trade-offs.
The remainder of this paper will discuss the many issues related to traces.
The organization is as follows. Section 2 reviews the many trace generation
methodologies. Section 3 discusses trace-length reduction strategies. Section
4 discusses trace selection and trace representativeness. Section 5 provides
some examples of common trace misuse. Section 6 summarizes this work and
provides some rules-of-thumb for the trace-driven simulation modeler.

2. Trace Generation Methodologies

Many approaches have been proposed to obtain traces on computer
systems. These approaches can be divided into two class: 1) software-based,
and 2) hardware-based.

2.1 Software-based Trace Generation

A variety of software-based tools have been made available for obtaining
traces on current computer systems [14, 15, 16]. These tools modify the
source program at different stages of the compilation process. There are two
compiler-based modification methodologies: 1) compile-time modification,
and 2) link-time modification.
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Compile-time Code Modification

‘hplCompile-time code modification is a commonly used method of
generating traces of program execution [14, 15, 17, 18]. This methodology
takes as input the assembly code of a program, and produces a modified
version of the assembly code. The modified version contains additional code
that will call trace library routines. Another feature allows a program map of
the code to be generated. This provides for the generation of instruction
traces. The modified code is then linked with the standard libraries, as well as
with the additional tracing library routines (as provided by the tracing tool).
When the program is run, a trace is generated which consists of an encoded
stream of events. The encoded trace is then expanded using the program map
generated previously. Eggers etal. provide a description of such a tool for
generating traces on a multiprocessor system [ 14].

Link-time Code Modification

Another methodology commonly used is called link-time code modification
[18, 197. Using this methodology, code is added at link time for each
memory reference. When the modified code is executed, memory reference
information is stored in the trace buffer. Code is added at the entry and exit
of every basic block in the program. When the code is executed, the basic
block information is also stored in the buffer.

The major advantage of link-time tracing over compile-time tracing is that
the former captures trace information for all code, including the code in link
libraries. Compile-time tracing does not trace this code. One example of
link-time code modification for'a RISC-based machine can be found in [16].

Microcode-based Trace Generation

Microcode-based trace generation collects traces by modifying the processor
microcode on the target machine. A detailed description of this approach can
be found in [20, 21].

No changes are made to the source code when using microcode-based trace
generation.  Instead, the microcode of the microprocessor is modified.
Routines are added to the microcode which store address information in a
reserved memory area on each memory request. The major advantage of this
approach is that both application and operating system code can be traced.
Since the operating system can produce a significant number of memory
references (Flanagan etal. report, that for their MACH 2.6 single-process
traces, 12-24% of all references are due to the operating system [22], LaMaire
and White report that in MVS workloads, up to 70% of the references are
due to the operating system [23]), it is very important to capture these
references.
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Software Emulation

Another approach used to generate traces is called software emmudation.
Using this methodology, a software program is developed that emulates the
instruction set architecture (ISA) of the system of interest [24]. Code
compiled for this system will run on the emulator.

A translation takes place between the target system ISA and the ISA of the
host machine (i.e., the system upon which the emulator runs). When a
program is run on the emulator, a trace is generated. The speed of the
software emulation system typically depends upon the efficiency of the
translation between the two ISA’s and the overhead associated with saving the
trace data.

2.2 Hardware-based Trace Generation

An alternative approach to modifying code/microcode or writing an
emulator is to use a hardware-based trace generation methodology. There are
two types of hardware tracing mechanisms: 1) trap-bit tracing, and 2)
real-time tracing.

Trap-bit Tracing

Trap-bit tracing is a commonly used techmique to generate instruction
traces on microprocessor-based systems. A bit is provided by the ISA of the
microprocessor which, when set, causes an interrupt to occur on the machine
being traced. An interrupt service routine is entered which inspects the
current instruction and captures any desired information (e.g., addresses,
instructions, etc.). The Intel 80386 microprocessor family provides such a
facility [25], as does the VAX architecture [26].

The interrupt service routine, which is called when the microprocessor traps
out, can be customized to gather the particular information of interest. The
trap bit is reset during the time when the interrupt service routine runs, and is
set upon the exit from the interrupt service routine (otherwise the interrupt
service routine would be traced). When the next instruction is executed, a
trap will occur, and the procedure is repeated.
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Real-time Tracing

Real-time tracing captures traces from the target machine by electronically
monitoring signals on pins and/or busses [22, 27, 28, 29] Traces are gathered
while the machine is running, so the hardware used to capture the traces must
match the fastest trace generation speed. Real-time tracing has the main
advantage of not perturbing the system being traced. The traces are complete
and accurate.

The two main challenges when designing a real-time tracing system are: 1)
matching peak data rates, and 2) capturing long traces. Next, the trade-offs
associated with the different mechanisms presented are discussed.

2.3 Trace Methodology Comparison

Figure 1 lists the six different tracing methodologies just presented. The
table compares the six methodologies based on: 1) the amount of time
dilation introduced into the trace, 2) whether the operating system is captured,
3) the typical sample size gathered, and 4) the typical cost.

Time Dilation

Time Dilation occurs because the trace methodology introduces some type
of overhead into the system. The reason why this is a concern is that by
slowing the system down, events that used to occur in real time (e.g.,
input/output, interrupts, and timers) now occur with non-realistic timings.
These events may timeout or may occur, artificially, too soon due to the
overhead of the tracing mechanism. This will affect the correctness of the
trace.

Link-time and compile-time code modification suffer substantially from
time dilation in that considerable time is spent storing information into the
trace buffer on each memory reference or basic block entry/exit. Published
results indicate that a 10x slowdown (1/10 as fast as real-time) is experienced
when using these methods [20].

Similarly, microcode modification experiences considerable time dilation.
Again, the overhead is associated with saving the trace information. It has
been reported that microcode-based tracing produces slowdowns comparable
in magnitude to those found in the compiler-based modification
methodologies [20].

Software emulation suffers from at least two sources of inaccuracy: 1)
emulation of an ISA typically does not emulate the I/O subsystem, and 2) the
timme to translate between the target ISA and the host ISA can be on the order
of 10x. Either of these issues can substantially affect the correctness of a
trace.
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Time Q/S Sample

Dilation Coverage Size
cods modttcaton| 10X NO | 1as
m"r"nidmcanon 10X NO 1GS
et | 10X YES 1GS
emuighon 10X YES  |UNLIMITED
racing 100X YES  [UNLIMITED
g 1x YES | 100MS

GS - 1 billion samples
MS - 1 milllon samples

Figure 1. Trace Methodology Comparison

The overhead introduced into the system with trap-bit tracing is due to
trapping out to an interrupt service routine, executing the code necessary to
save the desired trace information, and then returning to the next instruction.
This sequence is performed for every instruction executed, and thus more
overhead is associated with using this methodology than with the code
modification techniques. System execution is dilated on the order of 100x
using trap-bit tracing.

Real-time tracing does not introduce time dilation into the system. Some
real-time tracing implementations have suggested slowing down the system
clock. This should not be considered real-time tracing. Some events (e.g.,
I/O, timers, etc.) will still execute at full speed, thus corrupting the integrity of
the trace. Other reported implementations suggest stopping the system to
unload the trace buffer [22]. If this approach is employed, it should be
clearly understood what perturbations are caused by halting the system. It
must be stressed that stopping the system at all will usually produce some
perturbation. :
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Operating System Coverage

It is quite important to capture accesses made by the operating system.
There are two reasons why: 1) a large percentage of all references on the
system are due to the operating system (as reported earlier), and 2) the
behavior of operating system code is very different from application code (e.g.,
operating system code is notorious for causing poor cache performance [207).

Summarizing the second column in Figure 1, only the two compiler-based
code modification methodologies are incapable of capturing the operating
system code (unless, of course, the entire operating system has been
instrumented and recompiled). The other three methodologies capture both
the operating system and the user programs.

Sample Size

The appropriate length of a trace will be dictated by the problem being
studied when using the trace. It has been stated that traces longer than §
billion references in length are necessary for modeling current memory
hierarchy designs [16]. This point is debatable, but having longer traces is
always more desirable (i.e., we do not have to use the entire trace, but if we
have it in hand, we can then determine what length is appropriate).

Figure 1 lists the longest possible trace lengths for the six tracing
methodologies. We see that code modification techniques can generate very
long traces. The limiting factor here is the size of the trace buffer allocated on
the machine. Software emulation can generate traces of unlimited length.
Tracing is under software control, such that the trace can be unloaded from
the system at any time, and tracing can pick up from where it left off. The
trap-bit tracing approach can also capture traces of unlimited length. This is
true because the traced system is under the control of a interrupt service
routine. The interrupt service routine can detect when the buffer is full and
take the appropriate action. While this is not true for the code modification
methodologies, a separate detection routine could be invoked when an
addressing exception occurs.

Real-time tracing is the most severely restricted is this category, being
limited by the amount of memory (random access memory or disk) supplied
on the trace system implementation. One option is to allow the tracing
system to detect when the trace buffer is full. The system being traced can be
halted, the trace memory unloaded, and then tracing resumed. Even though
this approach is feasible, it is undesirable to stop the system under test since
some artifacts may be introduced.
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Cost

The last column in Figure 1 shows the estimated cost of each of these six
methodologies. The cost for the software-based code modification
methodologies is low. Fither the compiler or the linker needs to be modified.
Some systems already provide such tools [30].

Microcode-based modification is quite expensive, unless one is fortunate
enough to be a microprocessor manufacturer and have access to the
microcode.

Development of a software emulation system can be a substantial software
coding project. The emulation program has to be able to execute every
instruction in the target ISA. This can be over 300 instructions for some
ISA’s [25].

The cost of implementing a trap-bit tracer is low, since many of the current
microprocessors provide such a feature. The only development effort
necessary is associated with the coding of the interrupt service routine that will
save the trace information.

The cost of custom hardware to perform real-time tracing is quite high.
The system must be able to capture traces at high clock frequencies (when full
instruction traces are desired). The memory used to store the trace must be
able to accept samples at very fast rates (typically faster than 100 MHz.). The
cost of static and dynamic random access memory in this clock frequency
range is quite high (see Figure 2 for a range of current prices for static random
access memory).

One approach suggested to reducing the cost of a real-time tracing system
is to interleave between banks of slower memory, buffering the data in
high-speed registers, and multiplexing in a round-robin pattern through the
slower memory arrays [31]. This can reduce the cost of a real-time tracing
system by an order of magnitude, since a majority of the cost of the system is
tied to the cost of the trace memory.

2.4 Summary of Trace Generation Methodologies

Comparing the many tracing methodologies just presented, there exist
disadvantages in each of the approaches. If the goal is to acquire accurate and
complete traces (i.e., containing no time dilation and containing all operating
system execution,) the only choice is to use a real-time tracing methodology.
The main problem with real-time tracing is the cost of the storage necessary
for capturing the trace. The cost of the tracing system is directly proportional
to the amount of storage necessary to hold the trace. By using the simple
multiplexing scheme described above, the speed requirements on the trace
memory can be relaxed.
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Figure 2. Static RAM cost vs. Access Time

3. Trace Length Reduction

Assuming that the required trace has been obtained, we now need to
explore how we can store and use the trace efficiently. Traces take up a
considerable amount of space. Trace-driven simulation execution time is
directly proportional to the length of the trace being processed. The next two
topics covered describe how to minimize the amount of space occupied by a
trace, as well as how to reduce the amount of time needed to process a full
trace in a trace-driven simulation run.
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3.1 Compacted Traces

Typically, traces consume a considerable amount of space (some traces are
many gigabytes in size). Methods have been devised to reduce the physical
space consumed by a trace. Some of the desirable attributes of a trace size
reduction methodology are:

* the size reduction factor should be significant,
* the reduction/expansion algorithm should run efficiently, and
* no information should be lost.

One strategy that has proven to be successful in reducing the length of
address traces is called Mache [32]. This technique combines a type of cache
filter, emitting either a miss or hit record, and then uses the Lempel-Ziv
compression algorithm [33] to compress the miss/hit records. The algorithm
reduced address traces (containing both instruction and data references) by
91-97%.

While this methodology does reduce the size of the trace, it does not reduce
the overall trace-driven simulation time. The trace record still needs to be
expanded in order to be input to the model. The trade-off is that less disk
I/O is taking place, while extra processing is occurring due to expansion.

3.2 Simulation Time Reduction

If the goal is to reduce the overall execution time of the trace-driven
simulation, then another strategy besides compaction must be employed. It
has been noted that memory references tend to display the property of
temporal locality [34]. By taking advantage of this characteristic in address
traces, significant reductions in simulation time can be realized.

Smith proposed a method called stack deletion [35]. Using this approach,
all references that hit to the top N levels of an LRU stack are discarded from
the trace. The assumption is that most memory management systems will
typically retain these references in memory, and thus, a similar number of
misses will occur when discarding the hits to the top of the stack. While the
results presented indicate a substantial reduction in trace length (25-95%
shorter), the method has only been applied in paging studies. The large
variance in the reduction factor is due to a large variance in the locality of the
page references contained in the traces used.

Another methodology, that produces exact results when using the reduced
address trace, is called trace stripping [36]. A direct-mapped cache is
modeled, and only misses to the model are kept in the reduced trace. Esxact
results are obtained when modeling caches with the same or less number of
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sets, provided that the cache line size remains the same. Traces are reduced
by a factor of (90-95%) using trace stripping,

Other extensions to trace stripping have been proposed. Wang and Baer
describe how to reduce traces using a modified version of trace stripping, that
addresses simulation of write-back caches [37]. In addition to misses in a
direct-mapped cache, first-time writes are also kept in the reduced trace.

Agarwal and Huffman propose a scheme called trace blocking [38], which
takes advantage of both the temporal and spatial locality in programs to
reduce the size of the trace. A cache filter with a block size of 1 is used to
discard references within a temporal locality. Then a block filter is used to
compact the trace to take advantage of spatial locality in the trace. Some
errors are introduced using this method. The size of the resulting trace is
reduced by 95-99% when using trace blocking.

Chame and Dubois introduce a new method for reducing the length of
multiprocessor traces used in trace-driven simulation called trace sampling
[39]. Their strategy first applies the Wang and Baer method, and then
samples a number of processors. While this approach suffers from
inaccuracies, the errors are typically small (less than 5%), while the overall
simulation time is reduced by more than 97%.

While each of these methodologies reduces the overall simulation time, the
accuracy of the methodology must be clearly understood. Errors as small as
5% can invalidate the modeling resuits.

4. Workload Selection and Representative Traces

In the preceding sections, the issues of how to capture traces and how to
use them more efficiently were presented. The next question is: “What do we
want to trace?” In this section we will discuss how to select an appropriate
workload to trace and how to obtain representative traces.

4.1 Workload Selection

The selection of an appropnate workload to trace is typically driven by the
particular problem under study (i.e., what type of work is typically performed
on the machine we are designing). Workload types can be broken down into
various categories:

+ fixed-point vs. floating point,

* processor bound vs. memory bound vs. I/O bound,

» standardized benchmark vs. application vs. operating system, and

* scientific vs. transaction-processing vs. database vs. general purpose.
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The above list is not nearly complete, but it demonstrates the many different
facets of selecting an appropriate workload.

To clearly understand the performance of the modeled system, the correct
input must be selected. Besides tracing workload that is particular to the
problem being studied, it is vital to use a range of workloads. Many of the
new benchmark suites (e.g. SPEC 92 [40] and SDM [41]) attempt to provide
this range of workloads. Gray provides a good reference covering the current
state of benchmark programs [42].

While benchmarks are the most readily available, and easiest to trace, traces
of real workload on customer machines are more interesting. In an attempt
to create a more realistic transaction processing benchmark, the Transaction
Processing Council was formed. Since its creation, the council has produced a
number of benchmarks (TPCA, TPCB, TPCC). A very good description of
each of these benchmarks can be found in [42].

Other workloads of interest include the SPLASH benchmark suite [43],
commonly used in multiprocessor studies [44, 45], and the PERFECT Club
benchmark set [46], used to study supercomputer performance issues [47].

4.2 Collecting Representative Traces

After the particular environment that needs to be traces has been selected,
and after traces have been obtained, how do we know if our traces are of any
value (i.e., did we capture the important part of the execution in our trace).

To help answer this question, we introduce the term representativeness,
which describes how well the sample we have collected captures the certain
characteristics (we are probably only focusing on a subset of the workload
characteristics) of the entire execution that we are studying. To better judge
the representativeness of a trace, workload characterization is commonly used

[2].

Two approaches can be taken to perform characterization: 1) execution
monitoring, and 2) trace sampling. Execution monitoring involves using
either internal instrumentation provided with the system, or some external
hardware to monitor particular events on the system. In [23], LaMaire and
White provide a workload characterization study for the IBM System/370
system.

The second approach to characterizing the workload on the system is to
obtain samples of execution. Two approaches can be taken here. One
approach is to capture a set traces and then use statistics to evaluate the
representativeness of any particular trace. A second approach captures short
samples over the entire execution of the trace and then attempts to stitch
them back together [48, 49]. The selection of the which method to use will
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Instruction Opcode % of all instr.
MOV rwm 7.53
PUSH rw 5.77
POP rw 5.31
INE disp 4.46
LOOP disp 4.40
JE disp 3.82
MOV m,w 3.02
JMP disp 3.02
MOV rw,rw 2.81
CALL disp 2.76
RET 2.67
CMP rbkk 2.23
Total 47.8

(Combined statistics for 96 traces)

Figure 3. Instruction Opcode Frequencies

depend upon the amount of transient behavior encountered in the entire
execution. If the execution is predictable, then a single trace should prove to
be sufficient. If the execution exhibits more random behavior, then the short
sample technique may be more useful.

Figures 3, 4, and 5 show examples of workload characteristics commonly
used to study representiveness in traces. Figure 3 shows the opcode
frequencies contained in a set of 96 traces, taken from an Intel 80386-based
personal computer workload [50]. Figure 4 shows the number of unique
memory pages touched over the execution of a single trace. Figure 5 shows
the frequency, over time, of the memory references across the memory address
space (also called the basic block usage). Each of these characteristics helps
the modeler to gain more insight into the contents of the captured trace.

5. Common Trace Misuse

Traces are commonly misused in trace-driven simulation studies. There are
many reasons why. In this section we will discuss examples of trace misuse,
and suggest how they can be avoided.
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Figure 4. Cumulative Number of Unique Pages Touched

5.1 Appropriate Workload

Modelers often decide to use traces that are inappropriate for their
purposes. One example of an inappropriate workload would be to use a
compute-bound benchmark (e.g., matrix300 from SPEC ‘89 [48]) to study
cache performance. The cache hit rate would be so high for any
reasonably-sized cache, such that the results would be very misleading (ie.,
this benchmark is compute-bound, and does not stress the memory
subsystem).

To avoid this type of trace misuse, review the suggestions provided in
section 4.1. Another important issue here is to learn as much about the
benchmark or application that you can. Inspect source code if possible.
Attempt to identify what parts of the application that you have captured in
your trace (e.g., modules, functions, etc.).
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5.2 Generality of Results

To be able to claim generality of a particular modeling result, a range of
benchmarks or applications needs to be used. We often review papers that
leave a particular application out of the results section. Sometimes this is
done legitimately, but sometimes this is done in order to hide some less
favorable results.

If a particular application does not perform as well as the rest of the
benchmarks/applications in the set, find out why. Generality is a key quality
that reviewers look for in papers. If the particular design issue has some
shortcoming, as long as the reason why this occurs is understood and
explained clearly, the merits of the design will still be evident.
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5.3 Snapshot Selection

Besides selecting the appropriate workload to study, it is very important to
understand, within the workload, what you have captured in the trace. One
mistake that is often made is to begin tracing an application from the
beginning of its execution. What happens is that the trace will contain a
majority of the overhead of loading the code into memory, and the
initialization of variables. If a majority of the execution is devoted to
initialization, then capturing the startup of the execution is fine. But in most
applications/benchmarks, execution is dominated by steady-state execution.
Always attempt to determine the dominating behavior of the code being
traced.

The next issue after deciding when to begin tracing is to decide when to
stop tracing (i.e., what is the right trace length). One example of this is found
when modeling caches. The miss rate in the cache will be quite high as the
working set [34] is loaded. If the trace ends while the working set is still being
loaded, unrealistic (i.e., very high) miss rates will be produced. For this
reason, a study of the cache footprint [51] should be performed before
deciding what the appropriate length of a trace should be.

5.4 Snapshot Length

Once the correct length is determined, a methodology should be selected
that captures a representative sample. While there is not one methodology
that can be applied to every trace, an evaluation using workload characteristics
(as described in section 4.2) should be performed. One example of using the
wrong trace sample is when a tight (small) timing loop is captured in a trace
(timing loops are quite common in personal computer workloads). The
performance evaluation will center around speeding up the timing loop. The
net effect of increasing a timing loop’s execution speed is to generate more
iterations of the timing loop in the optimized design. Increasing the speed of
timing loops does not generally improve the program execution time.

6. Conclusions

This paper has provided an overview of the issues related to the content of
the traces used in trace-driven simulation. A review of the three types of
traces was provided. The issues of trace generation, trace-length reductions,
workload selection and representativeness, and trace misuse were covered. An
extensive set of references is also provided, which should be used for further
information on any particular trace-related issue.

The modeler should come away from this paper with a more critical view
of input traces. Some important questions that should be raised when using
traces are:
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What type of trace is required by the model?

Is the trace complete, and does it contain any perturbations?

What is an appropriate trace length?

Can I reduce the size or length of my trace?

Does the trace contain the appropriate workload?

Does the trace contain the appropriate execution snapshot?

Can I identify the portion of the application contained in the trace?

Increasing the emphasis on the quality of the input trace can only improve the
quality of the modeling results.
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