
R E L A X A T I O N F O R MASSIVELY P A R A L L E L D I S C R E T E
E V E N T S I M U L A T I O N

Boris D. Lubachevsky

AT&T Bell Laboratories
Murray Hill, NJ 07974, USA

A B S T R A C T

The discussion in this tutorial is centered around a new space-
time relaxation paradigm which appears to be a good candidate for
rendering efficient a wide class of massively parallel discrete event
simulations.

1 Discre te event s imulat ion: wha t it is and why we consider it

Several forms of computer rendering, such as computer graphics or com-
puter games, are sometimes called "simulations." Here, we focus attention on
simulating a dynamic system. Simulation will be understood to be the process
of generating the trajectory or sample path for such a system.

Typically, the user "pushes the limits" and simulates as large a model as
computer memory permits and for as long as it is tolerable. Hence it is not sur-
prising that a substantial fraction of the non-idle CPU time of many computers,
perhaps, as large as 50%, is occupied with simulations. It might seem somewhat
unexpected, though, to find a substantial fraction of all simulations to be dealing
with discrete event models.

After all, most of us think of the world in Newtonian terms: a global
clock with objects continuously changing their states governed by, say, differ-
ential equations that express the advancement of time. However, this intuitive
and clear time-driven concept often generates inefficient computer algorithms.
Specifically, each component of the system under study typically changes its
state rarely and such changes are asynchronous among the components. If we
make a snapshot of the model at a random time instance, we will see no or few
changes that are taking place. The changes are sparsely "sprinkled" over the
space-time. If the computer simulates such a system in a time-driven fashion by
continuously monitoring each component, the processing power of the machine
is wasted. Using a less intuitive but more efficient discrete event model we can
simulate the same system orders of magnitude faster on the same computer.

In a discrete event model, the system and its components change their states
instantaneously at discrete times; those changes are called events. The state
remains constant on the intervals between the events. Time advancement is
represented not in a time-driven form, like differential or difference equations,
but in an event-driven form. In the latter form, the trajectory of the system is
a directed acyclic event dependency graph. The nodes of it are the events, and
the links represent cause-effect relations in pairs of events.

308

This graph can be also viewed as a data-flow diagram. To each node-event
corresponds the event descriptor, which consists of the time of the event and the
specification of the state change represented by the event. If events el, e2, . . . , ek
are all the immediate causes of event e, then the descriptor of event e is a
function of descriptors of el, e2, . . . , ek. Computing the descriptor of e given
the descriptors of e's causes is called processing of event e.

Not only the event descriptors but also the topology of the event dependency
graph is unknown in advance. The discrete event simulation algorithm must both
construct the event dependency graph and process the events on it. The former
activity, also referred to as event scheduling, typically is the most calculation
intensive and difficult for programming.

An example is helpful. Consider a gutter, bounded from both ends. The
gutter contains N = 4 balls of equal mass and size. Assume the balls and the
gutter walls are ideally rigid and elastic, the gutter is very massive, and its width
is just enough to assure motions of the balls along its length in the absence of
gravitation and friction. Figure 1 represents the initial segment of the system
trajectory beginning with the positions and velocities of the balls at time to.

The depiction can be viewed both as a space-time diagram of the system
trajectory and as an event dependency graph where the events ei, i - - 1 , 2 . . .

are ball-ball or ball-wall collisions. (The gutter and the four balls are depicted at
the bottom of the diagram.) An event descriptor here consists of: the collision
time, the positions and velocities of the involved balls immediately after the
collision. One can check, for instance, that (the descriptor of) event es, which
is a collision of balls 3 and 4, is a function of (the descriptors of) events e4, a
collision of 2 and 3, and e2, a reflection of 4 from the wall. Specifically, we can
compute time t5 of collision es, if we know the times, positions, and velocities
of balls 3 and 4 immediately after their previous events e4 and e2, respectively.

It was said above that the state of a discrete event system remains constant
on the intervals between events. However, in this example positions of the balls
are continuously changing between collisions. Is there a contradiction? No, there
isn't. We simulate the given continuous time system as i[the state remained
constant between collisions. The "trick" is that although we do not consider tra-
jectories of balls between collisions, no information is lost. This "trick" is exactly
the reason why simulating the billiards in the discrete event format is much more
efficient than in the continuous time format. In the latter, time-driven method,
the computer updates the state of the system by scanning all balls at each small
interval At. In most such intervals, like in the one indicated in Figure 1, there is
simply no events, in others there are few events. By contrast, in an event-driven
method, the computer updates the state of the system from collision to collision,
i.e., from ti to ti+l. For example, immediately after processing collision e4 of
balls 2 and 3 the computer processes collision e5 of 3 and 4.

To process event e5 we must first make sure that e5 takes place. This is the
task of scheduling. This task is not trivial even in our simple example. Here is
a "naive" way to schedule event es: First, we calculate the state of all balls at
time ~4 of the last processed event; then from this state we try to match any

3 0 9

T I M E

ts

t7

t 6 ,

t5

t 4

$ 3 "

i
t t2 , /

J
I

I

to

1
/

!

/
i

I

I

I
/ I

I
I
I
l

l
l
l
l
I
I
t I

SPACE

I
I
I
l
I

l "@,
I "~ e 6 %

' , X ; I
I

I

I
I
I
I

I
I
I
I
I
I

I
I

I
I

I
I

t
At

Figure 1: Billiards in one dimension

310

ball-ball or ball-wall pair in a next collision; lastly, we find the minimum of all
these next potential collision times which delivers for us the time of event e5 and
also identifies the participating balls, 3 and 4. After the schedule for event e5 is
completed, we process the event by recomputing positions of balls 3 and 4 and
by determining their new velocities after collision es. We use known formulas of
elastic collision in recomputation of velocities.

The described method of scheduling is "naive" not only because it does not
take advantage of 1D (balls can not "overtake" each other, hence only balls i
and i + 1 can collide and only balls 1 and N can collide with the walls), but
also because it examines all N balls in order to schedule only one event which
involves at most two halls.

The task of designing an efficient scheduling usually constitutes the main
difficulty of recasting a continuous time model in a discrete event format. Dis-
cussiohs of efficiency of discrete event simulations, are usually reduced to ef-
ficiency of implementing queues o f events . One should realize, though, that
handling such a queue, even if it is done efficiently, does not cover the entire
task. Simulationist also has to design an efficient data manipulation, to figure
out what are the events, which events to keep and which to forget and when
during computations.

Say, in the billiards example, which data should be kept for each ball at each
stage of computing? Should the entire prehistory of a ball be retained or only
a part of it? How to avoid the order of N overhead of the "naive" method?
There seems to be no general recipe for answering questions of this type and
we are not going to discuss them in this tutorial. (In the specific example
of simulating billiards, several methods equivalent in its results to the "naive"
method, but which are much more efficient, are mentioned in Bibliography.)
It will he assumed here that the discrete event model of a system subject to
simulation is defined and is provided with the required mechanism for scheduling
future events.

2 Paral le l d iscrete event s imulat ion: its in tent and its caveats

The parallel discrete event simulation has the same objective as the serial
one. It is supposed to generate the simulated system trajectory in the form of
the event dependency graph. An obvious, but sometimes forgotten requirement
is that the trajectory, including the topology of the graph and the descriptors
of events in it, does not depend on the method of computation, whether serial
or parallel. As the programmers know, writing a parallel code is always more
difficult than writing a serial code for the same task. Then why do we get
involved in parallelization? For one reason only: a promise of shorter running
time.

To reduce the running time by parallel execution, a simulation task has to
be split into a number of subtasks which can be carried concurrently by different
processing elements (PEs) of the parallel computer. Three methods of splitting
are commonly used with different PEs carrying:

311

1) independent simulation runs. This is called the replication method

2) different tasks in the serial processing of one simulation run. This is the
method of functional parallelism

3) different components of the simulated system for one simulation run. This
is the space-parallel method.

Recently a fourth method has been discussed, where different PEs concurrently
carry simulation for different time segments of the same simulated component
for one simulation run. It is natural to call it the time-parallel method.

The replication method is simple and efficient and should be exercised when-
ever possible, specifically, when we have to run many independent trajectories
with initial conditions known in advance and when one PE is able to accommo-
date one run. Unfortunately, these conditions are satisfied rarely. Usually we
need to speed up a single run or each run in a sequence.

The functional parallelism allows one to speed up a single run. In our billiards
example in Section 1, the functions that can be executed concurrently may be:
solving an equation to find the time of next collision of two given balls, computing
the ball velocities after the collision, various data manipulations involved in
scheduling the next event, such as the minimization. In addition to being to
some extent independent in handling one event, these functions are somewhat
independent when executed for successive events. Hence their execution can be
pipelined, i.e., we may begin scheduling next collision while still processing the
previous one.

The drawback in a functional parallelization is that the degree of parallelism
does not scale with the size of the simulated system, e.g., with the number of
balls. In scheduling the next event, there is always a serial section of the code.
Even if simulation is pipelined, only a limited number of events are taken for
processing at a time. Hence, functional parallelism as such is not appropriate
for massively parallel execution (but can perhaps be used in combinations with
other methods discussed below).

Only the third and the forth methods seem appropriate for massively parallel
execution and we will discuss them in detail. Consider the third method, when
different components or subsystems are hosted by concurrently running PEs.
Recall that our concern is to simulate event dependencies correctly.

Let us first consider the space-parallel method in the application to the (no-
tably inefficient) time-driven simulation. In this setting, at each step the PEs,
based on the information about the events processed for times before t, process
events for slot [t, t+At). Because At is assumed to be very small it is not proba-
ble for both cause and effect events to fall into the same slot. Hence violations of
causality almost never occur: between the steps the PEs will inform each other
about the causes to correctly schedule the effects.

One source of inefficiency here is statically fixed At which thereby must be
very small. We can improve efficiency by letting At change dynamically from
iteration to iteration. We can choose At as large as possible at each new iteration
with the restriction that no violation of causality occurs. Specifically, causality

312

t+At

Figure 2: Adjustable time stepping algorithm

is preserved, if given that the smallest event time scheduled but not processed
at previous iterations is t, any other such event (which is scheduled but not
processed at previous iterations) whose time is smaller than t + At is itself not
an effect of such an event. We choose At to be the largest value that satisfies
this condition.

This idea is illustrated in the fragment of the event dependency graph in Fig-
ure 2. It is assumed in this depiction that all dependency links among the shown
events are also shown, and that no shown event will be canceled or rescheduled.
(These assumptions are made for all the other pictures in this tutorial unless
stated otherwise.) Here the events that are indexed 1, ... 5 have been processed,
the rest, events 6, ... 16, have been scheduled but not processed. Of the latter
set, event 6 has the smallest time t, all events in set S = {6, 7, 8, 9, 10, 11, 12}
are scheduled and unprocessed, and in addition are not effects of events in S.
The key observation is that the events in S can be processed concurrently with-
out violating causality. Event 13 has the smallest time among those that are
not safe to process in parallel with events in S; indeed, 13 is an effect of event
12 E S. Events 13,14,15,16 will be processed at future iterations. Moreover,
because of the time stepping restriction, events 8 and 10 will be processed at
future iterations too, despite that it is safe to process them now. The next At
is the maximum width of the strip that does not contain events which do not
belong to S. The next iteration will begin with t + At replacing t.

This idea was successfully implemented in several massively parallel simula-
tions. Its use is hinged on finding a convenient method to generate non-trivial
(i.e., not very small) estimates for cause-effect delays at least two cause-effect

313

TIME ~0 el
O ea . O es Oe9

FLOOR + LAG BOUND

O e~

At / / ~ Oes 0

' / ~ J F L O O R ~

REACHABILITY CONE

e(1,2) e(2,3) d(3,4) d(4,S) e(5,8) e(8,T), e(T,8)

2 3 4 5 6 7 8

SPACE

Figure 3: Bounded lag algorithm

links in advance. A success in this, of course, depends on an application (see
Bibliography).

Another application-dependent method to preserve causality is based on es-
timates of minimum propagation delays. Here we also advance time by time
stepping. However, the width At of the strip in the space-time diagram is not
thought of as "small." On the other hand, an iteration does not necessarily ex-
haust all the events that fall within the strip. This is the bounded-lag algorithm.
An instance of event scheduling and processing is shown in the space-time di-
agram in Figure 3. Eight sites indexed 1, . . .8, are depicted along the space
axis. It is assumed that events can not propagate from site i to site i + 1 in time
smaller than d(i, i + 1). Quantity d(i, j) is induced for any pair of sites i and j
so as to satisfy the triangle inequality d(i, j) + d(j, k)>_d(i, k). Quantity d(i, j)
is also non-negative, but unlike the standard definition of the distance, d(i, j) is
not necessarily equal to d(j, i). To simplify the drawing, equality d(i, j) = d(j, i)
is also assumed to hold in the example of Figure 3, and it is also assumed that
d(i, j) is the Euclidean distance between the corresponding sites.

Suppose we want to test, whether or not event e5 is safe to process at the

314

current step. In the simplest version of the algorithm, we cheek all event-causes,
whose effects might potentially affect site 5 in the past of event es. Space-time
coordinates of those events have to belong to the incoming teachability cone
constructed with respect to event es. The condition that an event with time
tl that occurs at site sl belongs to the incoming reachability cone of an event
with time t0 that occurs at site so can be expressed as: to - t l ~_ d(sl , so). For
So = 5, sl = 6, to = time(es), and t l = time(eT) this condition holds and we see
that e7 may cause an event at site 5 in the past of event es. This hypothetical
trouble event would have time t.

The events that are safe to process at the current iteration according to
this test are e2, eT, and el0. For the next iteration, the floor will be moved to
t me(es).

Event propagation delays are easy to think of as physical delays of propagat-
ing signals. That may he the case, but more often procedural delays qualify as
the event propagation delays. For example, the service time in a queuing system
simulation can be translated into an event propagation delay. This might seem
counter-intuitive, because both the cause, "service start" and the effect, "service
end" occur at the same site (at the server node).

The two discussed above algorithms are examples of safe, causality preserv-
ing simulations, also called conservative. Without further discussing other safe
parallel algorithms, we note that a successful realization in parallel for such an
algorithm needs non-trivial (i.e., not equal to zero), a priori estimates of cause-
effect delays. The "a priori" means that the estimate must be known before the
corresponding events are simulated. One way to see how this is possible is to
imagine that a cause and the corresponding effect mark the beginning and the
end of a certain "activity." Without simulating this activity we should be able
to say that the activity would take longer than a certain positive bound.

Simulations of stochastic models by the nature of the assumptions usually
made in such models open an avenue for such an estimation. For example, if a
job enters the service, the service time is usually assumed to be stochastically
independent of the state of the system when service begins. Thus, we can pre-
sample the service time several steps in advance, even when the corresponding
job is not yet arrived for service. Another example: Ising spin simulations. Here
we have an array of atoms and the state of each atom is changed at unpredictable
random times which we model as a Poisson point process associated with this
atom. The rate of arrivals is fixed for all atoms and arrivals for different atoms
are independent. The state change depends on the states of the neighboring
atoms, but the t ime of the change is independent of the state.

Paradoxically, whereas the times of state changes are random and hence con-
ceptually unpredictable, in the simulation we can predict them. We sample these
times any number of steps in advance using algorithmically generated random
sequences. The fact that these sequences are fully deterministic (and repro-
ducible once started with the same seeds) is an advantage! It is not appropriate
for our purposes in pursuit of the "real" randomness to use physically generated
and hence irreproducible random sequences instead. (Practitioners of simulation

315

may not recognize this simple but important observation.)
However, presampling is not always possible. In some examples, in order

to know a non-trivial estimate of the cause-effect delay we must, at the least,
simulate both cause and effect events. This is a fundamental problems with
the conservative parallel simulation algorithms, which thus can not always be
successfully applied. An example of such impossibility for delay prediction is the
simulation of billiards discussed in Section 1. Some may consider the simulation
of billiards to be a "toy" example. In fact, this "toy" model is in many respects
more difficult to simulate in parallel, than some "serious" models, e.g., queuing
networks.

3 Space-t ime paradigm: everyone was skeptical at first

Figure 4 illustrates the space-time relaxation concept for parallel discrete
event simulations. According to this concept, space-time is to be split (arbitrarily
or as convenient) into regions and each region is to be assigned to a PE which
is responsible for filling this region with events.

The computations are iterative. A synchronous version of such computa-
tions can be described as follows. Let X (k) denote a trajectory (event depen-
dency graph) as known at iteration k. This X(k) is composed of segments of
trajectories known to each PE. For the next iteration k + 1 each PE updates its
segment of trajectory, i.e., reprocesses its events after receiving relevant infor-
mation from the neighboring PEs about events as they were known to them at
the previous iteration. This reprocessing can be expressed as X (k+l) = F (X (k))
where function F symbolizes the cause-effect relation among the events.

The recomputation terminates at the iteration at which each PE detects that
its events are the same as they were at the previous iteration. The termination
is equivalent to finding X such that F (X) = X . This X is a fixed-point of the
cause-effect relation map F.

Reducing problems to solving fixed-point equations is not unusual in math-
ematics. For example, we may try to solve equation x = sin(2x) with respect
to unknown x by iterating: beginning with x(~ we find x (1) = s/n(2x(~ then
x(~) = sin(2z(D), then x (3) = sin(2x(2)), and so on. The standard questions
here are: Is the solution unique? If so, will the iterations converge to this so-
lution? If so, how fast? In the x = sin(2x) problem the solution is not unique
and the convergence depends on the choice of the initial guess x(~

On the other hand, in the discrete event simulation problem, the iterations
always converge and the found fixed-point is unique. This can be seen by com-
paring the iterative fixed-point method to standard serial simulation. In the
latter at each step we uniquely determine one more event using event depen-
dency. Beginning with the same initial events as in the serial simulation, at
each iteration of the parallel fixed-point method we settle at least one additional
event. And since in the parallel fixed-point method we use the same event de-
pendency (represented in F) the settled events must be the same as the ones in
the serial simulation.

316

TIME

SPACE

Figure 4: Space-time simulation concept

TIME
23

PE7

18

PE4

10

317

22 PE8

21 2o[
19 PE6

15 PE5

I 14

11
12

PE3

7

PE1 I PE2

2 3 4

SPACE

Figure 5: Non-parallelizable event dependency graph

Slow convergence may be an obstacle on the way to a practical realization
of this idea. Indeed, for the event dependency graph depicted in Figure 5, no
matter how we split the space-time among the PEs, serial event settling (in
the shown order: 1,2,3...) is guaranteed: PE6 has to wait for PE3 to correctly
determine event 5 before processing event 6 and then wait for PE3 again to
correctly determine event 12 before processing event 13 and finally wait for PE5
to correctly process event 20 before processing event 21; similarly, PE 7 can not
perform any useful work before events 1, . . .27 are correctly processed by the
other processors, and so on.

During the first public presentation of this space-time relaxation paradigm in

318

TIME

PEI PE2 PEN]

SPACE

At

Figure 6: Partitioning of a one-time-step strip

1989 (see Bibliography) the audience seemed very skeptical for this very reason:
questionable performance. In 1990 and later the question of performance was
addressed as discussed in the following sections.

4 Space-paral le l re laxat ion can be efficient

Here we discuss a specialization of the space-time relaxation idea of Section
3 for a space-parallel simulation. We consider a time-stepping algorithm, where
"space" in the space-time diagram represents a large simulated system, like a
large queuing network, or a large billiards table with many balls, whereas, the
"time" is restricted to a relatively small At window. As in the time-stepping
algorithms discussed in Section 2, the simulation is advanced by serially pro-
ceasing these strips, one after another. We are now discussing processing events
in one specific strip at one step of such an algorithm. Each PE is assigned a
subsystem, e.g., a subnetwork, or a region on the billiards table, with the task
to process all events on the specified time interval At.

This would correspond to a partition of the At strip by vertical lines into
rectangles as shown in Figure 6. Now if we apply the general iterative procedure
described in Section 3 for this specific partition, how many iteration will there be
until convergence? This, of course, depends on the event dependency subgraph
that fits in the strip. For the event chains like the one in Figure 5 there will be
many iterations. However, Figure 5 depicts an artificially difficult, worst case
example.

In Figure 7, on the other hand, we do not assume an adversary simulation
problem. Depicted here is an "average" example obtained (without thinking of a
particular application) by "randomly" sprinkling the events-circles and possible
event dependency arrows. How many iterations will be required for the shown
event-dependency graph?

It turns out that a good upper bound on the number of iterations can be
supplied by counting levels. Because the levels can be identified without knowing
how the space-time strip is partitioned among the PEs, no partitioning is shown
in Figure 7. Level 0 in Figure 7 consists of already processed events that are

319

TIME

'~
l e v e ~

level 1 ~) ~ ~ ((

level 0

~ SPACE

Figure 7: Event dependency levels

positioned below the strip. Level 1 consists of those events at or above the floor
of the strip which are direct effects of only level 0 events. By induction, for
k = 1, 2, 3 . . . , level k consists of the events at or above the floor of the strip,
whose direct causes are level k - 1 events or lower. For a level k event there
must be at least one level k - 1 event among its direct causes.

At the outset, all level 0 events are correct. After all the PEs process their
subsystems once, more events will be correct and all level 1 events at least
will be among the correctly settled events. It can be seen by induction that
after iteration k of the relaxation procedure all events at level k or lower are
determined correctly. Thus, the number of levels (for those events of the event
dependency graph that fit within the considered At-strip) is the upper bound
on the number of iterations needed for correctly determining all events for this
strip. One more iteration with the exchange of information may be needed to
detect convergence. Actual number of iterations can be smaller than this upper
bound for two reasons:

1) initial guesses of events are correct by accident

2) the event dependency subgraph hosted by a processing element contains a

320

complete set of cause-effects for several levels without need to know events
in the neighboring processing elements.

Situation 1 is not always negligibly rare:'in the applications in which there are
not many choices for an event (e.g., only two choices) reasonable initial guessing
might save iterations.

An extreme case of situation 2 is completely independent subsystems hosted
by different PEs, or, for that matter, just a single PE which hosts the entire
system. In these conditions, all events are determined correctly at the first
iteration.

The question remained is: How many event levels fits in the At-strip on an
"average"? Let N be the size of the simulated system (examples: the number
of nodes in the network, the number of billiards balls). We propose a conjecture
which says, that, in a "generic" example, if At is fixed and N tends to infinity,
the "average" number of levels increases not faster than log N.

To investigate this conjecture rigorously one must supply a measure in the
space of realizations, thereby assigning an exact meaning to "generic" and "aver-
age." Such a measure should express characteristics of the application. This ex-
ercise has been performed with some applications (see Bibliography) and, while
proving to be not an easy one, confirmed the conjecture.

We will now attempt a superficial but short and easy "proof" of this con-
jecture irrespective of the application. An event dependency chain is a directed
path el --* e2 --* . . . --' ek on the event dependency graph. It can be easily seen
that the number of levels in a subgraph of the event dependency graph is the
length of the longest event dependency chain in this subgraph. (The length of
an event dependency chain is the number of events on it.)

Let us assume that

(a) as N increases the number of event dependency chains increases not faster
than proportionally to N

(b) the length of each chain is random and is bounded by distribution from the
above with a fixed exponentially distributed random variable

With these assumptions, it can be proven rigorously, that even as different chains
are interdependent, the mean value of the maximum of the lengths grows not
faster than log N (see Bibliography).

Assumptions (a) and (b) together bound from the above the amount of the
simulated event activity and its spatial non-uniformity. Singular very nonuni-
form activities, like a fast propagation of a signal through the entire simulated
system, e.g., like in Figure 5, are allowed but they must be exponentially rare,
as specified in (b).

5 Even time-parallel relaxation may be efficient, when augmented
b y cer ta in o t h e r t echn iques

Consider the space-time diagram in Figure 8 which is "orthogonal" to that
in Figure 6. Here the space interval is thought of as "small," e.g., the simulated

321

TIME

P E N

PE3

PE2

PE1
SPACE

Figure 8: Time-parallel partitioning in a relaxation

system is of a fixed size, but the time interval is "large," e.g., unbounded. One
would not expect quick convergence in this case for the same reason a s in the
case in Figure 5 : P E 2 is not expected to do useful work until PE1 sends to it
the correct information about its events; this needs one iteration; PE3 is not
expected to do useful work until PE2 sends to it correct information about its
events; this needs at least one more iteration; and so on up to P E N which could
only determine its event correctly after iteration N.

One expects the relaxation to converge not faster than in N iterations unless
the event dependency graph can be decoupled, as it extends over time, into
several independent "regenerative" components. With such an expectation, the
following example comes as a surprise.

We simulate a single FIFO queue with feedback as depicted in Figure 9. We
assume that each job makes two service demands. Specifically, job i arrives, say,
at t ime Ai, joining the end of the queue, eventually receives its first service, which

(Step 1) {Di}1~j~2#

322

�9
(step 2)

x = { D ~ ' } ~ .

(step 3)

Figure 9: A FIFO queue with a feedback

terminates, say, at time Di 1 , then immediately at the same time D~ reenters the
end of the queue, eventually receives its second service, and then finally departs
at time D/2. (If a job feeds back at the same time that new jobs arrive then, by
convention, the new jobs enter the queue ahead of the job feeding back.) Three
simulated durations correspond to each job i: time between consecutive arrivals
ai = A i - A i - 1 (assuming A0 = 0), first service S~, and second service S~, where
i = 1, 2, ...N. It is assumed that there are also three corresponding distributions
and that each duration is an independent (from system state or other durations)
random sample drawn from the corresponding distribution. Thus, the system
subject to simulation is a G/G/1 queue with a feedback.

This system fits our assumptions of "small" space interval and "large" time
interval as stated above. We assign its simulation to N PEs, so that PEi carries
simulation of the time interval that covers the arrival of job i. Exact boundaries
between the intervals are not essential; also note that, in the beginning, the
assignment of simulated time to PEs is known only implicitly, conditioned to
finding the correct events. This distinguishes the presented example from the
general scheme in Section 3.

First, the computer samples all random durations. Specifically, PEi obtains
ai, S t , and S~ using its individually seeded random number generator. Second,
N values {Ai}l<<.i<N are computed, so that PEi obtains Ai = al + a2 + ... + ai.
It takes only one application of the fast parallel scan (also called parallel prefix)
operation. The scan is "felt" like a single programming step. Internally it takes
log N steps of recursive doubling and pointer jumping (see Bibliography).

The final, most involved phase is computing the sequences of departures
on the first and second visit, {D1}l<_i<_N and {D2}l<_i<N . This is done by
an iterative relaxation, as discussed in Section 3. Specifically, let X denote
the sequence {D1}l<_i<_N of first visit departures for the considered N jobs.
Function F here can be expressed as a transformation of this sequence into a
similar sequence Y = {/)il}l<i<N, thus Y = F (X) . F consists of three steps
along the circular path in Figure 9, namely

S tep 1. Merging sequence X with sequence {Ai}l<i<N of original arrivals. Let
Z be the obtained merged sequence of length 2N.

323

Step 2. Computing sequence {Dj }I<j<UN of 2N departures, given the sequence
of arrivals Z.

Step 3. Splitting sequence {Dj}I<_j<_2N into two subsequences of length N each:
subsequence Y = {D1}I<i<N of departures corresponding to external ar-
rivals, and subsequence {D~}ISiSN of departures corresponding to the
feedbacks in X.

If we find this X, we can compute the sequence of second visit departures
{D~}I<i<N by applying steps 1 and 2 of the procedure used to define F above
and yielding in step 3 sequence {D~}I<i<N, instead of Y.

Each iteration X k+l = F(X k) of the relaxation is fast. It employs fast
parallel merge at step 1 and fast scan (parallel prefix) for computing at step 2
the departures of the FIFO queues given the arrivals as discussed in the literature
(see Bibliography). Step 3 is obviously fast too. It turns out that the number
of iterations needed for convergence is also small.

Figure 10 represents an experiment where we fix the termination time T =
20,000 and the arrival rate ~ = 0.5 so that the number of original arrivals
N is about T,X = 10,000. The service rate for first and second visit is taken
the same, and we vary this common rate p. Several typical interarrival time
and service duration distributions are tried such as singular (constant value),
uniform, discrete, and exponential. Figure 10 shows the convergence for expo-
nential distributions (the results for other distributions are similar). Here for
each p we simulate 10 differently seeded random samples; the average value of
the number of iterations as a function of p is represented by a solid line, the
upper and lower 99.99% Student's confidence bounds are shown by vertical bars.
The convergence is the worst around p = 2~. Yet it takes less than 30 iterations
for N = 10,000 arrivals (20,000 events).

This fast convergence is not only experimentally observed but can also he
theoretically explained (see Bibliography). The most counter-intuitive case is
when 2~ > p, that is, of an unstable system. In this case a permanent queue
is formed which eliminates the possibility of forming several regenerative sub-
graphs in the event dependency graph. This method works for a general queuing
network also (see Bibliography).

6 Time Warp simulation: where it fits in our scheme of things

The Time Warp algorithm for parallel discrete event simulations has been
widely popularized since 1985 (See Bibliography). The TW is a rollback-based
algorithm (such algorithms are also called optimistic), that is, it allows each
PE to process as many scheduled events as it can even without full assurance
that these events are correct, thus avoiding the difficulties of event scheduling as
discussed in Sections 1 and 2. Incorrectly processed events are corrected later
by rolling the simulation time back and reprocessing.

The novelty of TW is its way of making these rollbacks: each PE maintains
a queue of events (or "messages" in the original TW formulation) and tries

3 0 -

25

I

T
20

E
R
A
T 15

I
O

N 10
S

-

324

I I I I
0 0.5 1 1.5 2

1//~, MEAN SERVICE TIME

Figure 10: Convergence for the simulation of a queue with a feedback

to process them in the t ime increasing order thereby scheduling future events
for itself and other PEs. Events can be "positive," i.e., normal events, and
"negative." Negative events are the instrument of rollback. A negative event
- e is generated by a PE in the process of un-doing the corresponding positive
event e. This - e is generated when the PE receives an evidence that previously
sent out event e was incorrect. Event - e is being sent out in the same way and
to the same PEs to which event e was sent. The hope is tha t - e catches up
with e. Specifically, it may happen that this - e finds its counterpart e not yet
processed. When such a match of two unprocessed events - e and e is detected,
it means that - e catches up with its positive counterpart e. Then both are
erased from the event queue ("annihilated"), thereby terminating the "lineage"
of wrong events. If - e fails to catch up with e, because the PE has already
processed e and sent its effects, then the "lineage" continues. Say, events el and
e2 were generated as the effects of event e and were sent to other PEs. In this
case, the PE that did this erroneous processing of e must similarly process - e
and must similarly send its effects - e l and - e2 to the corresponding other PEs
in the hope that they in turn would catch up with their positive counterparts.

Programmers see in the T W an ingenuous cancellation strategy. However,

325

computationally the TW is just an asynchronous relaxation as the other rollback-
based algorithms. Thus, instead of reprocessing events by each PE, maintaining
common iterations, a PE in TW reprocesses its events at its own pace, with-
out explicitly synchronizing with other PEs. In the synchronous relaxation, as
described above, all PEs iterate over a specified batch, which may be a set of
events or the time interval, until every PE detects convergence for this batch.
Then all PEs start processing next batch. In TW, on the other hand, there is
a notion of global virtual time. The GVT is the virtual (i.e., simulated) time
below which no PE can rollback. Generally, a PE processes ahead of the GVT
mark, so that the converged events are those with time smaller than GVT.

There are more "degrees of freedom" in TW and other asynchronous re-
laxation algorithms than in a synchronous relaxation algorithm. For example,
there are "aggressive" and "lazy" versions in TW. In the former, the cancella-
tion by sending antievents is done each time a rollback takes place. In the latter,
the antievents are only sent for those events which are turned out to be wrong
as seen during reprocessing. The hope in a "lazy" cancellation is that despite
some intermediate errors, the final results were still correct. Obviously, there
is no similar subdivision in the synchronous relaxation and at each iteration all
events are reprocessed, at least virtually. (Some optimization in the flavor of
"lazy" cancellation is still possible which wouldreduce inter-PE communication
traffic, but it will not change the number of iterations to convergence.)

As a result of its tighter synchronization, synchronous relaxation behaves
better in its worst case, than TW inits worst case. Long non-parallelizable event
chains are the only known reason for slow convergence of synchronous relaxation.
On the other hand, there are examples when TW introduces cascading and slows
down unduly even for well parallelizable models.

Load disbalance, when some PEs have many more events to process than the
other PEs can slow down each iteration of synchronous relaxation. Superficially,
load disbalance seems not to be a problem for TW, as a lightly loaded PE is
not explicitly restricted in advancing its local time. However, this would lead to
a large discrepancy in local "virtual" times among the PEs which, as practice
shows, slows down the computations significantly. Thus, the load disbalance is
as much a problem for TW as for synchronous relaxation.

Synchronous relaxations is especially well suited for SIMD processing and
since such machines with thousands of PEs are available, the synchronous relax-
ation algorithms have been implemented in examples. On the other hand, TW
needs a MIMD parallel machine and since massively parallel MIMD computers
are lagging in their commercialization as compared with SIMD computers, there
has been no report yet of an efficient TW implementation for a computer with
thousands of PEs. There are some reasons to suspect that in certain cases for
thousands of PEs, the TW, if unprotected by additional mechanisms, may fail
in performance due to cascading and echoing phenomena (see Bibliography).

326

7 Conclus ion

The discussion of massively parallel discrete event simulation in this tutorial
has been centered around the task of designing its computational engine. It is
recognized here that by simply adapting the existing computation engine of se-
rial simulation, which is an event list, no substantial progress can be achieved in
the task of efficient massively parallel simulation. There is more to a vehicle than
just an engine. For example, the object oriented paradigm of programming has
recently become fashionable among simulationists. One should realize though
that these techniques as well as recent advances in the graphical user interface,
no matter how useful, can not improve performance of processing in simulation,
when massive parallelism is concerned. Whether or not the task is performed
efficiently is mostly determined by the mathematical properties of the underly-
ing computational technique. Mostly, this tutorial discussed these algorithmic
techniques. Among them relaxation appears the most promising one for the
task. It is also amenable to implementations on currently available SIMD and
SPMD massively parallel computers. In applications for such machines, speed
improvement ratios in the hundreds have been obtained (in comparisons to fast
work stations), while self-speedups (speed improvements with respect to a single
PE of the same computer) have been in thousands.

B ib l iog raphy

Sect ion 1

R.E. Shannon, "Introduction to Simulation," in Proceedings, 1992 Winter Sim-
ulation Conference, 65-73.

Presents a wider view on the simulation activity than the one accepted
in this tutorial (constructing a dynamic system trajectory). One of many
treatises on the subject.

D.C.Rapaport, "The Event Scheduling Problem in Molecular Dynamic Simu-
lation," Journal of Computational Physics, Vol. 34, No.2, 1980.

Describes an algorithm for a serial billiards simulation. Uses a complex
list structure to maintain all feasible scheduled collisions for a ball.

B.D. Lubachevsky, "How to Simulate Billiards and Similar Systems," Journal
of Computational Physics, Vol. 94, No.2, 1991.

Introduces an alternative serial billiards simulation algorithm. Uses a sim-
plified data structure: only two events per ball, one past event and one
future event. This appears not less efficient that Rapaport's algorithm.

D.C.Rapaport, "A Note on Algorithms for Billiard-Ball Dynamics," Journal of
Computational Physics, Vol. 105, No.2, 1993.

The note compares the algorithms by Rapaport and Lubachevsky for sim-
ulation of the billiards.

327

B.D.Lubachevsky, "Which Algorithm is Better?" Journal of Computational
Physics, Vol. 105, No.2, 1993.

A comment on the note by Rapaport.

Sect ion 2

P. Hontales, B. Beckman, et al., "Performance of the Colliding Pucks simu-
lation on the Time Warp Operating systems" in Proceedings, 1989 SCS
Multiconference on Distributed Simulation, Simulation Series (Society for
Comput. Simulation, San Diego, CA, 1989), Vol. 21, No.2.

Presents serial and parallel billiards simulation based on Time Warp mes-
sage queues paradigm.

B.D..Lubachevsky, "Simulating Billiards: Serially and in Parallel," Interna-
tional Journal in Computer Simulation, Vol. 2, 1992

Copes with unavoidable errors in parallel billiards simulations using a
method different from Time Warp.

D. Nicol, "Conservative Parallel Simulation of Priority Class Queuing Net-
works," IEEE Trans. on Parallel and Distributed Systems, Vol. 3, No. 3,
May 1992, 294-303.

Introduces the adjustable time-stepping algorithm as applied to parallel
queuing networks simulation.

B. Gaujal, A. Greenberg, D. Nicol, "A Sweep Algorithm for Massively Par-
allel Simulation of Circuit-Switched Networks," Journal of Parallel and
Distributed Computing, August 1993 (to appear).

Applies the adjustable time stepping paradigm to simulating long-distance
telephone networks.

D. Nicol, A. Greenberg, B. Lubaehevsky, "MIMD Parallel Simulation of Circuit-
Switched Communication Networks," in Proceedings, 1992 Winter Simu-
lation Conference, p. 629-636.

Reports implementations of the long-distance telephone network simula-
tions on the Intel Touchstone Delta MIMD parallel computer. Utilizing
up to 256 PEs the processing speed of up to 8 million telephone calls per
minute is achieved.

B.D. Lubachevsky, "Bounded Lag Distributed Discrete Event Simulation," in
Proceedings, 1988 SCS Multiconference on Distributed Simulation, Simu-
lation Series (Society for Comput. Simulation, San Diego, CA, 1988), Vol.
19, No.3.

Introduces the bounded lag algorithm.

B.D. Lubachevsky, "Efficient Distributed Event-Driven Simulations of Multiple-
Loop Networks," Communications of the ACM~, Vol. 32, No.l, 1989.

A more extended discussion of the bounded lag algorithm.

328

Sect ion 3

M. Chandy and R. Sherman, "Space, Time, and Simulation," in Proceedings,
1989 SCS Multiconference on Distributed Simulations, Simulation Series
(Society for Comput. Simulation, San Diego, CA, 1989), Vol. 21, No.2.

The original presentation of the space-time relaxation paradigm in parallel
discrete event simulation.

Sect ion 4

A.G. Eick, A.G. Greenberg, B.D. Lubachevsky, and A. Weiss, "Synchronous
Relaxation For Parallel Simulations With Applications to Circuit-Switched
Networks," in Proceedings, 1991 SCS Multiconference on Distributed Sim-
ulations, Simulation Series (Society for Comput. Simulation, San Diego,
CA, 1991), Vol. 23, No.1.

The original presentation of the space-parallel synchronous relaxation. For
the specified example (long-distance circuit-switched telephone networks),
performance is analyzed mathematically, in particular, it is proven that
the number of iterations to convergence for simulating a At-strip grows as
log N where N is the number of links in the networks.

T.L. Lai and H. Robbins, "Maximally Dependent Random Variables" Proc.
Nat. Acad. Sci. USA, Vol. 73, No. 2,286-288 (Statistics).

Proves, in particular, that the mean value of the maximum of N dependent
random variables grows not faster than log N. The result is cited in the
tutorial to explain a log N convergence of the space-parallel relaxation.

Sect ion 5

A.G. Greenberg, B.D. Lubachevsky, and I. Mitrani, "Unboundedly Parallel
Simulations Via Recurrence Relations," in Proceedings, Conference o n

Measurement and Modelling of Computer Systems (SIGMETRICS, Boul-
der, CO, 1990), Vol.18, No.1.

The first demonstration that time-parallel simulation can be efficient. In-
troduces fast algorithms for solving recurrence relations and relaxation
for discrete event simulation on massively parallel processors. The latter
algorithms are discussed in the following three papers

R.E. Ladner, and M.J Fisher, "Parallel Prefix Computation," Journal of the
ACM, Vol. 27, 1980, pp 831-838.

C.P. Kruskal, "Searching, Merging, and Sorting in Parallel Computation,"
1EEE Trans. Comput., TC-32 (1983), 942-946

Discusses, among others, a fast parallel merging which is used in the algo-
r i thm for simulating a queue with a feedback.

329

A.G. Greenberg and B.D. Lubachevsky, "A Simple Efficient Asynchronous Par-
allel Prefix Algorithm," in Proceedings, 1987 International Conference on
Parallel Processing (Penn State Univ., 1987), pp. 66-69.

A.G. Greenberg, B.D. Lubachevsky, and I. Mitrani, "Algorithms for Unbound-
edly Parallel Simulations," ACM Trans. on Computer Systems, Vol. 9,
No. 3, 1991

Extended version of the SIGMETRICS' paper of the same authors. Ad-
ditionally shows that in simulating an unstable queue with a feedback the
number of iterations to convergence grows as log N where N is the number
of jobs.

A.G. Greenberg, B.D. Lubachevsky, and I. Mitrani, "Superfast Parallel Discrete
Event Simulations," unpublished.

More discussion is provided on the reasons for fast convergence of time-
parallel queuing network simulations. More examples of application of
the relaxation techniques to parallel discrete event simulation are given
(priority FIFO queues, slotted ALOHA protocol).

Sec t ion 6

D.R. Jefferson, "Virtual Time," A CM Transactions on Programming Languages
and Systems, Vol. 7, No. 3, 1985.

The original presentation of the Time Warp algorithm. The system of
distributed simulation that include message queues with messages and an-
timessages is described.

:I.D. Biggins, B.D. LubachevskY , A. Shwartz, and A. Weiss, "A Branching
Random Walk with a Barrier," The Annals of Applied Probability, Vol. 1,
No. 4, 1991.

Studies a mathematical model used in the analysis of the rollback-based
algorithms.

B.Lubachevsky, A.Shwartz, and A. Weiss, "Rollback Sometimes Works ... if
Filtered" in Proceedings, 1989 Winter Simulation Conference, 630-639.

Introduces possible failures modes of rollback algorithms (cascading and
echoing) and describes the means to counter these modes.

B.Lubachevsky, A.Shwartz, and A. Weiss, "An Analysis of Rollback-Based Sim-
ulation" ACM Trans. on Modelling and Computer Simulation, Vol. 1, No.
2, 1991.

An extended version of the previous paper. Contains full mathematical
proofs and discussion, including examples on each mode of rollback failure.

