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Abstract 

TES (Transform-Expand-Sample) is a versatile methodology for modeling station- 
ary time series with general marginal distributions and a broad range of dependence 
structures. From the viewpoint of Monte Carlo simulation, TES constitutes a new and 
flexible input analysis approach whose principal merit is its potential ability to simul- 
taneously capture first-order and second-order statistics of empirical time series. That 
is, TES is designed to fit an arbitrary empirical marginal distribution (histogram), and 
to simultaneously approximate the leading empirical autocorrelations. This paper is a 
tutorial introduction to the theory of TES processes and to the modeling methodology 
based on it. It employs a didactic approach which relies heavily on visual intuition as 
a means of conveying key ideas and an aid in building deep understanding of TES. 
This approach is in line with practical TES modeling which itself is based on visual 
interaction under software support. The interaction takes on the form of a heuristic 
search in a large parameter space, and it currently relies on visual feedback supplied 
by computer graphics. The tutorial is structured around an illustrative example both 
to clarify the modeling methodology and to exemplify its efficacy. 
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1 INTRODUCTION 

TES (Transform-Expand-Sample) is a recent approach to modeling stationary time series 
[15, 7, 8, 9]. The TES approach is non-parametric in the sense that it makes no assumptions 
on marginal distributions, though the underlying temporal dependence structure is postu- 
lated to be Markovian, with a continuous state space. Nevertheless, its modeling scope is 
quite broad: Additional transformations may be applied, leading to non-Markovian pro- 
cesses; and stationary TES processes may be combined into new ones, e.g., via modulation 
of TES processes by another process, often a discrete-state Markov process. The main ap- 
plication of TES to date has been to create source models (of incoming traffic or workload), 
in order to drive Monte Carlo simulations [2, 10]. 

What is new about TES is its potential ability to capture (fit) both the marginal dis- 
tribution (a first-order statistic) and the autocorrelation function (a second-order statistic) 
of empirical data. Most importantly, TES aims to fit both marginals and autocorrelations 
simultaneously. This goal is not new; in fact, engineers have attempted such simultaneous 
fitting, mainly in the context of signal processing (see, e.g., [13] and references therein). 
The TES variation on this theme is to precisely fit the empirical marginal distribution (typ- 
ically an empirical histogram), and at the same time capture temporal dependence proxied 
by the autocorrelation function (a measure of linear dependence). Being able to do this is 
no small feat. In fact, other modeling approaches to time series are able to do either one or 
the other but not both. For example, autoregression can fit a variety of autocorrelation func- 
tions, but not arbitrary marginal distributions. Conversely, the minification/maxification 
approach [12] can fit general marginal distributions, but has a relatively limited repertoire 
of autocorrelation functions. And approaches that use Gaussian processes as in [20] are 
difficult to implement in practice. All modeling approaches which try to capture marginals 
and autocorrelations simultaneously (TES included) appear to lack an effective algorithmic 
modeling procedure. TES itself employs a heuristic search over a large parameter space; 
nevertheless, experience shows that this is actually a viable approach which utilizes human 
visual perception to guide the search process. 

Why should one insist on modeling both first-order and second-order properties simulta- 
neously? From a purely philosophic viewpoint, it is clear that fitting more statistical aspects 
of empirical data is a priori desirable, as it can only increase one's confidence in a model. 
From a more practical vantage point, ignoring temporal dependence in data can often carry 
serious modeling risks. The perils inherent in failing to capture temporal dependence will 
be illustrated in the sequel. In recognition of these perils, the TES approach stipulates that 
fitting both first-order and second-order statistics is a minimal modeling requirement. 

1.1 Temporal Dependence and Autocorrelations 

Dependence, temporal and spatial, pervades many real-world random phenomena. Tem- 
poral dependence is a major cause of burstiness in telecommunications traffic, especially 
in emerging high-speed communications networks; typical examples are file transfers and 
compressed VBR (variable bit rate) video. Spatial dependence underpins reference of lo- 
cality in caches and data bases. The combined effect of temporal and spatial dependencies 
underlies fault cascades observed in network management. 
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The autocorrelation function is a convenient measure of linear temporal dependence in 
real-valued stochastic processes, frequently used by engineers [1]. Fora discrete-time, real- 
valued stationary stochastic process {X,~ },~~176 0, the autocorrelation function Px (r) consists 
of the lagged correlation coefficients 

p x ( T )  = , T =  1,2,... (1.1) 

where #x < oo and a~r < co are the common mean and variance, respectively, of the 
X,~. While autocorrelation is a measure of linear dependence, it is often used to proxy for 
general dependence, and this is satisfactory in most cases. 

1.2 The Importance of Modeling Temporal Dependence 

Many systems, encountered in practice, have both deterministic and stochastic components. 
The deterministic components are usually easy to capture faithfully in a simulation model. 
However, the stochastic components tend to be the weak link in the chain of modeling as- 
sumptions in both simulation models and analytic ones. This tendency is most pronounced 
in analytical models, where oversimplified assumptions are routinely made to facilitate 
tractability. A typical case in point is renewal queueing, namely, GI/GI/m queues. Here 
dependence is eliminated or overlooked for the sake of analytical or numerical tractabilty, 
or because it is not clear how to model temporal dependence in arrivals or services. Occa- 
sionally, this attitude is justified, for example, when no additional knowledge is available, 
and one seeks qualitative insights and does not insist on quantitative accuracy. Analytical 
models often trade quantitative accuracy for analytical or numerical tractability. But where 
more accurate predictions are needed (often in the context of a Monte Carlo simulation 
model), this attitude cannot be routinely justified. 

Since dependence is frequently ignored by modelers, even when it is clearly present, 
it is important to understand the modeling risk of inadequately capturing dependence or 
ignoring it altogether; we refer to this aspect as undermodeling. We note, in passing, that 
overmodeling is also undesirable; one is merely interested in the simplest possible model 
that would yield adequate predictions (the Principle of Parsimony). Queueing systems, 
so prevalent in computer and communications modeling, illustrate the risk of this kind of 
undermodeling. Consider a queueing system with bursty arrivals. Note that burstiness 
occurs because short interarrival intervals tend to follow in succession, until interrupted by 
a lull. Burstiness can be due either to the shape of the marginal interarrival distribution 
(say, due to a high coefficient of variation), or more commonly, because significant positive 
autocorrelations are present in !he interarrival time process. A little reflection reveals that 
burstiness can make waiting times arbitrarily high, without increasing the arrival rate. For 
illustration, consider the effect of merely increasing the average number of customers that 
arrive in a single burst (think of batch arrivals), while spacing the bursts farther and farther 
apart on the average. Clearly, we can keep the arrival rate constant, this way, but the effect 
on mean waiting times will be disastrous: customers arriving in larger and larger bursts will 
experience increasing waiting times, while the longer and longer lulls separating bursts just 
waste the server's work potential. While this simple thought experiment should convince 
the reader that temporal dependence is important, the magnitude of its effect in queueing ~ 
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systems can be quantitatively startling. Indeed, various studies [5, 14, 18] have shown 
that when autocorrelated traffic is offered to a queueing system, the resulting performance 
measures are considerably worse than those corresponding to renewal traffic. In fact, mean 
waiting times can differ by orders of magnitude! 

A growing realization of the impact of temporal dependence in traffic streams on 
queueing system performance has provided a prime motivation for devising input analysis 
methods that can capture such dependence. In general, prudent modelers ought to conclude 
that temporal dependence cannot be ignored! They should heed the cautionary admonition 
in the closing sentence of [21]: "Would you rather be elegant and precisely wrong, or 
messy and vaguely right?" 

1.3 Goodness Criteria for Modeling Empirical Time Series 

The TES modeling approach stipulates a number of requirements - -  precise requirements 
as well as heuristic ones - -  for the goodness of a candidate time series model based on 
empirical sample paths (see also [13, 12, 20] for related views): 

Requirement 1: The marginal distribution of the model should match its empirical coun- 
terpart. 

Requirement 2: The autocorrelation function of the model should approximate its empiri- 
cal counterpart. Because the empirical data is finite, the model need only approximate 
the significant leading autocorrelations. For an empirical sample size of N, a rule of 
thumb for the maximal lag is the rounded value of v ~ ;  see [3], Chapter 5. 

Requirement 3: Sample paths generated by a Monte Carlo simulation of the model should 
"resemble" the empirical data. 

Note that these requirements are arranged in decreasing stringency. Requirements I and 2 
constitute quantitative goodness-of-fit criteria, requiring that first-order and second-order 
properties of the empirical data be adequately captured. These are precise and well- 
defined requirements, although the particular metric of goodness is left up to the analyst. 
Requirement 3, however, is a heuristic qualitative requirement which cannot be defined 
with mathematical rigor. It is simply too subjective, and is better left to human cognitive 
judgment. Nevertheless, human cognition excells at pattern recognition; we are routinely 
called to judge for visual similarity, without having to be precise or even able to verbalize 
how we reached that judgment. Furthermore, the same judgment is often shared by different 
observers. Recall that it does not make sense to reproduce the empirical sample paths; 
one merely wishes to approximate their statistical signature. If a model can imitate the 
qualitative character of the empirical data, so much the better, as this would increase a 
practitioner's confidence in the model. It is important to realize that qualitative similarity 
should not substitute for the two preceding quantitative requirements. Rather, it is in 
addition, not instead. In short, Requirement 3 is merely the qualitative icing on the 
quantitative cake. 

To get a more concrete idea regarding the three modeling requirements above, examine 
Figure 1. It displays a graphics screen produced by a TES modeling tool, called TEStool 



363 

-A 

c~ o ,  

N 

NIg i --,-, 

n..-~ 

J~ 

m 

,-i (5  

, I 

i 

po  

* 5 

4 ' 0  -t-, 

O " 

0 

~ ~  ~ ' 7 5 '  

w 
-& 

r ~.  

~ 2  

C ,  
O 0  

o 

< 



364 

[6, 16], to be described in Section 4.2. The screen consists of four tiled canvases (sub- 
windows). The lower-right canvas contains a visual specification of a TES model, to 
be explained in Section 4.2. The remaining three canvases display various statistics, 
illustrating the modeling requirements above. In each of them, the corresponding statistics 
are superimposed on each other for comparison; the empirical statistics are marked with 
bullets, and their TES counterparts by diamonds (see the legend at the top of each canvas). 
The upper-left canvas displays an empirical sample path against a TES model sample path 
generated by Monte Carlo simulation; the TES model was constructed from the emprical 
sample path data, so as to approximate the empirical statistics. The upper-right canvas 
displays two histograms, corresponding to the two sample paths in the upper-left canvas. 
Finally, the lower-left canvas displays the empirical autocorrelation function against its 
TES model counterpart; the latter was numerically computed from an analytical formula, 
to be presented in Section 3.3. Note, that Requirements 1 and 2 are apparently satisfied, 
as evidenced by the excellent agreement of the curves in the upper-right and lower-left 
canvases. It is also interesting to note that the upper-left canvas exhibits considerable 
"similarity" between corresponding sample paths, in apparent compliance with Requirement 
3. Altogether, Figure 1 displays the results of a successful TES modeling effort, when judged 
against the three modeling requirements above. 

1.4 T h e  M e r i t s  o f  the  T E S  M o d e l i n g  Methodology 
It appears that TES is the only modeling method that is designed to simultaneously meet 
the three goodness-of-fit requirements above in a systematic way. First, TES guarantees an 
exact fit to arbitrary marginals. More accurately, we are assured of an arbitrarily close fit, 
provided the simulation run of any of its sample paths is long enough. In particular, TES 
can match any empirical density (histogram). Second, TES possesses a large degree of 
freedom in approximating empirical autocorrelations, even as it maintains an exact match 
to the empirical marginal. TES autocorrelation functions have diverse functional forms 
including monotone, oscillatory, alternating and others. And third, TES processes span a 
wide qualitative range of sample paths, including cyclical as well as non-cyclical paths. 
Altogether, TES defines a very large class of models, encompassing both Markovian and 
non-Markovian processes. 

TES processes enjoy two important computational advantages. To begin with, TES 
sequences are easily generated on a computer, and their periods are much longer than the 
underlying pseudo-random number stream. Their generation time complexity is small com- 
pared to that of the underlying pseudo-random number generator, and its space complexity 
is negligible. Furthermore, TES autocorrelations (and spectral densities) can be computed 
from accurate and fast (near real-time) analytical formulas without requiring simulation. 

Because TES autocorrelations can be calculated in near real time on a modern work- 
station, TES modeling of empirical data can be carried out interactively, with guidance 
from visual feedback provided by a Graphical User Interface. This observation motivated 
the implementation of the TEStool modeling software package [6, 16] (recall Figure 1). 
TEStool makes heavy use of visualization in order to provide a pleasant interactive environ- 
ment for TES modeling of general autocorrelated stationary time series. It supports visual 
modeling in the sense that the user can immediately see the statistics for each TES model 



365 

(obtained by incremental modifications), superimposed on their empirical counterparts, and 
thereby judge the goodness of the current model. The environment speeds up the modeling 
search process, cuts down on modeling errors, and relieves the tedium of repetitive search. 
Modeling interactions are easy to grasp by experts and non-experts alike, since the search 
problem and search activities are cast in intuitive visual terms. 

While TES is very versatile and its statistics exhibit rich behavior, the definition of TES 
processes is surprisingly simple. In essence, a TES process is a modulo-1 reduction of a 
simple linear autoregressive scheme, followed by additional transformations. The basic 
TES formulation is Markovian; however, the aforementioned transformations usually result 
in non-Markovian processes. Thus, TES is a non-linear autogressive scheme, encompassing 
Markovian and non-Markovian processes, which may explain in part its diversity and 
versatility. 

1.5 Organization 

This paper is a tutorial introduction to TES processes and the TES modeling methodology. 
As such it contains a certain amount of redundancy to facilitate the presentation. 

The rest of the paper is organized as follows. Section 2 puts together the technical 
preliminaries required in the sequel. Section 3 contains a tutorial overview of TES processes. 
Section 4 explains the TES modeling methodology and overviews the TEStool modeling 
environment. Finally, Section 5 contains the conclusion of this paper. 

2 TECHNICAL PRELIMINARIES 

Several key technical concepts are essential to the understanding of TES processes and the 
TES modeling methodology. These will be intuitively explained in this section. 

2.1 The Inversion Method 

The inversion method is a standard technique of long standing for transforming a uniform 
random variable to one with an arbitrary prescribed distribution F. It has been used by 
Monte Carlo simulation analysts from its earliest days [2, 10]. 

For a random variable X and distribution F, let X ,,~ F denote the fact that F is the 
distribution of X. In particular, X ,v Uniform(c, d) means that X is uniformly distributed 
over the interval [c, d). 

Lemma 1 (Inversion Method) Let F be any distribution function and U ~ Uniform(0, I). 
Then the random variable X : F -~ (U) satisfies X ~ F. 

I 

For a proof, see ibid. Lemma 1 provides a very simple method of converting a marginally 
uniform sequence {Un} into a sequence {X.} with an arbitrary marginal distribution F. 
Simply set for each n, 

X .  = F - ' ( U . ) .  (2.1) 

A transformation of the form (2.1) is called an inversion. It always exists because F, being 
a cumulative distribution function (cdf), is non-decreasing, and therefore can always be 
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inverted; although the inversion is not unique (unless F is strictly increasing), all choices 
of an inverse produce the same effect when applying the inversion method. 

2.2 Histogram Inversions 

In practical modeling, one usually estimates the empirical marginal density of an empirical 
sample by an empirical histogram statistic of the form 7~ = { ( I s ,  rj,~j) : 1 < j < J} ,  
where J is the number of histogram cells, [/j, rj) is the interval of cell j with width 
wj = rj - lj > 0, and/3j is the probability estimator of cell j (the relative frequency of 
observations that fell into that cell). Note that hats signify that the corresponding quantity is 
a sample-based estimate, whereas the others are user-specified parameters. The empirical 
probability density function (pdf) is estimated as 

J ^ 

h(y) = ~ l[b,r~)(y ) ,~J, -cx~ < y < ~ ,  (2.2) 
j = l  ~ 3  

where 1A (x) denotes the indicator function of set A. Observe that, mathematically, Eq. (2.2) 
is just the density of a probabilistic mixture of uniform variates, where component j in the 
mixture is Uniform(/j, rj) and occurs with probability fij. The corresponding cumulative 
distribution function (cdf) is the piecewise linear function 

a l~p j  l (2.3) 
j = l  

where { ~'~ }~a__ o is the cdf of .1 = {PJ}j=l,i.e., Cj = J ^ Ei=l Pi, 1 < j < J (~0 = 0 and ~'j 1). 

The histogram inversion corrsponding to/1 is the piecewise linear function 

J 

Dg(x )  = [ I - l ( x )  = ~ l [ r162  0 < x <  1. (2.4) 
j=l PJ 

The TES modeling methodology uses histogram inversions of the form (2.4) to construct 
random variables with prescribed histogram densities (estimated from empirical data) via 
the inversion method. However, the TEStool environment admits other distributions as 
well. 

Finally, a philosophical remark on the inversion approach is in order at this juncture. 
Analysts often try to fit an analytically-known density to empirical histograms. This 
approach has merit if it leads to tractable analytical models, or if it speeds up the inversion 
method on a computer. However, "smoothing" empirical histograms by analytic fitting may 
introduce inaccuracies instead of purportedly removing "noise" from the empirical data. 
Unless prior knowledge is availabele to justify this removal, it is best to stick with the 
empirical histogram. Not only do we save the labor of the fitting stage, but we work with a 
representation which contains more information than its fitted counterpart. Furthermore, the 
price paid for the fidelity of histogram inversions is low, since implementing the inversion 
method on a computer for a moderate-size histogram (20-25 cells) involves a very modest 
computational cost. 
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Figure 2: A Geometric Representation of Modulo- 1 Addition 

2.3 Modulo-1 Arithmetic 

Modulo-1 arithmetic is simply the operation of taking the fractional part, after ordinary 
arithmetic is performed on real numbers. In order to extend the fractional part notion from 
its familiar form for positive numbers to negative ones, we need a bit of  notation. 

For any real x, let thefloor operator [.J be defined as [xJ = max{integer n : n _< x}, 
i.e., the integral part of x. Note that the floor operator always truncates downwards. Thus, 
[1.2J = 1, but [ - 1 . 2 j  = - 2 .  The modulo-1 (fractional part) operator (.) can now be 
defined for any real x by (x) = x - [xJ. Thus, (1.2) = 0.2, but ( -1 .2 )  = 0.8. Note, that 
a fractional part always lies in the interval [0, 1), even for negative numbers. 

An intuitive understanding of modulo-1 arithmetic can be gained from the geometric 
representation of Figure 2. Here, the interval [0, 1) (the range of fractional parts) has been 
topologically transformed into a circle in a distance-preserving manner; the origin was 
arbitrarily selected at the bottom, and represents the fractional part 0. Henceforth, this 
circle will be referred to as the unit circle (note that it is the circumference which is unity, 
not the radius). A number 0 < y < i is represented by a point on the unit circle at distance 
y from the origin (the distance is measured by the length of the arc connecting the origin 
clockwise to y). Two such numbers, U and V, are marked on the unit circle in Figure 2. 
Suppose 0 < n _< x < n + 1, for some positive integer n. To find y = (x) on the unit 
circle, perform the following thought experiment. Think of x as a virtual inelastic string of 
length x and zero width; the string can be bent, but cannot be stretched or compressed in 
length. Now, anchor one end of the string at the origin and proceed to overlay it precisely 
over the circle in a clockwise direction. You may have to wrap it around the circle several 
times (actually, [xJ = n times) before running out of slack, but wherever the string end 
comes to rest on the unit circle marks the required y. Pictorially, the wrapping action around 
the origin corresponds to discarding the integral part of x, so this procedure automatically 
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yields the fractional part. For negative x, use a virtual string of length Ix[, anchor at the 
origin as before, but overlay the unit circle in the counter-clockwise direction. It is now 
easy to see that for negative numbers - I  < x < 0, we have (x) = 1 - [x[. Figure 2 
illustrates the modulo-1 addition (U + V). First, sum U + V in the ordinary way, and then 
perform the modulo- 1 reduction as described before. 

Just as modulo-1 arithmetic is an adaptation of ordinary arithmetic to the unit circle, 
the notion of circular intervals is an adaptation of ordinary intervals to the unit circle. The 
circular (modulo-l)  interval (a, b) is defined for all a, b E [0, 1) by 

[a, b), a < b 
(a,b) = [O, 1 ) \ [ b , a ) ,  b < a  (2.5) 

{a}, a = b 

Intuitively, for a r b, the circular interval (a, b) consists of all the points on the unit circle 
from a and clockwise on the circle to b (including a but excluding b). If  a < b, the result 
is the ordinary interval [a, b); but if b < a, the resulting circular interval straddles point 0, 
and becomes in effect a union [0, 1) \ [b, a) = [0, b) (.J[a, 1 ) of two intervals. This situation 
is depicted in Figure 2, with a = V and b = U. The case a = b is defined (somewhat 
inconsistently) as the singleton set rather than the empty set, for reasons of notational 
convenience. 

2.4 Iterated Uniformity 

Iterated uniformity refers to the ability to create sequences of variates, say {Un}~=0, where 
each Un is distributed uniformly on [0, 1). Modulo-1 arithmetic is intimately connected to 
iterated uniformity. Specifically, it can be shown that uniformity is closed under modulo-1 
addition of independent random variables. While this result is not new (see, e.g., [4], p. 64), 
it plays such a central role in TES modeling that it merits rigorous quoting. 

Lemma 2 (General  I te ra ted  Uniformity) Let U ,,~ Uniform(O, 1), and let V be any ran- 
dom variable, independent of  U. Define W = (U + V). Then W ~ Uniform(O, 1). 

Figure 2 illustrates how W is generated via modulo-1 addition on the unit circle, in ac- 
cordance with Lemma 2. A plausibility argument goes as follows. Start by sampling U 
(independently) many times on the unit circle. Then any region of the unit circle is.equally 
likely to have the same (uniform) density of points. Next, add a constant c modulo-1 to 
each point. This simply translates every point by the same amount on the unit circle either 
clockwise or counter-clockwise, depending on the sign of c. But the symmetry of the unit 
circle leaves the translated points still uniformly distributed on it. Since the argument holds 
for every c, it will also hold for any random variable V, as long as V is independent of U. 
A rigorous proof may be found in [7]. 

The significance of the Lemma stems from the fact that it gives us a simple prescription 
for generating a wide variety of marginally uniform sequences: Let U0 '-~ Uniform(0, 1), 

E oo and let further { ,~}n=l be a sequence of iid (independent identically distributed) random 
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variables with arbitrary marginal density fv, and independent of U0. The random variables 
V, are referred to as innovations. Then the recursive scheme 

U,~ = (Un-, + V,~), n > O, (2.6) 

is marginally uniform on [0, 1) by Lemma 2. Note carefully the surprising fact that 
the distribution of the Vn is entirely irrelevant! Any sequence of mutually independent 
innovations (even non-stationary ones) will do, as long as its members are independent of 
U0. In fact, the V~ may be random, deterministic and even assume negative values. Thus, 
the space of all innovations constitutes a huge degree of freedom for creating marginally 
uniform sequences! Notice carefully, that every choice of an innovation density fv  gives 
rise to a different dependence structure in {U~}, as defined by Eq. (2.6). This flexibility is 
a major reason for the modeling versatility of TES, and will be revisited in Section 3. 

2.5 Step-Function Innovation Densities 

While the class of all innovation densities affords broad freedom in defining TES sequences, 
that class is simply too large to handle operationally. What is needed is a suitable restriction 
which attains sufficient manageability without sacrificing too much generality. 

The class of step-function innovation densities on the unit circle (represented by the 
interval [-0.5, 0.5) for reasons to be explained later) is a natural choice. First and fore- 
most, step-function densities can approximate any density arbitrarily closely, so consider- 
able generality is retained. The second reason is mathematical and conceptual simplicity. 
Step-function densities, being piecewise constant, correspond to probabilistic mixtures of 
uniform densities. Mathematically, these densities can be characterized by simply speci- 
fying their steps as triplet sets of the form {(Lk, Rk, Pk)}~'--l, where K is the number of 
steps, [Lk, Rk) is the support of step k (-0.5 _< Lk < Rk < 0.5), and 0 < Pk _< 1 is the 
mixing probability of step k K (~k=~ Pk = 1). It is convenient to require that steps do not 
overlap (i.e., R~ _< Lk+l, k = 1, . . . ,  K - 1). Since the density value over step k is fixed 
at Pk/(Rk -- Lk), we formally have 

K Pk --0.5 < z < 0.5. (2.7) fv(z)  = ~ l[Lk,Rk)(z) Rk ----Lk' 
k=l 

The conceptual simplicity of step functions is immensely valuable in facilitating their visual 
(graphic) specification and manipulation on a computer screen. This point will be explained 
in detail in Section 4.2. 

Notice the similarity between Eqs. (2.7) and (2.2). In fact, both are step-function 
densities, but the former is theoretical and the latter is empirical. We use similar but distinct 
notation to emphasize this point. 

2.6 Foreground / Background Schemes 

The reader can now see how the previous subsections on modulo-1 arithmetic and iterated 
uniformity combine with Lemma 1 to provide a generic scheme for generating stationary 
sequences with arbitrary marginal distribution F. 
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Figure 3: The Generic Foreground/Background Scheme 

Figure 3 sketches the overall structure of such schemes, referred to as foreground~back- 
ground schemes. The { Z~ } sequence is a pseudo-random number stream (iid Uniform(0, 1) 
variates), available on most computers. The sequence {Y~} is the background sequence, 
obtained as a general autoregression Tc (that is, Y~ is a function of Y,-1 and Z~, where the 
latter plays the role of innovation), in such a way that the resulting sequence is stationary 
with some marginal distribution G. A deterministic transformation D, called distortion, 
transforms each Y~ to a corresponding X,,  and the resulting sequence {Xn} is the fore- 
ground sequence. Intuitively, the background sequence is an auxiliary one which runs 
"unobserved in the background". Its foreground counterpart is the real target, since the goal 
is to endow it with the desired statistical properties (a prescribed marginal distribution F 
is one of them). The tranformation D has the curious name distortion, because in a sense, 
uniform variates are "ideal" (being so very simple...), and any deviation from uniformity 
constitutes a "distortion". This connotation not withstanding, distortions are extremely 
useful, operationally. 

As we shall later see, TES generation methods fall within the class of foreground / 
uniform background schemes. 

2.7 S t i t ch ing  T r a n s f o r m a t i o n s  

Imagine a random walk on the unit circle as depicted in Figure 2. Such random walks 
will have inherent sample path "discontinuities" due to modulo-1 "crossings" of point 0 
in the clockwise or counter-clockwise direction. The term "discontinuities" is used here 
figuratively; it actually refers to transitions from large fractions to small ones and vice versa, 
when the random walk wraps around point 0 modulo-1 in each direction. 
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Figure 4: Select Stitching Transformations 

In some select situations, such sample path "discontinuities" could be endowed with 
a valid modeling interpretation. For example, crossing point 0, properly defined, could 
model a catastrophe - -  perhaps in a cyclical economic model. But in most cases, such 
"discontinuities" in the sample path are undesirable, as they have no qualitative counterparts 
in empirical data. Their presence may violate Requirement 3 in Section 1.3, even though 
Requirements 1 and 2 may well be complied with. What is needed are "smoothing" 
transformations to achieve compliance with the former, but without sacrificing compliance 
with the latter. Most desirable are "smoothing" transformations which are uniformity- 
preserving, in order to fit arbitrary marginal distributions via the inversion method. The 
so-called stitching transformations [7] precisely fit the bill. 

Formally, a stitching transformation Sr maps the interval [0~ 1) to itself, and is deter- 
mined by a stitching parameter ~ in the range 0 < ~ < 1. For a given ~, Sr is defined 
by 

& ( Y )  = y ) / ( 1  - r _< < 1 

Figure 4 depicts select stitching transformations plotted for various values of ~. The 
sobriquet "stitching" is motivated by the fact that for 0 < ~ < l, Sr is continuous on the 
unit circle. To see that, notice that all S~ are continuous in the ordinary sense in the interior 
of the unit interval. However, as the unit interval is closed into a unit circle by "stitching" 
together the edge points 0 and l, the images of S~ at the edge points will be similarly 
stitched, in the sense that S~(0) = S~(1) = Sr  0 < ( < 1. Now imagine that a 
highly autocorrelated, marginally uniform sequence {U,~}, is represented by points on the 



372 

abcissa of the graph in Figure 4. Intuitively, this means that successive points of {U,} are 
not too far apart on the abcissa, except when they wrap around 0. But even then, S~ ensures 
that for 0 < ( < 1, successive images of {S~(U,)} are similarly spaced on the ordinate. 
Thus, {S~(U,)} is "smoother" than the original sequence {Un}. Note that no "smoothing" 
takes place for Sl(Z) = x (the identity) and So(Z) = 1 - x (the antithetic transformation); 
indeed, Figure 4 shows that these are not "continuous" at the edges of the unit circle. 

The primary utility of stitching transformations is that they all preserve uniformity, in 
addition to their "smoothing" effect. 

Lemma 3 I f U  ,.~ Uniform(O, 1), then S~(U) ,.~ Uniform(O, 1),for allO < ~ < 1. 

A simple proof may be found in [ 15]. It follows that a compound distortion of the form 

D(x)  = F- ' (Sr  x E [0, 1], (2.9) 

employing stitching and inversion in succession, will allow us to to fit arbitrary marginal 
distributions, and simultaneously attain sample path "smoothing". The empirical TES 
modeling methodology, to be described in Section 4.1, employs compound distortions of 
the form (2.9). 

An example of the "smoothing" effect of stitching on TES sequences is deferred until 
Section 3.3. 

2.8 T h e  T E S  Modeling Approach 

We can now gather the strands of the foregoing discussion and sketch the main elements of 
the TES modeling approach. 

Consider again Figure 3, and make the following specializations. Let Y0 = U0 be 
uniform on [0~ 1), and let T~ implement the iterated uniformity scheme (2.6), where each 
V,~ is a function of the corresponding Zn (the V'n could be possibly generated via the inversion 
method). The background sequence { Y~ } = { U,~} will then be marginally uniform on [0, 1), 
and so each U~ could be transformed by a distortion D to yield a foreground sequence {X~ } 
with prescribed marginal distribution F. To this end, one may use an inversion distortion 
or a compound one of the form (2.9). 

The TEStool modeling environment makes two additional specializations. It uses 
histogram inversions/:/-i of the form (2.4) in constructing compound distortions of the 
form (2.9), and it restricts the range of innovation densities to the class of step functions 
(2.7) whose support is contained in the interval [-0.5,0.5). A detailed description of TES 
sequences will be presented in Section 3. 

Note carefully, again, that for any distortion D = F -1, we have X~ ,.~ F regardless of 
the innovation sequence selected! Thus, the TES approach guarantees that Requirement 1 
in Section 1.3 is always satisfied. How then should one approximate a prescribed autocor- 
relation function? Here, we take advantage of the fact, that the choice of an innovation 
density, completely determines the temporal dependence structure of the corresponding 
background sequence (for the foreground sequence, the distortion also participates in this 
determination). A choice of innovations (and to a lesser extent, of a stitching parameter) 
can then allow us to satisfy Requirement 2 in Section 1.3. Experience shows that these 
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choices also have a strong impact on the qualitative nature of TES Monte Carlo sample 
paths, in line with Requirement 3 in Section 1.3. 

All in all, the TES approach allows us to decompose the selection of the marginal dis- 
tribution and autocorrelation function, rendering them largely orthogonal choices. Therein 
lie both the novelty of TES and its modeling power. 

3 OVERVIEW OF TES SEQUENCES 

Throughout the remainder of this paper we assume the following setup, over a common 
probability space: 

1. U0 "~ Uniform(0, 1) is the initial variate in a background TES sequence. 

V. 2. { ,~}~=1 is a sequence of innovations (iid random variables) with common density 
fv ,  independent of U0. Without loss of generality, we assume that the support of f v  
is the interval [ -0 .5 ,  0.5), representing the unit circle. In fact, any interval of length 
1 can serve as an equivalent support for fv ,  because of the modulo-1 arithmetic 
involved. The reason for this particular choice will become evident later. 

3. D is a distortion (a measurable function from [0, 1] to the real line). As in Eq. (2.9), 
we assume that D is composed of a stitching transformation S~ (for some stitching 
parameter ~ E [0, 1]), followed by an inversion Fx  I of a distribution function Fx. 

These are the determining parameters for a TES process. 

3.1 Basic Background TES Sequences 

We start out by introducing two classes of the simplest TES background sequences: 
TES+(L, R) and TES-  (L, R). Collectively called basic TES sequences, these were first 
studied in [15], and their construction motivated the TES (Transform-Expand-Sample) 
acronym. The superscripts (plus and minus) are suggestive of the fact that basic TES 
sequences cover all lag-1 autocorrelation; TES + sequences cover the positive range [0, 1], 
while TES-  sequences cover the negative range [ -1 ,0]  (see below). Hereafter, we shall 
consistently append the proper superscript (plus or minus) to distinguish between simi- 
lar mathematical objects associated with TES + and TES-,  respectively; the superscript is 
deleted in objects common to TES + and TES-,  or those for which the distinction is imma- 
terial. For example, TES + and TES-  sequences are denoted { U + } and {U~-}, respectively, 
but U0 is the common initial variate for all TES classes. 

Basic TES sequences are parameterized by pairs (L, R), - 0 . 5  < L < R < 0.5. These 
are used, in fact, to parameterize uniform innovation variates of the form 

V,~ = L + (R - L)Z,~, (3. l) 

where {Zn} is a sequence of lid Uniform(0, l) variates. The (L, R) parameterization is 
equivalent to the (c~, r parameterization given by 

R + L  
c~ = R - L ,  r - - - ,  (3.2) 

OL 
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Figure 5: Geometric Interpretation of Basic Background TES Sequences 

and the corresponding TES classes are denoted TES + (a, r and TES-(a ,  r respectively. 
As will be presently seen, the (a, r parameterization is analoguous to polar coordinates, 
whereas its (L, R) counterpart is analoguous to Cartesian coordinates. More importantly, 
the (a, r parameterization simplifies the representation of the autocorrelation function of 
TES sequences [7]. 

Figure 5 ascribes a simple geometric interpretation to TES+(cq r Here, (U,~ + L) and 
/U~ + R) are translates of the current TES iterate U~ = U + by offsets L < 0 and R > 0 on 
the unit circle; c~ = R - L is the length of the circular interval (U~ + L, U~ + R); and r is 
an indication of the rotation of that interval away from symmetric straddle of U~ (the angle 
between U~ and the interval midpoint Mn). The analogy of the (a, r parameterization to 
polar coordinates is now evident. 

The construction of basic TES sequences is recursive, each resulting in a stationary 
Markovian sequence whose marginal distribution is uniform on [0, 1); see [ 15] for formulas 
of the respective transition densities. Start with U0 "~ Uniform(0, 1) as the recursion basis. 
Next, assume that U~ ,-~ Uniform(0, 1) has already been constructed in the recursion step. 
The next TES iterate U,+l is constructed as follows (refer to Figure 5). 

For TES+(c~,r first construct the circular interval (U~ + L, U~ + R) about U~ = 
U +, (the Expand stage of TES), and then sample U~+I uniformly in (U~ + L, U,~ + R), 
independently of the past (the Sample stage of TES). The Transform stage in TES + is the 
identity. Notice that this is just the geometrical interpretation of the iterated uniformity 
relation U++l = (U + + V~) from Eq. (2.6), for V~ of the form (3.1). 
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For TES- (c~, ~b), the recursive construction of U,+1 = U~'+~ is a bit more involved (ibid.) 
The Transform stage maps U,~ to its antithetic variate 1 - U,~. The Expand stage is step 
dependent: for odd n construct (U~ + L, Us + R), but for even n construct ( 1 - U~ + R, I - 
U~ + L). The Sample stage to obtain U~+l = U~+I is the same as in TES+(a,  q~). A little 
reflection should reveal that this construction for TES- is equivalent to U~'+l --= (U~- + Vn) 
for odd n ,  and U~-+I = (1 - U~- - V~) for even n. 

The qualitative behavior of basic TES sequences as a function of c~ and ff can be readily 
grasped with the aid of  Figure 5. As a.L 0, the limiting circular intervals (Un + L, U~ + R) 
shrink to a singleton set by (2.5). Consequently, {U + } approaches {U0,/7o,...} with 
p+(r)  - 1, while {U~-} approaches {U0, l - U 0 ,  U0, l - U 0 , . . . } ,  with p~(7-) = - 1 ,  7- > 1. 
As a T 1, the limiting circular intervals expand to [0, 1) by (2.5), and both {U~ + } and {U~" } 
approach iid Uniform(0,1) variates, so p+(r) = p~(7-) - 0. In between these extremal 
cases lie intermediate values a C (0, 1) which give rise to autocorrelated TES sequences, 
such that p+ ( 1 ) covers (0, 1) and Pv ( 1 ) covers ( -  I, 0), as L and R range over [-0.5,  0.5); 
see [15] for details. 

Consider now a TES+(a,  r sequence, and refer to Figure 5. If ~b = 0, then R = - L ,  
so that the next iterate U++~ is equally likely to fall to the left or to the right of the current 
iterate U~ = U +. In this case, E[V~] = 0, and {U + } is a random walk with zero net 
drift around the unit circle. If ~h > 0, then R > ILl, so U++I is more likely to fall to the 
right than to the left of  U~ = U +. In this case, E[V~] > 0, and {U + } is a random walk 
with positive (clockwise) net drift around the unit circle. As we shall see later on, this 
results in sawtooth-shaped cyclical sample paths. The case ff < 0 is analogous but with 
counter-clockwise net drift, resulting from E[Vn] < 0. Clearly, the innovation variates V~ 
serve as differences between successive iterates U~ and U~+I, and the average difference 
determines whether the TES sequence is driftless or directional as well as the drift direction. 
However, note carefully that these are no ordinary differences; rather, these are differences 
on the unit circle. In fact, one cannot deduce the innovation variates V~ from {U + } in a 
unique way, because the rules of modulo-1 arithmetic allow us to write g+n_l_l -~- (Un + -Jc Vn} 
as well as U++l = (U + + V~ - 1). It follows that both Vn and V~ - 1 qualify as innovation 
variates. This is just a reflection of the fact that to get from one point to another on a circle, 
one can either go to the right or to the left with equal effect. 

Although basic TES sequences have just two parameters, they already possess a con- 
siderable range of sample path behavior, and a variety of functional forms of associated 
autocorrelation functions. This variety is demonstrated in Figures 6-13 which depict four 
fundamental behavioral modes of basic TES(c~, if) background sequences. 

An examination of the sample paths (Figures 6, 8, 10 and 12) reveals a qualitative 
difference between TES + and TES-  sample paths. The latter are characterized by a visual 
"shadow" appearance (Figures 10, 12), due to the alternation of large and small values, 
which in turn gives rise to an alternating autocorrelation function with negative lag-1 
autocorrelation. Another fundamental qualitative difference can be discerned between 
sequences without drift (q~ = 0), as in Figures 6 and 10, and those with drift (~b = 0.5), as 
in Figures 8 and 12. The latter exhibit a distinct cyclical structure resulting from periodic 
drifting across the "origin" on the unit circle. This cyclical structure is absent for 4; = 0, 
because the resulting random walk is not directional. Subsequently, the behavior of the 
corresponding autocorrelation functions (Figures 7, 9, 11 and 13) displays four functional 
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SIMULATED SAMPLEPATH REALIZATION r 
FOR TES (r 0.10, (~  0.00, ~= 1.00) 

(500 OBSERVATIONS FROM UNIFORM({),I ) DISTRIBUTION) 
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Figure 6: Sample Path of a Uniform TES + (c~, q~) Process Without Drift 

SIMULATED AND NUMERICAL AUTOCORRELATION FUNCTION 
FOR TES § 0.1O, ~= 0.00, ~= 1.00) 

(100 LAGS FROM UNIFORM(0,1 ) DISTRIBUTION) 
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Figure 7: Autocorrelation Functions of a Uniform TES + Process Without Drift 
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SIMULATED SAMPLE PATH REALIZATION 
FOR TES*(O. = 0.10, t~= 0.50, ~= 1.00) 

(500 OBSERVATIONS FROM UNIFORM(0,1 ) DISTRIBUTION) 
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Figure 8: Sample Path of a Uniform TES+(c~, ~b) Process With Drift 

SIMULATED AND NUMERICAL AUTOCORRELATION FUNCTION 
FOR TES+(ts= O. 10, O= 0.50, ~= 1.00) 
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Figure 9: Autocorrelation Functions of a Uniform TES + (a, 6) Process With Drift 
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SIMULATED SAMPLE PATH REALIZATION 
FOR TES-(o~- 0.1 O, t~  0.00, ~,= 1.00) 

(500 OBSERVATIONS FROM UNIFORM(0,1) DISTRIBUTION) 

0 50 100 150 200 250 300 350 400 450 500 
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Figure 10: Sample Path of a Uniform TES- (a, q~) Process Without Drift 

SIMULATED AND NUMERICAL AUTOCORRELATION FUNCTION 
FOR TES-(ct= 0.10, r 0.00, ~= 1.00) 

(100 LAGS FROM UNIFORM(0,1) DISTRIBUTION) 

SIMULATED: bullets 
NUMERICAL: bars 

0.8 

A 0.6 

0.4 

I 

0 10 

Ill IElIllllllltllll WT   r T,,,l T, 

i i J 2'o 3'o ;o ;o 6o ;o 8o ~o ,oo 
LAG NUMBER 

Figure 11: Autocorrelation Functions of a Uniform TES- (a, 4) Process Without Drift 
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SIMULATED _SAMPLE PATH REALIZATION 
FOR TES (e~ 0.I0, 0= 0.50, F== 1.O0) 

(500 OBSERVATIONS FROM UNIFORM(0,1 ) DISTRIBUTION) 
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Figure 12: Sample Path of a Uniform TES-(a,  4) Process With Drift 

SIMULATED AND NUMERICAL AUTOCORRELATION FUNCTION 
FOR TES -(o~= 0.I0, (~  0.50, ~= 1.00) 

(100 LAGS FROM UNIFORM(O,I ) DISTRIB LrfION) 

SIMULATED: bullets 
NUMERICAL: bars 

0.8 

0.4 

l,,l////Ir, ilITTT, ,Trrr , , 

T 

I0 / r I F I ~ L I 
0 I 20 30 40 50 60 70 80 90 100 

LAG NUMBER 

Figure 13: Autocorrelation Functions of a Uniform TES- (a, 4) Process With Drift 
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forms. The driftless TES + case in Figure 7 is monotone decxeasing, whereas the driffless 
TES- case in Figure 11 is alternating with monotone decreasing envelope. The TES + 
case with drift in Figure 9 is oscillatory, whereas its TES- counterpart in Figure 13 is 
simultaneously alternating and oscillatory. Alt autocorrelation functions are bounded by 
envelopes with monotone decreasing magnitude. The effect of increasing the magnitude of 
$ on sample path behavior is to decrease the mean "cycle time" of the directional random 
walk around the unit circle, with the corresponding autocorrelation function oscillating 
more rapidly. As expected, an increase in c~ causes a decrease in the magnitude of the 
resultant autocorrelation functions for all tags. 

When the full generality of TES sequences (general innovations and distortions) is 
invoked, the repertoire of TES sequences and their behavioral range is enhanced far more. 
This flexibility explains in a nutshell why one can hope a priori to define TES sequences 
which simultaneously approximate first-order and second-order properties of empirical 
sequences. 

3.2 General TES Background Sequences 

This section generalizes the scope of innovations of background TES sequences from 
uniform innovation densities to general ones. 

General TES background sequences fall into two classes, denoted TES + and TES-. 
Class TES + consists of random sequences { U~ + } of the form 

U+ = { U0,+ n = 0 (3.3) 
(U2_l + v.) ,  n > o  

and class TES- consists of random sequences {U~ } of the form 

U , n even 
U~---- 1 - U  +, nodd  (3.4) 

It immediately follows that both {U + } and {Ug } are Markovian sequences. Their tran- 
sition densities were derived in [7], in terms of Fourier expansions, but these are beyond 
the scope of this paper and will not be reproduced here. By iterated uniformity (see Sec- 
tion 2.4), it further follows that both TES + and TES- processes are stationary sequences 
with Uniform(0, 1) marginals. Eq. (3.4) readily implies that for any given innovation se- 
quence { V,~}, the autocorrelation functions of the corresponding { U + } and { Ug } sequences 
satisfy the relation 

p~(r) = ( -1 ) 'p+( r ) ,  r = 0 ,1 , . . .  (3.5) 

It is clear from Eq. (3.5) that if TES + sequences cover the positive range [0, 1] of lag-1 
autocorrelations, then TES- sequences cover the negative range [ -  1,0]. 

Figure 14 provides a 3-dimensional geometric interpretation of the construction of 
background TES sequences with step-function innovation densities. Here the unit circle 
lies at the bottom, in the 2-dimensional plane, with the current TES variate U,~ in the 
north/north-easterly sector. A step-function innovation density fv was erected over the 
unit circle, with values in the third dimension (the "up" direction). The origin for the 
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Figure 14: Geometric Interpretation of Background TES Sequences With Step-Function 
Innovations 

support of fv  was set at the current TES variate Un, implying that the support of fv  is the 
interval [-0.5, 0.5). To obtain the next TES + variate U,~+I, just sample a value on the unit 
circle from the innovation density fv. Indeed, because the origin of fv  was set at U~, this 
procedure implies U~+l = (UN + V,), in agreement with Eq. (3.3). To map a TES- method 
into a geometrical interpretation in Figure 14, simply use alternately fv  for even indices n, 
and its antithetic counterpart (corresponding to sampling U~-+1 = 1 - U +) for odd indices 
n, as prescribed by Eq. (3.4). 

Figure 14 clarifies the reason for selecting the interval [-0.5, 0.5) as the support set of 
fv.  Note carefully, that any interval of lenght 1 will do, due to the modulo-1 reduction 
perfomed in Eqs. (3.3)-(3.4). But Eq. (3.3) implies (and Figure 14 illustrates graphically) 
that we can think about general innovation variates V~ as modulo-1 differences IJetween 
successive TES + variates, that is, differences on the unit circle. This interpretation is only 
valid for the choice of the natural support [-0.5, 0.5) for fv.  

Although Figure 14 does not exhaust the full generality of TES processes, it embod- 
ies the level of generality of background TES sequences, adopted by the TES modeling 
methodology, and implemented in TEStool. For all practical purposes, we may, henceforth, 
adopt Figure 14 as the mental image characterizing the construction of general background 
TES sequences. 
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3.3 General TES Foreground Sequences 

Recall that the background TES sequences, {U + } and {U~ } from Eqs. (3.3)-(3.4), play 
an auxiliary, albeit important, role in TES modeling. The real modeling interest lies in 
general foreground TES sequences {X + } and {X~ }, obtained from Eq. (3.3) and Eq. (3.4), 
respectively, via a general distortion, as 

X + = D(U+), (3.6) 

X~ = D(U~). (3.7) 

Figures 15 and 16 summarize the generation scheme of TES + and TES- sequences, re- 
spectively, in a self-explanatory manner. 

Recall that a compound distortion D of the form (2.9) serves a dual goal: It "smoothes" 
sample paths of TES sequences, and it guarantees their marginal distribution to match, in 
principle, any prescribed one. We still need, though, to approximate a prescribed autocorre- 
lation function; consequently, we need a way to calculate or estimate TES autocorrelations. 

Naturally, a Monte Carlo simulation of the foreground TES sequences (3.6) and (3.7) 
can always provide a good estimate of the corresponding autocorrelation function, provided 
a sufficient sample size is generated. Unfortunately, this approach can be costly in terms of 
time complexity, especially when high autocorrelations necessitate large sample sizes for 
adequate statistical reliability (it takes some 10-15 minutes of elapsed time to estimate 100 
lags of the autocorrelation function for a million-observation sample on a standard work- 
station). This pretty much precludes the use of simulation-based estimators in interactive 
heuristic searches for suitable TES models. Fortunately, fast and accurate numerical algo- 
rithms are available for general foreground TES processes {X + } and {X~ }, with general 
distortions and innovations. 

Let f (s)  = f_~176 exp( - sx )  f (x)  dx denote the Laplace Transform of a function f (x) .  
For a given lag r,  the corresponding autocorrelation functions are given, respectively, by 

2 s Re[f~(i2m,)] I/)(i2m,)l 2 (3.8) 

and 
p+(r) ,  r even 

px(r)  = 2 oo rr �9 - �9 2 (3.9) 
~-~Re[f~(z27ru)]Re[D(z2ru) ], z odd 

X u=l  

See [7] for the mathematical derivations. These formulas are given in terms of the Fourier 
coefficients fv(i2rcu) and b(i27ru), and so the effect of innovations and distortions on 
the autocorrelation function is conveniently separated. On the other hand, these infinite 
expansions do not constitute closed-form representations. In order to gain insight into the 
effect of innovations and distortions on the corresponding autocorrelation functions, one 
must perform a numerical summation for a sufficiently large number of terms. Fortunately, 
Eqs. (3.8) and (3.9) are eminently computable, and the sums converge rather rapidly for all 
popular and useful innovations and distortions, including compound distortions of the form 
(2.9) and step-function innovation densities of the form (2.7), both of which are utilized 
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in TEStool for empirical TES modeling. Formulas for these and other innovations and 
distortions were explicitly calculated in [8], and will not be reproduced here. 

Figures 6-13 and 17-22 serve two purposes. They exhibit the efficacy of the numerical 
algorithms for calculating TES autocorrelations, and simultaneously demonstrate their 
range of functional forms, as well as the variety of the associated sample paths. The 
figures are arranged in pairs, where the first member displays a sample path obtained from a 
simulation run, and the next member displays the corresponding pair ofTES autocorrelation 
functions of which one is estimated statistically from a simulation run of 106 observations 
(bullets), and the other is computed numerically from specializations of Eqs. (3.8)-(3.9). 
As evidenced by the graphs, the agreement is excellent (tabulated printouts confirm the 
accuracy of the algorithms for a large variety of additional cases). Recall that Figures 6-13 
have already been discussed in Section 3.1. 

The "smoothing" effect of stitching on basic TES sequences is demonstrated in Figures 6 
and 17.- Figure 17 is a stitched version (~ = 0.5) of the sample path shown in Figure 6. 
Notice how the "discontinuities" in the sample path of Figure 6 (the two spikes around 
serial numbers 400 and 420, and the dip around serial number 470) have been eliminated 
in Figure 17; the latter has an overall "continuous" appearance. The effect of stitching 
on the corresponding autocorrelation functions is demonstrated in Figures 7-18. They 
clearly show that stitching has the effect of increasing the magnitude of the autocorrelation 
function. This phenomenon stems from the fact, that crossing point 0 in either direction 
(from large values to small ones or vice versa) introduces a negative component into the 
autocorrelations of unstitched sequences, and this negative component is eliminated in 
stitched ones. Refer to Figure 5 as a pictorial aid. 

The effect of inversions (see Section 2.1) on sample paths and autocorrelation functions 
of background TES sequences is exemplified in Figures 19-22. Figures 19-20 correspond 
to exponential marginals (rate 1), while Figures 21-22 correspond to geometric marginals 
(parameter 0.5). These particular examples were selected to emphasize that TES can 
model discrete-valued sequences in addition to continuous-valued ones. A comparison of 
each distorted foreground sample path with its background counterpart reveals that certain 
visual features are preserved under unstitched inversions; this is due to the fact that inversion 
transformations (of a cdf) are monotonic; furthermore, the inversions in the aforementioned 
figures were applied to the same background sequence. For example, comparing Figures 19 
and 21 to Figure 6 reveals that the general appearance of the sample path envelopes is quite 
similar, though the scales are different. In particular, the sample path "discontinuities" 
alluded to before are easily identifiable at the same serial numbers. An examination of the 
corresponding autocorrelation functions (Figures 20, 22, and 7) show that the functional 
form is largely preserved under inversion (up to scaling), though more complicated effects 
are described in [8]. 

The reader is referred to [8] for more information on TES sample paths and autocorre- 
lations, and to [9] for the corresponding information on TES spectral densities. 
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SIMULATED SAMPLEPATH REALIZATION 
FOR TF~ +(o. = 0.I0, 0= 0.{R), 4= 0.50) 

(5(X) OBSERVATIONS FROM UNIFORM(0,1) DISTRIBUTION) 
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Figure 17: Sample Path of a Uniform Stitched Driftless TES + (a,  q~) Process 

SIMULATED AND NUMERICAL AUTOCORRELATION FUNCTION 
FOR TES§ (a=O.IO,r 
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Figure 18: Autocorrelation Functions of a Uniform Stitched Driftless TES + (a,  ~b) Process 
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Figure 19: Sample Path of an Exponential TES + (c~, q~) Process Without Drift 
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Figure 20: Autocorrelation Functions of  an Exponential TES + (a,  q~) Process Without Drift 
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Figure 21 : Sample Path of a Geometric TES + (c~, 4) Process Without Drift 
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Figure 22: Autocorrelation Functions of  a Geometric TES + (o~, q~) Process Without Drift 
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4 TES MOI)ELING AND SOFTWARE SUPPORT 

The TES modeling methodology, as currently implemented in TEStool, uses specialized 
innovation and distortions. Unless otherwise stated, all innovation densities are assumed to 
be step functions (see Section 2.5), and all distortions are restricted to stitched or unstitched 
histogram inversions (see Section 2.2). 

Recall that Section 2.2 covers continuous empirical histograms. If the empirical his- 
togram is known to contain discrete components (that is, discrete values occur with non-zero 
probabilities), then a simple modification of Eqs. (2.2)-(2.4) yields analoguous formulas; 
the corresponding transforms required to calculate autocorrelations in Eqs. (3.8) and (3.9) 
can befound in [8]. We shall not elaborate on the discrete histogram case, because it occurs 
relatively rarely and does not introduce significant new wrinkles. 

4.1 The Empirical TES Modeling Methodology 

Modeling empirical time series is the most common and useful application of the TES 
modeling methodology. Assume that we have at our disposal some empirical sample 
path, representing a partial time series history, to which we wish to fit a TES model. 
Assume further that an empirical histogram and autocorrelation function statistics have been 
computed from the empirical sample path. A complete specification of a TES sequence 
requires the modeler to specify a flavor of TES process (TES + or TIES-), a distortion D 
composed of a stitching parameter ~ and histogram inversion H - l  , and a step-function 
innovation density f v .  An outline of a typical modeling scenario is sketched below. 

Selecting the TES Process sign: The selection of the TES process sign is based on the 
modeler's experience and knowledge of TES sequences. 

Selecting the inversion: The natural inversion is the histogram distortion Dn, given in 
Eq. (2.4). Since this is completely determined by the empirical data, no additional 
choices are required on the modeler's part. Using a histogram inversion ensures that 
the TES sequence will match the empirical marginal distribution, regardless of other 
parameter selections. 

Selecting the stitching parameter  and innovation density: The core activity of empiri- 
cal TES modeling is a heuristic search for a suitable stitching parameter and innovation 
density. The modeler searches through stitching parameters in the range [0, 1] and 
innovation densities in the space of step-function densities whose support is contained 
in [-0.5,  0.5). These selections fix the autocorrelation structure of a TES sequence. 

Reference [8] provides the ingredients for a numerical calculation of TES + and TES- 
autocorrelation functions from the Fourier representations of Eqs. (3.8) and (3.9). Specif- 
ically, it contains the formulas for the Laplace transform of the histogram inversion (2.4), 
as well as stitched histogram inversions of the form D(z)  = H -I (S'~ (x)) (a special case of 
Eq. (2.9)). It also contains formulas for stitched and unstitched inversions corresponding 
to a host of other distributions, such as uniform, exponential and geometric. Similarly, [8] 
also provides formulas for the Laplace transform of step-function densities, as well as other 
innovation densities. 
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We stress that the modeling outline :above is highly heuristic. The modeler :may loop 
baok to any step, based on the quantitative fit.of,the current model's autocorrelation function 
and thequat~tative fit of Monte Carlo samplepaths :to the respective empirical counterparts. 
Nevertheless, several rules of thumb have been gleaned from experimentation with various 
modeling applications in TEStool. Some important ones are summarized below. 

Effeetof thesign of a TES sequence: Experience shows that TES + models.are the most 
common choice, in practice. Consequently, the rest of the comments below address 
this case. TES- sequences should be considered, :however, when .empirical sample 
paths or autocorrelation :functions have an alternating (zigzag) appearance. 

Effect of the width of an innovation density support: The width of the innovation den- 
sity support affects the amplitude of the autocorrelation function. The larger the 
support, the smaller the amplitude. The :intuitive reason is that a larger st~pport 
permits larger distances between successive TES iterates, resulting in a reduced 
autocorrelation magnitude. 

:Effect of the location of an innovation density support:  The location of .the innovation 
density support controls the frequency of oscillation of the autocorrelation function. 
The farther the support from the origin, the higher the frequency of oscillation. This 
is more easily seen for basic TES+(a, if) sequences (see Section 3.1). When ff = 0, 
the :random walk is driftless. The autocorrelation function is monotone decreasing, 
and a spectral analysis reveals no periodicities. When ~b r 0, the random walk is 
directional, and the autocorrelation function is oscillatory. Consequently, ~ e  sample 
paths have a cyclical appearance, and the presence of periodicities can be confirmed 
by spectral analysis. 

Effect of~he stitching parameter:  The :fundamental effect of 0 < ~ < 1 is to "smooth" 
the sample paths of TES sequences, whereas for~ = 1 or (  = 0, no "smoothing" takes 
place. In cyclical TES processes, ~ can be used to skew sample'paths in accordance 
with the corresponding stitching transformation. Applying S~ for ( ~nging in [0,1 ] 
-will shift the cycle peaks in the corresponding {Sr in proportion to ~. In 
particular, So corresponds to the antithetic transformation (S0(g) = 1 - / , , ) ;  $1 
is the identity (Sl(fl) = y); and S0.5 gives rise to stitched TES + processes with 
symmetrical cycles. Recall that a stitching transformation increases the magnitude 
.of the autocorrelation function of a background sequence as ~ increases or decreases 
'towards 0.5 (see Section 3.3). This effect is strictly monotonic. It can also be 
shown that for any background TES sequence {,Un), the autocorrelation function of 
any compound distortion (2.9) has the symmetry property that the autocorrelation 
functions of {F-I(S~(U~))} and {F-I(SI_~(U,~))} are identical [7]. 

Effect ofin~cersion distortions: An inversion distortion affects the background sample 
paths through a "scaling" effect. Interestingly, it has a similar quantitative effect on the 
corresponding autocorrelation function. However, it does not affect it qualitatively, 
in the :sense that it leaves the functional form of the background autocorrelation 
function amehanged. These effects can be attributed to the monotonic nature of 
inver~on ~stortions. 
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4.2 The TEStool Modeling Support Environment 

Undirected heuristic searches for a TES model can be both time-consuming and mentally 
tedious. In the absence of an algorithmic fitting method, a human modeler requires comput- 
erized support with visual interactive facilities. Because the TEStool software environment, 
developed for this purpose, is such an integral part of the TES modeling activities, it will 
be briefly overviewed in this section. 

TEStool is a visual interactive software environment for fitting TES models to empirical 
data [6, 16]. It provides services to generate and modify TES models, and to examine their 
statistics, in the context of the heuristic search scenario outlined in Section 4.1. 

TEStool distinguishes between three types of statistics. Empirical statistics are those 
associated with the empirical data (sample paths, histogram, autocorrelation function or 
spectral density). Simulated statistics are similarly calculated (estimated) from Monte Carlo 
simulations of TES sequences. Analytical statistics consist of numerical computations of 
autocorrelation functions and spectral densities of TES models, based on analytical formulas 
developed in [8]. 

Figure 1 displays the now familiar TEStool screen comprised of four tiled subwindows 
(canvases). The upper-left subwindow contains sample paths, the upper-right subwindow 
contains histograms, the lower-left subwindow contains autocorrelation functions, and the 
lower-right subwindow contains a graphical specification of a TES model. The latter 
consists of a joint specification of a TES sign (plus or minus), stitching parameter ~, an 
innovation density fv,  and an initial value U0 for the backgroundTES sequence. An inverse 
distribution distortion can be selected from a menu, including the histogram distortion (2.4) 
constructed from the empirical histogram. A TES model can also be specified in TEStool 
in standard text mode, by filling out text fields in a form. The buttons in the top border of 
the display and at the bottom of each subwindow control various modeling services. These 
include reading and writing datasets, subdividing the screen real estate, opening a TES 
specification window or menu, performing various computations and quitting the system. 

The most important service is the visual specification of a TES model and the interactive 
computations associated with it. The advantage of a graphical specification is that it 
can be grasped intuitively; more importantly, it enables the user to interact flexibly with 
the modeling environment, significantly increasing modeling efficiency and substantially 
decreasing modeling tedium. In the visual specification mode, the user operates the mouse 
to draw non-overlapping rectangles; each rectangle represents the support and probability 
of a step, and together they define a step-function density. In the interactive mode, changes 
in model specification trigger an immediate recomputation and redisplay of model statistics. 
The modeler may then compare the new statisics to their empirical counterparts for goodness 
of fit, and decide whether the fit is satisfactory or whether another iteration is required. The 
heuristic search can then proceed efficiently, and the visual feedback has the additional 
advantage of aiding the modeler in learning from experience. Finally, since the search is 
cast in a visual-interactive mold, it can be carried out by experts and non-experts alike in 
the same way that a player of an arcade game can concentrate on the task at hand without 
having to understand the underlying software details. 

The lower-right subwindow in Figure 1 serves to clarify the advantage of dealing with 
step-function densities, from a user interface vantage point. A step-function is particularly 
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easy to specify on a compuer screen, as each step is visually represented as an ordinary 
rectangle - -  an exceptionally simple geomertical form. Contemporary computer graphics 
enable intuitive modifications of rectangles in a natural way with the aid of a mouse. It 
is a simple matter to change the size of a rectangle, by "stretching" a side or a corner. 
In a similar vein, translating a rectangle on the horizontal axis is accomplished by the 
familiar operation of "dragging" an icon. The same subwindow also clarifies the choice of 
the interval [ -0 .5 ,  0.5) as the support set for innovation densities. Any such support set 
represents the unraveling of the unit circle into a linear interval, so any interval of length 
one is an equivalent choice due to the modulo-1 arithmetic employed in the definition of 
TES sequences. However, among all such support sets, the interval [ -0 .5 ,  0.5) is most 
compatible with the intuitive interpretation of innovation variates as modulo-1 increments 
(decrements) of a TES + sequence, as explained in Sections 3.1 and 3.2. Because the origin 
represents the relative location of the current TES iterate on the unit circle, the innovation 
density-steps have an obvious interpretation: Step (Lk,/~k, Pk) simply means that the next 
increment (decrement) of the sequence is uniform on ILk, Rk) with probability Pk. 

4.3 Example: A T E S  M o d e l  of Compressed Video Traffic 

Figure 1 is reproduced from an actual workstation display screen to illustrate an example 
in which TEStool has been used to model real-world data. Here the empirical data is a 
(random) sequence of encoded (compressed) video frames [11, 19]. Video information is 
rarely transmitted over a network in its raw form. Rather, engineers take advantage of the 
considerable visual redundancy inherent in digitized pictures to compress each frame into 
a fraction of its original size. The compressed frames have random sizes (bit rates) which 
are then transported over the network and decoded at their destination. The term VBR 
(variable bit rate) video is used to refer to this kind of video traffic. The VBR video frames 
modeled in Figure 1 were generated by a video sequence from a football scene, whose raw 
frames were compressed by a variant of DCT (discrete cosine transform) [ 19]. See [ 17] for 
a review of compressed video modeling, using the TES methodology. 

Recall that the upper-left subwindow in Figure 1 displays the empirical data (bullets); 
superimposed on it is a typical sample path (diamonds), generated by a Monte Carlo 
simulation of the TES model exhibited in the lower-right subwindow. The histogram and 
autocorrelation function of the TES model are similarly plotted against their empirical 
counterparts in the upper-right and lower-left subwindows, respectively. Recall that while 
the TES model histogram was computed from the TES Monte Carlo sample path, the TES 
model autocorrelations were calculated numerically with the aid of Eq. (3.8). The lower- 
right subwindow contains a visual specification of aTES + model with a stitching parameter 

= 0.5 and a step-function density consisting of two steps. 
Observe how the modeling results in Figure 1 satisfy the modeling requirements of Sec- 

tion 1.3. Indeed, the TES model closely matches the empirical histogram and approximates 
the leading autocorrelations quite well (there is no point here in trying to approximate more 
than about 10 lags, as there are only some 210 data points in the empirical time series). 
In addition, note that the qualitative "resemblance" of the TES model sample path to the 
empirical path is remarkable. Thus, the empirical TES modeling summarized in Figure 1 
represents a successful modeling effort, by the criteria of Section 1.3. 
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5 CONCLUSION 

This paper presented a fairly comprehensive tutorial on TES models, an outline of the 
empirical TES modeling methodology, and a brief overview of the TEStool visual interactive 
softare environment, designed to support TES modeling. 

The TES modeling methodology is a novel input analysis approach which aims to 
provide more faithful models of temporally-dependent empirical time series; it strives to 
fit simultaneously both marginal distributions and the leading autocorrelations of empirical 
samples, and to imitate their qualitative character. Its primary purpose is to generate realistic 
synthetic source models to drive Monte Carlo simulations. Its approach to capturing first- 
order and second-order empirical statistics also qualifies it for "black-box" forecasting 
applications. 

Practical TES modeling currently relies on software support to carry out heuristic 
searches for adequate models. The TEStool visual interactive software was created with 
this goal in mind. Its Graphical User Interface casts the heuristic search into an intuitive 
interactive activity of modifying a visual parametric representation of a TES model in 
small incremental stages; it, further, provides visual feedback to guide the search process. 
The TEStool modeling environment has been shown to yield remarkably accurate TES 
models in a reasonable amount of time. It also alleviates the tedium of repetitive search, 
transforming the modeling process into a pleasant activity. 

Further information on TES-related topics may be found in the reference list enclosed. 
The reader is referred to [15, 7, 8, 9] for TES theory; to [11, 17, 14] for TES modeling 
applications; and to [6, 16] for the TEStool modeling environment. 
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