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The discussion in this tutorial is centered around a new space- 
time relaxation paradigm which appears to be a good candidate for 
rendering efficient a wide class of massively parallel discrete event 
simulations. 

1 Discre te  event  s imulat ion:  wha t  it  is and  why  we consider  it  

Several forms of computer rendering, such as computer graphics or com- 
puter games, are sometimes called "simulations." Here, we focus attention on 
simulating a dynamic system. Simulation will be understood to be the process 
of generating the trajectory or sample path for such a system. 

Typically, the user "pushes the limits" and simulates as large a model as 
computer memory permits and for as long as it is tolerable. Hence it is not sur- 
prising that a substantial fraction of the non-idle CPU time of many computers, 
perhaps, as large as 50%, is occupied with simulations. It might seem somewhat 
unexpected, though, to find a substantial fraction of all simulations to be dealing 
with discrete event models. 

After all, most of us think of the world in Newtonian terms: a global 
clock with objects continuously changing their states governed by, say, differ- 
ential equations that express the advancement of time. However, this intuitive 
and clear time-driven concept often generates inefficient computer algorithms. 
Specifically, each component of the system under study typically changes its 
state rarely and such changes are asynchronous among the components. If we 
make a snapshot of the model at a random time instance, we will see no or few 
changes that are taking place. The changes are sparsely "sprinkled" over the 
space-time. If the computer simulates such a system in a time-driven fashion by 
continuously monitoring each component, the processing power of the machine 
is wasted. Using a less intuitive but more efficient discrete event model we can 
simulate the same system orders of magnitude faster on the same computer. 

In a discrete event model, the system and its components change their states 
instantaneously at discrete times; those changes are called events. The state 
remains constant on the intervals between the events. Time advancement is 
represented not in a time-driven form, like differential or difference equations, 
but in an event-driven form. In the latter form, the trajectory of the system is 
a directed acyclic event dependency graph. The nodes of it are the events, and 
the links represent cause-effect relations in pairs of events. 
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This graph can be also viewed as a data-flow diagram. To each node-event 
corresponds the event descriptor, which consists of the time of the event and the 
specification of the state change represented by the event. If events el, e2, . . . ,  ek 
are all the immediate causes of event e, then the descriptor of event e is a 
function of descriptors of el, e2, . . . ,  ek. Computing the descriptor of e given 
the descriptors of e's causes is called processing of event e. 

Not only the event descriptors but also the topology of the event dependency 
graph is unknown in advance. The discrete event simulation algorithm must both 
construct the event dependency graph and process the events on it. The former 
activity, also referred to as event scheduling, typically is the most calculation 
intensive and difficult for programming. 

An example is helpful. Consider a gutter, bounded from both ends. The 
gutter contains N = 4 balls of equal mass and size. Assume the balls and the 
gutter walls are ideally rigid and elastic, the gutter is very massive, and its width 
is just enough to assure motions of the balls along its length in the absence of 
gravitation and friction. Figure 1 represents the initial segment of the system 
trajectory beginning with the positions and velocities of the balls at time to. 

The depiction can be viewed both as a space-time diagram of the system 
trajectory and as an event dependency graph where the events ei, i - -  1 ,  2 . . .  

are ball-ball or ball-wall collisions. (The gutter and the four balls are depicted at 
the bottom of the diagram.) An event descriptor here consists of: the collision 
time, the positions and velocities of the involved balls immediately after the 
collision. One can check, for instance, that (the descriptor of) event es, which 
is a collision of balls 3 and 4, is a function of (the descriptors of) events e4, a 
collision of 2 and 3, and e2, a reflection of 4 from the wall. Specifically, we can 
compute time t5 of collision es, if we know the times, positions, and velocities 
of balls 3 and 4 immediately after their previous events e4 and e2, respectively. 

It was said above that the state of a discrete event system remains constant 
on the intervals between events. However, in this example positions of the balls 
are continuously changing between collisions. Is there a contradiction? No, there 
isn't. We simulate the given continuous time system as i[ the state remained 
constant between collisions. The "trick" is that although we do not consider tra- 
jectories of balls between collisions, no information is lost. This "trick" is exactly 
the reason why simulating the billiards in the discrete event format is much more 
efficient than in the continuous time format. In the latter, time-driven method, 
the computer updates the state of the system by scanning all balls at each small 
interval At. In most such intervals, like in the one indicated in Figure 1, there is 
simply no events, in others there are few events. By contrast, in an event-driven 
method, the computer updates the state of the system from collision to collision, 
i.e., from ti to ti+l. For example, immediately after processing collision e4 of 
balls 2 and 3 the computer processes collision e5 of 3 and 4. 

To process event e5 we must first make sure that e5 takes place. This is the 
task of scheduling. This task is not trivial even in our simple example. Here is 
a "naive" way to schedule event es: First, we calculate the state of all balls at 
time ~4 of the last processed event; then from this state we try to match any 
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Figure 1: Billiards in one dimension 
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ball-ball or ball-wall pair in a next collision; lastly, we find the minimum of all 
these next potential collision times which delivers for us the time of event e5 and 
also identifies the participating balls, 3 and 4. After the schedule for event e5 is 
completed, we process the event by recomputing positions of balls 3 and 4 and 
by determining their new velocities after collision es. We use known formulas of 
elastic collision in recomputation of velocities. 

The described method of scheduling is "naive" not only because it does not 
take advantage of 1D (balls can not "overtake" each other, hence only balls i 
and i + 1 can collide and only balls 1 and N can collide with the walls), but 
also because it examines all N balls in order to schedule only one event which 
involves at most two halls. 

The task of designing an efficient scheduling usually constitutes the main 
difficulty of recasting a continuous time model in a discrete event format. Dis- 
cussiohs of efficiency of discrete event simulations, are usually reduced to ef- 
ficiency of implementing queues o f  events .  One should realize, though, that 
handling such a queue, even if it is done efficiently, does not cover the entire 
task. Simulationist also has to design an efficient data manipulation, to figure 
out what are the events, which events to keep and which to forget and when 
during computations. 

Say, in the billiards example, which data should be kept for each ball at each 
stage of computing? Should the entire prehistory of a ball be retained or only 
a part of it? How to avoid the order of N overhead of the "naive" method? 
There seems to be no general recipe for answering questions of this type and 
we are not going to discuss them in this tutorial. (In the specific example 
of simulating billiards, several methods equivalent in its results to the "naive" 
method, but which are much more efficient, are mentioned in Bibliography.) 
It will he assumed here that the discrete event model of a system subject to 
simulation is defined and is provided with the required mechanism for scheduling 
future events. 

2 Paral le l  d iscrete  event  s imulat ion:  its  in tent  and its  caveats  

The parallel discrete event simulation has the same objective as the serial 
one. It is supposed to generate the simulated system trajectory in the form of 
the event dependency graph. An obvious, but sometimes forgotten requirement 
is that the trajectory, including the topology of the graph and the descriptors 
of events in it, does not depend on the method of computation, whether serial 
or parallel. As the programmers know, writing a parallel code is always more 
difficult than writing a serial code for the same task. Then why do we get 
involved in parallelization? For one reason only: a promise of shorter running 
time. 

To reduce the running time by parallel execution, a simulation task has to 
be split into a number of subtasks which can be carried concurrently by different 
processing elements (PEs) of the parallel computer. Three methods of splitting 
are commonly used with different PEs carrying: 
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1) independent simulation runs. This is called the replication method 

2) different tasks in the serial processing of one simulation run. This is the 
method of functional parallelism 

3) different components of the simulated system for one simulation run. This 
is the space-parallel method. 

Recently a fourth method has been discussed, where different PEs concurrently 
carry simulation for different time segments of the same simulated component 
for one simulation run. It is natural to call it the time-parallel method. 

The replication method is simple and efficient and should be exercised when- 
ever possible, specifically, when we have to run many independent trajectories 
with initial conditions known in advance and when one PE is able to accommo- 
date one run. Unfortunately, these conditions are satisfied rarely. Usually we 
need to speed up a single run or each run in a sequence. 

The functional parallelism allows one to speed up a single run. In our billiards 
example in Section 1, the functions that can be executed concurrently may be: 
solving an equation to find the time of next collision of two given balls, computing 
the ball velocities after the collision, various data manipulations involved in 
scheduling the next event, such as the minimization. In addition to being to 
some extent independent in handling one event, these functions are somewhat 
independent when executed for successive events. Hence their execution can be 
pipelined, i.e., we may begin scheduling next collision while still processing the 
previous one. 

The drawback in a functional parallelization is that the degree of parallelism 
does not scale with the size of the simulated system, e.g., with the number of 
balls. In scheduling the next event, there is always a serial section of the code. 
Even if simulation is pipelined, only a limited number of events are taken for 
processing at a time. Hence, functional parallelism as such is not appropriate 
for massively parallel execution (but can perhaps be used in combinations with 
other methods discussed below). 

Only the third and the forth methods seem appropriate for massively parallel 
execution and we will discuss them in detail. Consider the third method, when 
different components or subsystems are hosted by concurrently running PEs. 
Recall that our concern is to simulate event dependencies correctly. 

Let us first consider the space-parallel method in the application to the (no- 
tably inefficient) time-driven simulation. In this setting, at each step the PEs, 
based on the information about the events processed for times before t, process 
events for slot [t, t+At).  Because At is assumed to be very small it is not proba- 
ble for both cause and effect events to fall into the same slot. Hence violations of 
causality almost never occur: between the steps the PEs will inform each other 
about the causes to correctly schedule the effects. 

One source of inefficiency here is statically fixed At which thereby must be 
very small. We can improve efficiency by letting At change dynamically from 
iteration to iteration. We can choose At as large as possible at each new iteration 
with the restriction that no violation of causality occurs. Specifically, causality 
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t+At 

Figure 2: Adjustable time stepping algorithm 

is preserved, if given that the smallest event time scheduled but not processed 
at previous iterations is t, any other such event (which is scheduled but not 
processed at previous iterations) whose time is smaller than t + At is itself not 
an effect of such an event. We choose At to be the largest value that satisfies 
this condition. 

This idea is illustrated in the fragment of the event dependency graph in Fig- 
ure 2. It is assumed in this depiction that all dependency links among the shown 
events are also shown, and that no shown event will be canceled or rescheduled. 
(These assumptions are made for all the other pictures in this tutorial unless 
stated otherwise.) Here the events that are indexed 1, ... 5 have been processed, 
the rest, events 6, ... 16, have been scheduled but not processed. Of the latter 
set, event 6 has the smallest time t, all events in set S = {6, 7, 8, 9, 10, 11, 12} 
are scheduled and unprocessed, and in addition are not effects of events in S. 
The key observation is that the events in S can be processed concurrently with- 
out violating causality. Event 13 has the smallest time among those that are 
not safe to process in parallel with events in S; indeed, 13 is an effect of event 
12 E S. Events 13,14,15,16 will be processed at future iterations. Moreover, 
because of the time stepping restriction, events 8 and 10 will be processed at 
future iterations too, despite that it is safe to process them now. The next At 
is the maximum width of the strip that does not contain events which do not 
belong to S. The next iteration will begin with t + At replacing t. 

This idea was successfully implemented in several massively parallel simula- 
tions. Its use is hinged on finding a convenient method to generate non-trivial 
(i.e., not very small) estimates for cause-effect delays at least two cause-effect 
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Figure 3: Bounded lag algorithm 

links in advance. A success in this, of course, depends on an application (see 
Bibliography). 

Another application-dependent method to preserve causality is based on es- 
timates of minimum propagation delays. Here we also advance time by time 
stepping. However, the width At of the strip in the space-time diagram is not 
thought of as "small." On the other hand, an iteration does not necessarily ex- 
haust all the events that fall within the strip. This is the bounded-lag algorithm. 
An instance of event scheduling and processing is shown in the space-time di- 
agram in Figure 3. Eight sites indexed 1, . . .8,  are depicted along the space 
axis. It is assumed that events can not propagate from site i to site i + 1 in time 
smaller than d(i, i + 1). Quantity d(i, j) is induced for any pair of sites i and j 
so as to satisfy the triangle inequality d( i, j) + d(j, k )>_d( i, k ). Quantity d( i, j) 
is also non-negative, but unlike the standard definition of the distance, d(i, j) is 
not necessarily equal to d(j, i). To simplify the drawing, equality d(i, j) = d(j, i) 
is also assumed to hold in the example of Figure 3, and it is also assumed that 
d(i, j) is the Euclidean distance between the corresponding sites. 

Suppose we want to test, whether or not event e5 is safe to process at the 
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current step. In the simplest version of the algorithm, we cheek all event-causes, 
whose effects might potentially affect site 5 in the past of event es. Space-time 
coordinates of those events have to belong to the incoming teachability cone 
constructed with respect to event es. The condition that  an event with time 
tl  that  occurs at site sl belongs to the incoming reachability cone of an event 
with time t0 that  occurs at site so can be expressed as: to - t l  ~_ d(sl ,  so). For 
So = 5, sl = 6, to = time(es), and t l  = time(eT) this condition holds and we see 
that  e7 may cause an event at site 5 in the past of event es. This hypothetical 
trouble event would have time t. 

The events that  are safe to process at the current iteration according to 
this test are e2, eT, and el0. For the next iteration, the floor will be moved to 
t me(es). 

Event propagation delays are easy to think of as physical delays of propagat- 
ing signals. That  may he the case, but more often procedural delays qualify as 
the event propagation delays. For example, the service time in a queuing system 
simulation can be translated into an event propagation delay. This might seem 
counter-intuitive, because both the cause, "service start" and the effect, "service 
end" occur at the same site (at the server node). 

The two discussed above algorithms are examples of safe, causality preserv- 
ing simulations, also called conservative. Without further discussing other safe 
parallel algorithms, we note that  a successful realization in parallel for such an 
algorithm needs non-trivial (i.e., not equal to zero), a priori estimates of cause- 
effect delays. The "a priori" means that  the estimate must be known before the 
corresponding events are simulated. One way to see how this is possible is to 
imagine that  a cause and the corresponding effect mark the beginning and the 
end of a certain "activity." Without simulating this activity we should be able 
to say that  the activity would take longer than a certain positive bound. 

Simulations of stochastic models by the nature of the assumptions usually 
made in such models open an avenue for such an estimation. For example, if a 
job enters the service, the service time is usually assumed to be stochastically 
independent of the state of the system when service begins. Thus, we can pre- 
sample the service time several steps in advance, even when the corresponding 
job is not yet arrived for service. Another example: Ising spin simulations. Here 
we have an array of atoms and the state of each atom is changed at unpredictable 
random times which we model as a Poisson point process associated with this 
atom. The rate of arrivals is fixed for all atoms and arrivals for different atoms 
are independent. The state change depends on the states of the neighboring 
atoms, but the t ime of the change is independent of the state. 

Paradoxically, whereas the times of state changes are random and hence con- 
ceptually unpredictable, in the simulation we can predict them. We sample these 
times any number of steps in advance using algorithmically generated random 
sequences. The fact that  these sequences are fully deterministic (and repro- 
ducible once started with the same seeds) is an advantage! It is not appropriate 
for our purposes in pursuit of the "real" randomness to use physically generated 
and hence irreproducible random sequences instead. (Practitioners of simulation 
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may not recognize this simple but important observation.) 
However, presampling is not always possible. In some examples, in order 

to know a non-trivial estimate of the cause-effect delay we must, at the least, 
simulate both cause and effect events. This is a fundamental problems with 
the conservative parallel simulation algorithms, which thus can not always be 
successfully applied. An example of such impossibility for delay prediction is the 
simulation of billiards discussed in Section 1. Some may consider the simulation 
of billiards to be a "toy" example. In fact, this "toy" model is in many respects 
more difficult to simulate in parallel, than some "serious" models, e.g., queuing 
networks. 

3 Space-t ime paradigm: everyone was skeptical at first 

Figure 4 illustrates the space-time relaxation concept for parallel discrete 
event simulations. According to this concept, space-time is to be split (arbitrarily 
or as convenient) into regions and each region is to be assigned to a PE which 
is responsible for filling this region with events. 

The computations are iterative. A synchronous version of such computa- 
tions can be described as follows. Let X (k) denote a trajectory (event depen- 
dency graph) as known at iteration k. This X(k) is composed of segments of 
trajectories known to each PE. For the next iteration k + 1 each PE updates its 
segment of trajectory, i.e., reprocesses its events after receiving relevant infor- 
mation from the neighboring PEs about events as they were known to them at 
the previous iteration. This reprocessing can be expressed as X (k+l) = F ( X  (k)) 
where function F symbolizes the cause-effect relation among the events. 

The recomputation terminates at the iteration at which each PE detects that 
its events are the same as they were at the previous iteration. The termination 
is equivalent to finding X such that F ( X )  = X .  This X is a fixed-point of the 
cause-effect relation map F. 

Reducing problems to solving fixed-point equations is not unusual in math- 
ematics. For example, we may try to solve equation x = sin(2x) with respect 
to unknown x by iterating: beginning with x(~ we find x (1) = s/n(2x(~ then 
x(~) = sin(2z(D), then x (3) = sin(2x(2)), and so on. The standard questions 
here are: Is the solution unique? If so, will the iterations converge to this so- 
lution? If so, how fast? In the x = sin(2x) problem the solution is not unique 
and the convergence depends on the choice of the initial guess x(~ 

On the other hand, in the discrete event simulation problem, the iterations 
always converge and the found fixed-point is unique. This can be seen by com- 
paring the iterative fixed-point method to standard serial simulation. In the 
latter at each step we uniquely determine one more event using event depen- 
dency. Beginning with the same initial events as in the serial simulation, at 
each iteration of the parallel fixed-point method we settle at least one additional 
event. And since in the parallel fixed-point method we use the same event de- 
pendency (represented in F) the settled events must be the same as the ones in 
the serial simulation. 
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Figure 5: Non-parallelizable event dependency graph 

Slow convergence may be an obstacle on the way to a practical realization 
of this idea. Indeed, for the event dependency graph depicted in Figure 5, no 
matter how we split the space-time among the PEs, serial event settling (in 
the shown order: 1,2,3...) is guaranteed: PE6 has to wait for PE3 to correctly 
determine event 5 before processing event 6 and then wait for PE3 again to 
correctly determine event 12 before processing event 13 and finally wait for PE5 
to correctly process event 20 before processing event 21; similarly, PE 7 can not 
perform any useful work before events 1, . . .27 are correctly processed by the 
other processors, and so on. 

During the first public presentation of this space-time relaxation paradigm in 
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Figure 6: Partitioning of a one-time-step strip 

1989 (see Bibliography) the audience seemed very skeptical for this very reason: 
questionable performance. In 1990 and later the question of performance was 
addressed as discussed in the following sections. 

4 Space-paral le l  re laxat ion can be  efficient 

Here we discuss a specialization of the space-time relaxation idea of Section 
3 for a space-parallel simulation. We consider a time-stepping algorithm, where 
"space" in the space-time diagram represents a large simulated system, like a 
large queuing network, or a large billiards table with many balls, whereas, the 
"time" is restricted to a relatively small At window. As in the time-stepping 
algorithms discussed in Section 2, the simulation is advanced by serially pro- 
ceasing these strips, one after another. We are now discussing processing events 
in one specific strip at one step of such an algorithm. Each PE is assigned a 
subsystem, e.g., a subnetwork, or a region on the billiards table, with the task 
to process all events on the specified time interval At. 

This would correspond to a partition of the At strip by vertical lines into 
rectangles as shown in Figure 6. Now if we apply the general iterative procedure 
described in Section 3 for this specific partition, how many iteration will there be 
until convergence? This, of course, depends on the event dependency subgraph 
that fits in the strip. For the event chains like the one in Figure 5 there will be 
many iterations. However, Figure 5 depicts an artificially difficult, worst case 
example. 

In Figure 7, on the other hand, we do not assume an adversary simulation 
problem. Depicted here is an "average" example obtained (without thinking of a 
particular application) by "randomly" sprinkling the events-circles and possible 
event dependency arrows. How many iterations will be required for the shown 
event-dependency graph? 

It turns out that a good upper bound on the number of iterations can be 
supplied by counting levels. Because the levels can be identified without knowing 
how the space-time strip is partitioned among the PEs, no partitioning is shown 
in Figure 7. Level 0 in Figure 7 consists of already processed events that are 
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positioned below the strip. Level 1 consists of those events at or above the floor 
of the strip which are direct effects of only level 0 events. By induction, for 
k = 1, 2, 3 . . . ,  level k consists of the events at or above the floor of the strip, 
whose direct causes are level k - 1 events or lower. For a level k event there 
must be at least one level k - 1 event among its direct causes. 

At the outset, all level 0 events are correct. After all the PEs process their 
subsystems once, more events will be correct and all level 1 events at least 
will be among the correctly settled events. It can be seen by induction that  
after iteration k of the relaxation procedure all events at level k or lower are 
determined correctly. Thus, the number of levels (for those events of the event 
dependency graph that  fit within the considered At-strip) is the upper bound 
on the number of iterations needed for correctly determining all events for this 
strip. One more iteration with the exchange of information may be needed to 
detect convergence. Actual number of iterations can be smaller than this upper 
bound for two reasons: 

1) initial guesses of events are correct by accident 

2) the event dependency subgraph hosted by a processing element contains a 
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complete set of cause-effects for several levels without need to know events 
in the neighboring processing elements. 

Situation 1 is not always negligibly rare:'in the applications in which there are 
not many choices for an event (e.g., only two choices) reasonable initial guessing 
might save iterations. 

An extreme case of situation 2 is completely independent subsystems hosted 
by different PEs, or, for that matter, just a single PE which hosts the entire 
system. In these conditions, all events are determined correctly at the first 
iteration. 

The question remained is: How many event levels fits in the At-strip on an 
"average"? Let N be the size of the simulated system (examples: the number 
of nodes in the network, the number of billiards balls). We propose a conjecture 
which says, that, in a "generic" example, if At is fixed and N tends to infinity, 
the "average" number of levels increases not faster than log N. 

To investigate this conjecture rigorously one must supply a measure in the 
space of realizations, thereby assigning an exact meaning to "generic" and "aver- 
age." Such a measure should express characteristics of the application. This ex- 
ercise has been performed with some applications (see Bibliography) and, while 
proving to be not an easy one, confirmed the conjecture. 

We will now attempt a superficial but short and easy "proof" of this con- 
jecture irrespective of the application. An event dependency chain is a directed 
path el --* e2 --* . . .  --' ek on the event dependency graph. It can be easily seen 
that the number of levels in a subgraph of the event dependency graph is the 
length of the longest event dependency chain in this subgraph. (The length of 
an event dependency chain is the number of events on it.) 

Let us assume that 

(a) as N increases the number of event dependency chains increases not faster 
than proportionally to N 

(b)  the length of each chain is random and is bounded by distribution from the 
above with a fixed exponentially distributed random variable 

With these assumptions, it can be proven rigorously, that even as different chains 
are interdependent, the mean value of the maximum of the lengths grows not 
faster than log N (see Bibliography). 

Assumptions (a) and (b) together bound from the above the amount of the 
simulated event activity and its spatial non-uniformity. Singular very nonuni- 
form activities, like a fast propagation of a signal through the entire simulated 
system, e.g., like in Figure 5, are allowed but they must be exponentially rare, 
as specified in (b). 

5 Even time-parallel relaxation may be efficient, when augmented 
b y  cer ta in  o t h e r  t echn iques  

Consider the space-time diagram in Figure 8 which is "orthogonal" to that 
in Figure 6. Here the space interval is thought of as "small," e.g., the simulated 



321 

TIME 

P E N  

PE3 

PE2 

PE1 
SPACE 

Figure 8: Time-parallel partitioning in a relaxation 

system is of a fixed size, but  the time interval is "large," e.g., unbounded. One 
would not expect quick convergence in this case for the same reason a s  in the 
case in Figure 5 : P E 2  is not expected to do useful work until PE1 sends to it 
the correct information about its events; this needs one iteration; PE3 is not 
expected to do useful work until PE2 sends to it correct information about  its 
events; this needs at least one more iteration; and so on up to P E N  which could 
only determine its event correctly after iteration N. 

One expects the relaxation to converge not faster than in N iterations unless 
the event dependency graph can be decoupled, as it extends over time, into 
several independent "regenerative" components. With such an expectation, the 
following example comes as a surprise. 

We simulate a single FIFO queue with feedback as depicted in Figure 9. We 
assume that  each job makes two service demands. Specifically, job i arrives, say, 
at t ime Ai, joining the end of the queue, eventually receives its first service, which 
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Figure 9: A FIFO queue with a feedback 

terminates, say, at time Di 1 , then immediately at the same time D~ reenters the 
end of the queue, eventually receives its second service, and then finally departs 
at time D/2. (If a job feeds back at the same time that new jobs arrive then, by 
convention, the new jobs enter the queue ahead of the job feeding back.) Three 
simulated durations correspond to each job i: time between consecutive arrivals 
ai = A i - A i - 1  (assuming A0 = 0), first service S~, and second service S~, where 
i = 1, 2, ...N. It is assumed that there are also three corresponding distributions 
and that each duration is an independent (from system state or other durations) 
random sample drawn from the corresponding distribution. Thus, the system 
subject to simulation is a G/G/1  queue with a feedback. 

This system fits our assumptions of "small" space interval and "large" time 
interval as stated above. We assign its simulation to N PEs, so that PEi carries 
simulation of the time interval that covers the arrival of job i. Exact boundaries 
between the intervals are not essential; also note that, in the beginning, the 
assignment of simulated time to PEs is known only implicitly, conditioned to 
finding the correct events. This distinguishes the presented example from the 
general scheme in Section 3. 

First, the computer samples all random durations. Specifically, PEi obtains 
ai, S t ,  and S~ using its individually seeded random number generator. Second, 
N values {Ai}l<<.i<N are computed, so that PEi obtains Ai = al + a2 + ... + ai. 
It takes only one application of the fast parallel scan (also called parallel prefix) 
operation. The scan is "felt" like a single programming step. Internally it takes 
log N steps of recursive doubling and pointer jumping (see Bibliography). 

The final, most involved phase is computing the sequences of departures 
on the first and second visit, {D1}l<_i<_N and {D2}l<_i<N . This is done by 
an iterative relaxation, as discussed in Section 3. Specifically, let X denote 
the sequence {D1}l<_i<_N of first visit departures for the considered N jobs. 
Function F here can be expressed as a transformation of this sequence into a 
similar sequence Y = {/)il}l<i<N, thus Y = F ( X ) .  F consists of three steps 
along the circular path in Figure 9, namely 

S tep  1. Merging sequence X with sequence {Ai}l<i<N of original arrivals. Let 
Z be the obtained merged sequence of length 2N. 
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Step 2. Computing sequence {Dj }I<j<UN of 2N departures, given the sequence 
of arrivals Z. 

Step 3. Splitting sequence {Dj}I<_j<_2N into two subsequences of length N each: 
subsequence Y = {D1}I<i<N of departures corresponding to external ar- 
rivals, and subsequence {D~}ISiSN of departures corresponding to the 
feedbacks in X. 

If we find this X, we can compute the sequence of second visit departures 
{D~}I<i<N by applying steps 1 and 2 of the procedure used to define F above 
and yielding in step 3 sequence {D~}I<i<N, instead of Y. 

Each iteration X k+l = F(X k) of the relaxation is fast. It employs fast 
parallel merge at step 1 and fast scan (parallel prefix) for computing at step 2 
the departures of the FIFO queues given the arrivals as discussed in the literature 
(see Bibliography). Step 3 is obviously fast too. It turns out that the number 
of iterations needed for convergence is also small. 

Figure 10 represents an experiment where we fix the termination time T = 
20,000 and the arrival rate ~ = 0.5 so that the number of original arrivals 
N is about T,X = 10,000. The service rate for first and second visit is taken 
the same, and we vary this common rate p. Several typical interarrival time 
and service duration distributions are tried such as singular (constant value), 
uniform, discrete, and exponential. Figure 10 shows the convergence for expo- 
nential distributions (the results for other distributions are similar). Here for 
each p we simulate 10 differently seeded random samples; the average value of 
the number of iterations as a function of p is represented by a solid line, the 
upper and lower 99.99% Student's confidence bounds are shown by vertical bars. 
The convergence is the worst around p = 2~. Yet it takes less than 30 iterations 
for N = 10,000 arrivals (20,000 events). 

This fast convergence is not only experimentally observed but can also he 
theoretically explained (see Bibliography). The most counter-intuitive case is 
when 2~ > p, that is, of an unstable system. In this case a permanent queue 
is formed which eliminates the possibility of forming several regenerative sub- 
graphs in the event dependency graph. This method works for a general queuing 
network also (see Bibliography). 

6 Time Warp simulation: where it fits in our scheme of  things 

The Time Warp algorithm for parallel discrete event simulations has been 
widely popularized since 1985 (See Bibliography). The TW is a rollback-based 
algorithm (such algorithms are also called optimistic), that is, it allows each 
PE to process as many scheduled events as it can even without full assurance 
that these events are correct, thus avoiding the difficulties of event scheduling as 
discussed in Sections 1 and 2. Incorrectly processed events are corrected later 
by rolling the simulation time back and reprocessing. 

The novelty of TW is its way of making these rollbacks: each PE maintains 
a queue of events (or "messages" in the original TW formulation) and tries 
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Figure 10: Convergence for the simulation of a queue with a feedback 

to process them in the t ime increasing order thereby scheduling future events 
for itself and other PEs. Events can be "positive," i.e., normal events, and 
"negative." Negative events are the instrument of rollback. A negative event 
- e  is generated by a PE in the process of un-doing the corresponding positive 
event e. This - e  is generated when the PE receives an evidence that  previously 
sent out event e was incorrect. Event - e  is being sent out in the same way and 
to the same PEs to which event e was sent. The hope is tha t  - e  catches up 
with e. Specifically, it may happen that  this - e  finds its counterpart  e not yet 
processed. When such a match of two unprocessed events - e  and e is detected, 
it means that  - e  catches up with its positive counterpart  e. Then both are 
erased from the event queue ("annihilated"),  thereby terminating the "lineage" 
of wrong events. If - e  fails to catch up with e, because the PE has already 
processed e and sent its effects, then the "lineage" continues. Say, events el and 
e2 were generated as the effects of event e and were sent to other PEs. In this 
case, the PE that  did this erroneous processing of e must similarly process - e  
and must similarly send its effects - e l  and - e2  to the corresponding other PEs 
in the hope that  they in turn would catch up with their positive counterparts. 

Programmers see in the T W  an ingenuous cancellation strategy. However, 
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computationally the TW is just an asynchronous relaxation as the other rollback- 
based algorithms. Thus, instead of reprocessing events by each PE, maintaining 
common iterations, a PE in TW reprocesses its events at its own pace, with- 
out explicitly synchronizing with other PEs. In the synchronous relaxation, as 
described above, all PEs iterate over a specified batch, which may be a set of 
events or the time interval, until every PE detects convergence for this batch. 
Then all PEs start processing next batch. In TW, on the other hand, there is 
a notion of global virtual time. The GVT is the virtual (i.e., simulated) time 
below which no PE can rollback. Generally, a PE processes ahead of the GVT 
mark, so that the converged events are those with time smaller than GVT. 

There are more "degrees of freedom" in TW and other asynchronous re- 
laxation algorithms than in a synchronous relaxation algorithm. For example, 
there are "aggressive" and "lazy" versions in TW. In the former, the cancella- 
tion by sending antievents is done each time a rollback takes place. In the latter, 
the antievents are only sent for those events which are turned out to be wrong 
as seen during reprocessing. The hope in a "lazy" cancellation is that despite 
some intermediate errors, the final results were still correct. Obviously, there 
is no similar subdivision in the synchronous relaxation and at each iteration all 
events are reprocessed, at least virtually. (Some optimization in the flavor of 
"lazy" cancellation is still possible which wouldreduce inter-PE communication 
traffic, but it will not change the number of iterations to convergence.) 

As a result of its tighter synchronization, synchronous relaxation behaves 
better in its worst case, than TW inits worst case. Long non-parallelizable event 
chains are the only known reason for slow convergence of synchronous relaxation. 
On the other hand, there are examples when TW introduces cascading and slows 
down unduly even for well parallelizable models. 

Load disbalance, when some PEs have many more events to process than the 
other PEs can slow down each iteration of synchronous relaxation. Superficially, 
load disbalance seems not to be a problem for TW, as a lightly loaded PE is 
not explicitly restricted in advancing its local time. However, this would lead to 
a large discrepancy in local "virtual" times among the PEs which, as practice 
shows, slows down the computations significantly. Thus, the load disbalance is 
as much a problem for TW as for synchronous relaxation. 

Synchronous relaxations is especially well suited for SIMD processing and 
since such machines with thousands of PEs are available, the synchronous relax- 
ation algorithms have been implemented in examples. On the other hand, TW 
needs a MIMD parallel machine and since massively parallel MIMD computers 
are lagging in their commercialization as compared with SIMD computers, there 
has been no report yet of an efficient TW implementation for a computer with 
thousands of PEs. There are some reasons to suspect that in certain cases for 
thousands of PEs, the TW, if unprotected by additional mechanisms, may fail 
in performance due to cascading and echoing phenomena (see Bibliography). 
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7 Conclus ion 

The discussion of massively parallel discrete event simulation in this tutorial 
has been centered around the task of designing its computational engine. It is 
recognized here that by simply adapting the existing computation engine of se- 
rial simulation, which is an event list, no substantial progress can be achieved in 
the task of efficient massively parallel simulation. There is more to a vehicle than 
just an engine. For example, the object oriented paradigm of programming has 
recently become fashionable among simulationists. One should realize though 
that these techniques as well as recent advances in the graphical user interface, 
no matter how useful, can not improve performance of processing in simulation, 
when massive parallelism is concerned. Whether or not the task is performed 
efficiently is mostly determined by the mathematical properties of the underly- 
ing computational technique. Mostly, this tutorial discussed these algorithmic 
techniques. Among them relaxation appears the most promising one for the 
task. It is also amenable to implementations on currently available SIMD and 
SPMD massively parallel computers. In applications for such machines, speed 
improvement ratios in the hundreds have been obtained (in comparisons to fast 
work stations), while self-speedups (speed improvements with respect to a single 
PE of the same computer) have been in thousands. 
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