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1. I N T R O D U C T I O N  
Queueing theory has been developed to predict the performance characteristics of 
computer systems, production systems, communications systems, and flexible 
manufacturing systems. A queueing system consists of a number of nodes connected 
according to the topology of the system being modeled. Each node consists of a 
service facility and a queue for customers to wait when the service facility can not 
provide service to these customers. 
Queueing networks may be classified as open and closed. In an open model, customers 
arrive at the network from outside, receive service at one or more nodes, and 
eventually leave the network. In closed queueing networks, there is a fixed population 
of customers circulating in the network at all times. Both types of networks have been 
frequently used in the literature as models of complex service systems. 
Queueing networks have been studied in the literature under a multiplicity of 
assumptions. Most performance metrics of interest can be obtained from the joint 
steady state queue length distribution of the model. Almost all queueing networks of 
practical importance can, in theory, be solved numerically. However, in practice, 
obtaining the solution may not always be possible. In particular, the number of 
equations can easily reach millions, even for simple models, making it infeasible to 
solve the linear system of equations. Other two methods developed to analyze such 
networks are simulation and heuristics. Two major problems with simulations are 
determining how close the simulation results are to the exact values and how long to 
run a simulation to obtain accurate estimates. Heuristics have been developed to 
obtain the performance metrics of interest approximately when it is expensive to use 
the other methods. The main problem with heuristics is to bound the error in the 
solution. Perhaps, one of the most pioneering results in queueing networks is that 
under certain assumptions on the system parameters, it has been shown that the joint 
steady state queue length distribution of a class of queueing networks is the product of 
some particular functions of nodes. Product form networks are relatively easier to 
study and various algorithms have been developed in the literature to obtain the exact 
values of their performance metrics of interest. 
Almost all queueing networks with product form queue length distributions require 
infinite queues, that is, it is assumed that there is always a space in the queue for 
arriving customers. In real systems, the storage space is always finite. Hence, a more 
realistic model of such systems requires modeling finite node capacities. An important 
feature of queueing networks with finite queues is that the flow of customers through 
a node may be momentarily stopped when another node in the network reaches its 
capacity. That is, a phenomenon called blocking occurs. In particular, consider a 
simplistic view of a computer communications system. The individual queues 
represent the finite space which is available for intermediate storage and servers 
correspond to communication channels. A message may not be transmitted until the 
destination node has space available to store the message, thus, sometimes causing the 
blocking of communication to that node. Similarly, in production systems, 
intermediate storage areas have finite capacities. A unit completing its service at a 
station may be forced to occupy the machine until there is a space available in the 
next station. While the unit blocks the machine, it may not be possible for the 
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machine to process other units waiting in its queue. 
In addition to the problem of blocking, deadlocks may occur in queueing networks 
with finite queues.A set of  nodes is in a deadlock state when every node in the set is 
waiting for a space to become available at another node in the set. In this case, 
corresponding servers are blocked, and they can never get unblocked because the 
required space required will never be available. 
Queueing networks with blocking are difficult to solve: in general, their steady state 
queue length distributions could not be shown to have product form solutions. Hence, 
most of  the techniques that are employed to analyze these networks are in the form of 
approximations, simulation, and numerical techniques. In recent years, there has been 
a growing interest in the development of  computational methods for the analysis of  
both open and closed queueing networks with blocking. A comprehensive survey of  
the literature on open queuing networks with blocking was compiled by Perros [ 1989] 
and on closed queueing networks with blocking by Onvural [ 1989] in addition to the 
two workshops and two special issues in this area (of. Perros and Altiok [1988], 
Akyildiz and Perros [1989], and Oavural and Akyildiz [1992a] and [1992b]). 
1.1. Blocking  Mechan i sms  
The effect of  a full node on its downstream nodes depends on the type of the system 
being modeled. To model different characteristics of various real life systems with 
finite resources, various blocking mechanisms that define distinct models of blocking 
have been reported in the literature. In particular, each blocking mechanism defines 
when a node is blocked, what happens during the blocking period, and how a node 
becomes unblocked. The most commonly used blocking mechanisms are classified as 
follows: 
1.1.1. Blocked After  Service (BAS) 
A customer upon completion of its service at node i attempts to enter destination node 
j. If node j at that moment is full, the customer is forced to occupy server i until it 
enters destination node j, and node i is blocked. Node i remains blocked for this period 
of time, and server i can not serve any other customer which might be waiting in its 
queue. In queueing networks with arbitrary topologies, it is possible that a number of 
nodes may be blocked by the same node simultaneously. This necessitates imposing 
an ordering on the blocked nodes to determine which node will be unblocked first 
when a departure occurs from the blocking node. This problem has not been elaborated 
on in the literature. We are only aware of  the First-Blocked-First-Unblocked rule 
(FBFU), which states that the node which was blocked first will be unblocked first. It 
is possible that deadlocks might occur in queueing networks under BAS blocking. It 
was assumed in the literature that deadlocks in networks under BAS blockingcan be 
detected immediately and resolved by instantaneously exchanging blocked customers. 
Lemma 1 below gives the necessary and sufficient condition for a network under BAS 
blocking to be deadlock free, where a cycle in a network is defined as a directed path 
that starts and ends at the same node. 
Lemma 1- A closed queueing network with K customers under BAS blocking is 
deadlock free if  and only if  for each cycle, C, in the network K < ~, Bj, where Bj is 

i~c 
the capacity of  node j. 
Simply stated, the total number of customers in the network must be smaller than the 
sum of node capacities in each cycle. 
The BAS blocking (also referred to as type 1 blocking, manufacturing blocking, 
classical blocking, and transfer blocking) has been used to model systems such as 
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production systems and disk I/O subsystems. In particular, consider a simplistic view 
of a production system consisting of  a sequence stations. The availability of a storage 
space in the next station has no effect on the operation of a machine until it completes 
its service. Upon service completion, if there is no space available in the destination 
station then there are two possibilities: the unit which completed its service at node i 
is 1) moved back from the i-th machine to the storage area of machine i (i.e. its queue) 
allowing a unit to enter service, or 2) allowed to occupy the machine, blocking the 
operation for other units waiting in the storage space (i.e. BAS blocking). In most 
cases, it may not be possible to move the unit from the machine back to the storage 
area due to the physical constraints of  the unit, the system, or both. Hence, the 
operation of the machine is blocked until there is a space available at the destination 
station. An exception to this is considered in Mitra and Mitrani [1988] where a 
blocked customer is moved back to its queue in the context of  open networks to model 
the Japanese Kenban scheme, used for cell coordination in production lines. 
1.1.2. Blocked Before  Service (BBS) 
A customer at node i declares its destination node j before it starts receiving its 
service. If node j is full, the i-th node becomes blocked. When a departure occurs from 
the destination node j, node i is unblocked and its server starts serving the customer. If 
the destination node j becomes full during the service of a customer at node i, then the 
service is interrupted and node i is blocked. The service is resumed from the 
interruption point as soon as a space becomes available at the destination node. 
Depending upon whether the customer is allowed to occupy the service area when the 
server is blocked, the following sub-categories are distinguished. 
BBS-SNO (Server is Not Occupied): Service facility of  a blocked node can not be 
used to hold a customer. 
BBS-SO (Server is Occupied): Service facility of  a blocked node is used to hold a 
customer. 
In BBS blocking mechanism, a full node j blocks all nodes i that are connected to it 
(i.e. Pij>0). When a departure occurs from node j, all blocked nodes become unblocked 

simultaneously and start serving their customers. Hence, there is no need to impose 
any ordering on the blocked nodes, unlike BAS blocking. 
The BBS blocking mechanism (also called type 2 blocking, immediate blocking, 
service blocking, communications blocking) is motivated by considering servers 
which only move customers between stations and do no other work on them. In this 
case, the lack of downstream space must force the server to shut down. 
The distinction between BBS-SO and BBS-SNO blocking mechanisms is meaningful 
when modeling different types of systems. For example, in communication networks, 
a server correspond to a communication channel. If  there is no space in the 
downstream node then messages can not be transmitted. Furthermore, the channel 
itself can not be used to store messages due to physical constraints of  the channel, i.e. 
BBS-SNO blocking. On the other hand BBS-SO blocking results if the service facility 
can be used to hold the blocked customer which, in this case, would be an 
approximate modeling of the system. 
BBS-SO blocking has been used to model manufacturing systems, terminal 
concentrators, mass storage systems, disk to tape back up systems, window flow 
control mechanisms, and communication systems. Modeling these systems with BBS- 
SO blocking assumes that when its destination buffer is full the device is forced to 
stop its operation and the service facility can be used to hold a customer. A disk to 
tape back up model illustrated in figure 1 comprised of  three servers, and two finite 
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buffers between servers. The first server is the disk and channel which transfers blocks 
of data from from the disk to the main memory. The second server, the Central 
Processing Unit (CPU), transfer data from the main memory to the tape drive. The 
last server represents the tape drive. One of the performance objectives of interest is 
the tape back up rate (i.e. the throughput of the system). Blocking occurs due to finite 
spaces available for intermediate storage. 

Figure 1: Disk to Tape Backup System 
A simple terminal concentrator consists of a number of terminals, a concentrator, and 
a channel to transfer data to the main memory. The system configuration is the same 
as the disk to tape backup system illustrated above in figure 1 with the concentrator, 
the channel and the CPU replacing the disk, the CPU and the tape respectively. The 
two buffers in this terminal concentrator system have finite capacities which cause 
blocking of respective nodes. We note that the above examples are only sub-systems 
of larger configurations of computer systems, used only to illustrate the possibility of 
blocking due to finite storage capacities between the devices of such systems. 
Queueing networks under BBS blocking are not always well defined for arbitrary 
topologies with an arbitrary number of customers in the network. This is because 
deadlocks in this blocking mechanism can not be resolved without violating its rules. 
As an example, let us assume that node i is blocked by nodej and nodej is blocked by 
node i. Then, the services at both nodes are suspended. Furthermore, the service can 
not start unless the blocking mechanism is temporarily switched to, for example, 
BAS blocking. In view of this, this blocking mechanism can only be used in deadlock 
free networks. Similar to lemma 1, it can be shown that a closed queueing network 
with BBS blocking is deadlock free if and only if for each cycle C in the network, i) 

K< ~ {Bj-1} in BBS-SNO blocking, and ii) K< ~ Bj in BBS-SO blocking. That is, 

jcc jcc 
a closed network under BBS-SO blocking is deadlock free if the number of customers 
in the network is less than the sum of node capacities in each cycle in the network, 
while in BBS-SNO, a network is deadlock free if the number of customers in the 
network is less than the sum of queue capacities (node capacity minus one for the 
server facility) in each cycle. 
1.1.3. Repetitive Service (RS) 
A customer upon service completion at node i attempts to join destination node j. If 
node j at that moment is full, the customer receives another service at node i. This is 
repeated until the customer completes a service at node i at a moment that the 
destination node is not full. Within this category of blocking mechanisms, the 
following two sub-categories are distinguished: 
RS-FD (Fixed Destination): Once the customer's destination is determined it can not 
be altered. 
RS-RD (Random Destination): A destination node is chosen at each service 
completion independently of the destination node chosen the previous time. 
Similar to BBS-SO blocking, a network under RS-FD blocking is deadlock free if and 
only if K< ~ Bj for each cycle in the network, i.e. the number of customers in the 

jcC 
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network is less than the capacity of each cycle in the network. On the other hand, it 
can be shown that a network under RS-RD blocking is deadlock free if there is a path 
from every node to every other node in the network and, in case of closed networks, if 
there is at least one free space in the network, i.e. not for each cycle. This is because 
the existence of a free space in the network guarantees that all blocked customers will 
eventually depart, unblocking their servers. 
The RS blocking (also called rejection blocking and type 3 blocking) arise in 
modeling telecommunication systems and it is mostly associated with reversible 
queueing networks. In particular, let us consider a packet switching network with fixed 
routing. The number of packets in the network is controlled by a window flow 
mechanism. A node transmits a packet to a destination node and waits for an 
acknowledgement. If the destination node does not accept the packet due to the fact 
that there is a lack of space, it will not send an acknowledgement. In this case, the 
packet may be retransmitted (RS-FD blocking) until it is accepted by the destination 
node (i.e.tmtil an acknowledgement is received by the sender). Similarly, consider a 
manufacturing system consisting of a network of automated work stations (WS) 
linked by a computer controlled material handling device (MHD) to transport work- 
pieces that are to be processed from one station to another as illustrated in figure 2. 

MHD' Material Handling Deviee 
WS-i: ith work station J 

Figure 2: A Queueing Model of  a Flexible Manufacturing System 
In these systems, if a work-piece finds the next station full, then it has to wait for the 
next turn of the MHD. At the next turn, there are two possibilities: i) the work-piece 
can only be processed by one station, therefore, the next attempt can only be made to 
the previously chosen station (i.e. RS-FD blocking), or ii) the unit may be processed 
by all stations, hence, the next station is chosen independent of the previous choice(s) 
(i.e. RS-RD blocking). If the service time of the MHD is assumed to be exponentially 
distributed, the RS-RD blocking is equivalent to the following: The work-piece 
attempts to enter station 1, if station 1 is full, then it tries station 2, and so on, until 
a space is found in one of the stations. 
1.2. Equivalencies  of Blocking Mechanisms 
Comparisons between these distinct types of blocking mechanisms have been carried 
out to obtain an equivalence between different blocking mechanisms applied to the 
same network. Two blocking mechanisms are said to be equivalent if the network 
under consideration has the same rate matrix under the both types of  blocking 
mechanisms. We note that, all of the equivalences obtained in the literature assume 
that the service times are exponentially distributed. Furthermore, these equivalences 
are most often true only for specific topologies: cyclic networks and the central server 
model shown in figure 3 (Onvural (1987) and Balsamo, et al. (1986)). 
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Figure 3: Cyclic Network and the Central Server Model 
In the following two tables, the notation A - B is used to denote that blocking 
mechanism A is equivalent to blocking mechanism B. 

T o p o l o g y  E q  u i v a l e n c i e s  

Arbitrary BBS-SO -- R S - F D  

BBS-SO = BBS-SNO f o r  K<min{Bi+Bj," i j = l  ..... N s,t. 

Pij>Ol' l  

Cyclic RS-FD - RS-  RD 

BBS-SNO with B i =- BAS with B i -1, i=1 ..... N 

Central Server BBS-SO - BBS-SNO i f  Bl=OO 

BBS-SO =-BBS-SNO i f B  i = % i=2,...,N 

RS-FD - RS-RD i f  B i = % i=2,... ,N 

Two node cyclic BBS-SNO - BBS-SO - RS-FD =- RS-RD 

BBS-SNO with B 1 and B 2 =- BAS with B 1 -1 and B e -1 

Table 1: Equivalencies of blocking mechanisms in closed networks 
Similarly, equivalencies between different blocking mechanisms in open networks 
with finite capacity queues are given in table 2 for tandem, split, and merge 
configurations illustrated respectively in figure 4. 

Tandem network 

Split configuration Merge configuration 
Figure 4:Tandem, Split and Merge Configurations 
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T o p o l o g y  
Arbitrary 

Tandem 

E q u i v a l e n c i e s  

BBS-SO - RS-FD 

B B S - S O  =- RS-FD  =-RS-RD 

BAS with B i - BBS-SNO with B i +1, i = ]  .... N 

Split BBS-SO =- BBS-SNO = RS-FD i f  B~--~ 

Merge 

Two node tandem 

RS-RD - RS-FD 

BBS-SNO -- BBS-SO - RS-RD - RS-FD i f  B i = ~,  i= l ..... N 

BBS-SNO =-- BBS-SO =- RS-FD - RS-RD 

BBS-SNO with B 1 = ~ and B 2 - BAS with B 1 = oo and B 2 -1 

Table 2: Equivalencies of blocking mechanisms in open networks 

2. EXACT RESULTS 
In special cases, networks with finite capacities are shown tO have product form 
solutions. Furthermore, various exact results are obtained on the behavior o f  various 
performance measures of interest. These results are reviewed next. 
2.1. Closed Networks  
In this section, we present various exact results obtained in the literature for closed 
queneing networks with blocking. 
2.1.1. Revers ib le  Ne tworks  
A stochastic process X(t) defined on the state space S is reversible i f  

{X(tl) ..... X(tn) } has the same distribution as {X(t0-tt) ..... X(to-tn) } for all to, t I ..... t n 

s All results in this sub-section can be explained as a consequence of  the following 
lemma given in Kelly [1979]. 
Lemma 2." Consider a reversible Markov process with state space S and equilibrium 
distribution 7r(j). I f  S is truncated to a sub-space A, then the Markov process is still 

reversible in equilibrium and it has distribution rfo)l ~ ~(k), k E A. 
kEA 

A Markov process T(t) is called a truncated process of  X(t) if it is irreducible and 
the state space of T(t) is a subset of the state space of X(t), i.e. the states of T(t) is a 
subset of X(t), and the transitions between the states ofT(t)  are the same as they are in 
x(o .  
The routing in a network is reversible i f  the following condition holds for 
each subchain: 

eirPir;js=ejsPjs;ir for all ij,r,s 
Two examples of  reversible networks are the two-node cyclic networks and the central 
server model with BCMP type nodes. 
Lemma 3." A two-node cyclic network with node capacities Bi, i=1,2, BCMP type 

nodes and multiple classes o f  jobs has a product form equilibrium distribution under 
BAS, BBS-SO, BBS-SNO, RS-RD, and RS-FD blocking. 
In the cases of  BBS-SO, RS-RD, or RS-FD blocking, we have the following lemma, 
Lemma 4: A closed queueing network under RS-RD blocking with node capacities 
B i, multiple classes o f  jobs, BCMP type nodes, and state space A is a truncated 

process o f  the same network with infinite buffer capacities in which no more than B i 



418 

jobs are allowed at node i. Furthermore, i f  the underlined Markov process of  the 
network with infinite buffer capacities is reversible then the blocking network has a 
product form equilibrium distribution. 
A closed queueing network under BAS blocking has a product form equilibrium 
distribution if the number of jobs in the network is equal to the minimum buffer 
capacity plus one. If  this condition is met, then there can be at most one node in the 
network blocked at any time, and, the blocked node has exactly one job, i.e. the 
server's operation is not blocked. In this case, the server of a blocked node behaves 
like an additional buffer capacity to the blocking node. 
Lemma 5: Consider a multi-class closed queueing network under BAS blocking. I f  
R 

~ K r = min{B i, i=l,...,N}+l then the network has a product form equilibrium 

i=l 
distribution. 

2.1.2. Self Dual Networks 
Closed queueing networks under BBS-SO blocking were first studied by Gordon and 
NeweU [1967] in the context of cyclic networks. The service time at each node is 
assumed to be exponentially distributed. First, we will discuss the concept of holes 
as introduced by Gordon and Newell. Since the capacity of node j is Bj, let us imagine 

that this node consists of Bj cells. If there are ij customers at node j, then ij of these 

cells are occupied and Bj- ij cells are empty. We may say that these empty cells are 
N 

occupied by holes. Then, the total number of holes in the network is equal to ~ Bj- 

j=l 
K. As the customers move sequentially through the cyclic network, the holes execute 
a counter sequential motion since each movement of a customer from the j-th node to 
the (j+l)st node corresponds to the movement of a hole in the opposite direction (i.e. 
from the j+ls t  node to the j-th node). It is then shown that these two systems are 
duals. That is, if a customer (hole) at node j is blocked in one system then node j+l  
has no holes (customers) in its dual. Let (Bi,~ti) be the capacity and the service rate of 

node i and { (B1,/.tl), (B2,P2) ..... (BN,~tN) } be a cyclic network with K customers. 
N 

Then, its dual is { (BI,ta N, (BN,IaN_I) ..... (B2,~tl) } with ~jBj-K customers. Let, 
j=l 

p(_n) and pD(_n) be the steady state queue length probabilities of a cyclic network and its 
dual, respectively, where _n=(i 1,i 2 ..... iN) is the state of the network with ij being the 

number of customers at node j. Then, for all feasible states, we have: 

P(il,i2,...,iN) = pD(Bl-il, BN-i N ..... B2-i 2) 
We note that, if the number of customers in the network is such that no node can be 
empty, then the dual network is a non-blocking network (i.e. the number of holes is 
less than or equal to the minimum node capacity) and it has a product form queue 
length distribution. But then, from the concept of duality, the original network has a 
product form queue length distribution. Hence, we have the following lemma: 
Lemma 6: Consider a cyclic network under BBS-SO blocking. The service time at 
each node is assumed to be exponentially distributed. The network has a product form 
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based on the following three conjectures: 
Conjecture 1" The throughput o f  a closed queueing network with finite node 
capacities is less than or equal to the throughput o f  the same network with infinite 
node capacities, i.e. ~K)<fl(K); K=I ..... M 
Conjecture 2: Probability that a node is empty does not increase as the number o f  

customers in the network increases, i.e. p~(O)>" "p~ + 1(0), K=I,...,M-1, where pSi(O ) is 

the probability that node i is empty when there are J customers in the network. 
Coniecture 3: Probability that a node is blocked does not decrease as the number o f  

customers in the network increases, i.e. p~+l -- K=I ..... M-l,  where p~(b)- is 

the probability that node i is blocked when there are J customers in the network. 
Lemma 11: Consider a closed exponential queueing network under BAS blocking, 

N 
and let M = ~  B i, n=min{B i, i=1 ..... N}, and ~*={h(K), K=I ..... M}. For a moment, 

i=1 
assume that the network has infinite queue capacities and let [3(10 be its throughput 

when there are K customers in it. Then: 8(n+ l)<~*<_8(M-min{B i, i=l,...,N}+ l). 

Now, let K* be such that Z*=~(K*). Then: 

max \ (m in  {Bj such that Pij~O j=l . . .N}  i=l...N]<_K* <M-min{Bi, i=1 .... N} + I 
. I  

Next, we present some equivalencies between closed queueing networks with respect 
to the buffer capacities and the number of jobs in the network. Two networks are said 
to be equivalent if they have the same steady state queue length distribution. 
Under certain restrictions, the steady state queue length distribution of a closed 
queueing network under BAS or BBS-SO blocking is identical for a range of values of 
K. Consider a closed queueing network with exponential servers. If there is a node m 

N 
with B m > y  Bi-Bm, i.e. the buffer capacity of node m is greater than the remaining 

i=l 
capacity of the network, then the following lemma presents a sufficient condition for 
the network to have the queue length distribution for a range of values of K. 

Lemma 12- Consider an exponential closed queueing network with node capacities 
N 

B i. Let Bm=max{Bi, i=I ..... N}. I f B m > ~ B i - B  m then the network has the same 

i=1 
steady state queue length distribution for  all KES, where 

N N 
i) S={L: ~Bi-Bm+l<_ L <B m } in BAS blocking, and, ii) S={L: y Bi-B m <_ L 

i 

i=1 i=1 
<B m } in BBS-SO blocking. 

Furthermore, a closed network under BAS blocking with K=B m +1 jobs has the same 
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queue length distribution if 
N 

K>_~,d Bi - min{Bj, j=I,...,N}. 
i=1 

2.1.3. Other  Resul ts  
Let Zi(K ) and ~K) be respectively the throughput of node i and the throughput of the 

network when there are K customers in the network. By definition, Zi(K)= { 1-P~(0)- 

pK(b)}~t i ,where ~a i is the service rate, pK(0)and pK(b)are the probabilities that node 

i is empty and blocked respectively given that there are K customers in the network. 
Shanthikumar and Yao [1989] considered exponential cyclic queueiug networks under 
BBS-SO blocking and they identified the conditions under which the performance 
measures are monotone in service rate, node capacity, and population size. Let ~ti(k ) 

be the load dependent service rate at station i. Furthermore, let B=(B 1 ..... BN) and 

~=(ta 1 (k) ..... ~aN(k)) be the vector of node capacities and service rates respectively. The 

main properties obtained by Shanthikumar and Yao are given as follows: 

Lemma 7: Consider a cyclic network under BBS-SO blocking with two sets of 

servicerates, ta~(k), [12(n). l f  ~t~(k)>-la2(n), k2n, i=l ..... N, then 

Throughput(~l,B, K) > Throughput(~2,B, K) 
Lemma 8: Consider a cyclic network under BBS-SO blocking with two sets of 
buffer capacities, B 1, B 2 and assume that ~i(k) is increasing in k for each i, i=l,...,N. 

If  BI>_B 2 then 
Throughput(~l, B1,K)> Throughput(~,B2,K) 

Lemma 9: Let B*=max{B i, i=1 ..... N}. Then, for O<K<B*, 
Throughput(~B,K + 1)> Throughput(~,~K) 

Lemma 9 states that throughput is non-decreasing with respect to the number of 
customers as long as the number of customers is less than the maximum node 
capacity in the network. Similarly, lemmas 7 and 8 illustrate the monotonicity of the 
throughput with respect to service rates and node capacities, respectively. In particular, 
lemma 7 states that the throughput of the network does not decrease if  the service rate 
of a node (or a group of nodes) increases. Similarly, lemma 8 states that the 
throughput of the network is non-decreasing as the buffer capacity of  a node (or a 
group of nodes) increases. 
The following lemma is a consequence of self-duality in cyclic networks conjectured 
by Persone and Grillo [1987] and Onvural [1987]. 
Lemma 10: An exponential cyclic network under BBS-SO blocking has the same 

N 
throughput with K and ~ .  B fK customers in it. 

j=l 
Lemma 11 below provides bounds on the maximum throughput and the number of 
customers, K*, that produces the maximum throughput (Onvural [1987]), which is 
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blocking another node are aggregated into one state. 
We note that a closed network with exactly one node with an infinite capacity is a 
special case that satisfies this condition. 
Now, consider a closed queueing network under BAS blocking with K jobs such that 
the node with the maximum buffer capacity can not be empty. Then, the following 
lemma illustrates that if the buffer capacity of this node and the number of jobs in the 
network are increased by the same amount, then both networks have the same steady 
state queue length distribution. 
Lemma 13, Consider an exponential closed queueing network under BAS blocking 
(CQN-1) and let node m has the maximum buffer capacity, i.e. Bm=max{Bj," 

j= l  ..... N}. Also, consider another network with the same parameters as the CQN-I 

except that the buffer capacity of  node m is increased to B m (CQN-2). Furthermore, 

assume that the number of  jobs in CQN-1 be such that no node can be empty, i.e. 
N 

K> y Bi-Bm + l. Then, CQN-1 with K jobs have the same steady state queue length 

i=1 

distribution as CQN-2 with K*=K + B m- B m jobs. 

The concept of duality as introduced by Gordon and NeweU does not provide a product 
form solution for closed queueing networks under BAS blocking, as these networks 
could not be shown to have self-dual configurations. However, the following 
corollary, which is a special case of lemma 12, illustrates that two networks under 
BAS blocking has the same steady state queue length distribution if  they have the 
same dtml network. 
Corollary 1: Consider a CQN-1 under BAS blocking with K 1 jobs and buffer 

capacities B i. Also consider a CQN-2 identical to CQN-1 but with K 2 jobs and buffer 

capacities C i. I f  K 1 and K 2 are such that no node can be empty, then the two 

networks have the same steady state queue length distribution i f  they have the same 
N N 

number of  holes, i.e. ~ Bi-K 1 = ~ C i-K 2 . 

i=l i=l 
Let us now consider a deadlock free open queueing networks with multiple arrival streams 
and exponentially distributed service times, and, let A be the set of nodes in which 
arrivals occur. For each node ieA, the interarrival times are assumed to be distributed 
exponentially with rate I i. To find its equivalent closed queueing network, we will add a 

:g :g 

node (node 0) to this network with parameters B0=oo, ~O=)~=~Xi, and P0i=Zi /9~, leA. 

lea 
N 

The total number of customers, K, in the CQN-B is set to be equal to ~ B i. Departures 

i=l 
in the open network are routed back to node 0 in the closed network. Furthermore, let 
node 0 in the closed network be subject to RS-RD blocking independent of the blocking 
mechanism used in the open network. Hence, we might have two different blocking 
mechanisms in the equivalent CQN-B. Then, we have: 
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Lemma 14- Consider a deadlock free open network under type i blocking, i=BAS, 
BBS, RS, and consider a closed network constructed as above. Node 0 is subject to 
RS-RD blocking while all other nodes are subject to type i blocking, same as in the 

N 
open network. Let K= y B i. Then, the two network.v have the same rate matrix. 

i=1 
For other types of equivalencies between open and closed networks, i.e. with single 
arrival streams and multiple classes of customers, an interested reader may refer to 
Onvural and Perros [1988]. 
The throughput of cyclic networks under BAS blocking with number of customers 
being equal to the capacity of  the network can be calculated efficiently using the 
following lemma. 
Lemma 15: Consider an exponential cyclic network under BAS blocking with node 
capacities B i and K customers, l f  K=M then the throughput o f  the network is equal to 

1/E[max(X1,X2,...,XN) ] where X i is the service time at node i. Furthermore, 

assuming Xi's are distributed exponentially with rate ta i ,we have: 

O 0  

E[max(Xl,X 2 ..... XN) l = (1- (1-e-~it)) dt. 

0 

For presentatiofl purposes, let us consider a cyclic network with N=3, K=3, and Bi=l, 

i=1,2,3. Let X i be the service time at node i and without loss of generality assume 

that XI_<X2___X 3. Furthermore, assume that at t--0 all servers are busy working. Then, 

at t=X 3, all three servers will become blocked and a deadlock will occur. If we assume 

that deadlocks are detected immediately and resolved by instantaneously exchanging the 
blocked customers then at t=X 3, customer at node 1 will go to node 2, customer at 

node 2 will go to node 3, and customer at node 3 will go to node 1. At this point in 
time, all servers will start a new service. The points at which all three servers start a 
new service are the renewal points and the throughput of  the cyclic network is 
l/(expected time between arrivals) by definition. 
2.1.4. S y m m e t r i c  Ne tworks  
In this section, we discuss the concept of indistinguishable nodes as introduced by 
Onvural [1987] and Persone and Grillo [1987] in symmetric cyclic networks, When 
applicable, this notion allows the solution of the rate matrix of  such networks on a 
reduced state space. It can be used as an efficient method to validate approximations as 
well as to study systems with symmetric parameters. 
Consider an exponential cyclic network under BAS blocking with parameters Bi=B 

and ~ti=/a, i=l ..... N. The algorithm presented next utilizes an aggregate state space 

obtained from the original state space after it is reduced by a factor of  N. Consider 
this cyclic network under BAS blocking with B=2, K=4, and N=3. The state space of  
this network has the following structure with all transition rates being equal to ~t. 
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Figure 5: Transition rate diagram of a symmetric cyclic network under 
BAS blocking 

with (nl,n2,n3) denoting the state of the network and ni=B+ 1 (=3) denoting that node 

i is blocking preceding node. Let us define the following classes, where a state is a 
member of a class if that state has the same steady state probability as all the other 
states in the same class. 

$1= { (2,2,0),(0,2,2),(2,0,2) } 

$2= { (2,3,0),(0,2,3),(3,0,2) } 

$3= { (2,1,1),(1,2,1),(1,1,2) } 
$4= { (3,1,1),(1,3,1),(1,1,3) } 

Then, we have the following state space structure for these equivalence classes with all 
transition rates being equal to I~. 

J -  
Figure 6" The transition rate diagram of the aggregated network 

Then it can be shown that the respective steady state queue length distributions have 

the following relationship: P(Si)= ~P( i l , i 2 , i 3 ) ,  i=l . . . . .  4. Algorithm 1 

(i 1 ,i2,i3)ES i 
summarizes the procedure to solve symmetric networks efficiently. 
Algor i thm 1: 
S1. Generate the equivalence classes S i, and set up the rate matrix. 

$2. Solve the system numerically to obtain P(Si). 
$3. Calculate the normalizing constant G K for the original network as follows: 

S 
GK = ~ R i P ( S i )  

1=1 



424 

where S is the number of equivalence classes and R i is the number of states in the 

equivalence class i. 
-1 

$4. P(il,i2,...iN) = G K P(Si). 

Finally, we note that although the concept of indistinguishable nodes is discussed in 
cyclic networks under BAS blocking, it is also applicable to other blocking 
mechanisms defined in section 2 in cyclic exponential cyclic networks, and the central 
server model. 
2.2. Open Networks  
Unlike closed networks, open networks with blocking possess exact solutions in only 
a few special cases. Consider a tandem network with constant service times under BAS 
blocking. Arrivals occur only at the first node which has an infinite capacity. 
Interarrival times are assumed to be arbitrary. Then, we have (of. Avi-Itzhak [1965]): 
Lemma 16: i) The time spent in the system is independent o f  the order o f  the nodes 
and the capacity o f  nodes with finite capacities, and ii) the total time a customer 
spends in the network is the same us the same customer would spent waiting in a 
single server queue with a constant service time equal to the largest service time at the 
network, assuming that the service process in the equivalent single queue is the same 
as it is at the network. 
Other than this result for tandem networks, the only other exact results in the 
literature, to the best of our knowledge, are reported in case of two node networks. A 
survey of two node open networks is given in Perros [1988]. In the following, the 

arrivals are assumed to occur at node 1 in a Poisson manner (with rate 20 which has an 
infinite capacity. The service times at each node is distributed exponentially with 
corresponding rates gl and P2" 

Konheim and Reiser [1976] obtained closed form expression for two node open 
networks under BBS blocking mechanisms assuming that a customer departing from 
the second server may be fed back to the first node. 
Two limiting cases were investigated in Foster and Perros [1980], Konheim and 
Reiser [1976] and Hatcher [1969]. In the first case, it is shown that as lal-->oo , the 

two node system is reduced to an M/M/1 queue with arrival rate 1 and service rate g2" 

In the second case, it is assumed that the first node is saturated, an assumption often 
considered in production systems. In order for the first node to be saturated, its service 
rate should satisfy the condition tal<_ BO, where P0 is the critical service rate at which 

the first queue becomes unstable, gO is obtained numerically. Once ta 0 is known, the 

second queue is an M/M/I/B+I queue with arrival rate P0 and service rate la 2, where B 

is the capacity of node 2. 
Asare [1978] considered two node networks trader processor sharing discipline, where 
customers cycle between two nodes infinitely quickly receiving an infitestimal amount 
of service at each server and showed that the queue length distribution of this system 
has a closed form solution. 

3.  A P P R O X I M A T I O N S  
As discussed in section 2, queueing networks with blocking do not, in general, have 
product or closed form solutions that can be used to solve such networks efficiently. 
Furthermore, numerical techniques are often restricted to small configurations, 
limiting their applicability. Hence, approximations are often used to investigate the 
performance characteristics of queueing networks with blocking. 
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3.1. Closed Queueing Networks 
Akyildiz [1988a,b] developed approximation algorithms for the throughput of closed 
queueing networks with exponential and general service times. He approximates the 
throughput assuming that the throughput of a blocking network is approximately the 
same as an equivalent non-blocking network with product form queue length 
distribution. The equivalent network with infinite queue capacities has the same 
parameters as the blocking network except K. The number of customers in the non- 
blocking network is chosen such that the number of states of the blocking network is 
as close to the number of states of the non-blocking network as possible. The only 
assumption in the algorithm is that the network under consideration should be 
deadlock flee. 
Onvural and Perros [1989b] developed an approximation algorithm to calculate the 
throughput of large closed exponential queueing networks with finite queues. The 
algorithm approximately determines the number of customers such that the 
throughput of the network is maximum and fits a curve that passes through a number 
of known points to estimate the unknown throughput values as the number of 
customers in the network varies. 
Perros, Nilsson, and Liu [1989] developed a numerical procedure for the approximate 
analysis of closed queueing networks in which some of the queues have finite 
capacities. 
Suri and Diehl [1986] introduced the concept of variable buffer size and used it 
together with the flow equivalent approximations to approximate the throughput of 
cyclic networks with at least one node with an infinite capacity. The service time at 
each node is assumed to be exponentially distributed with rate gti, i=l,...,N. 

Yao and Buzacott [1985] reported an approximation algorithm for analyzing closed 
queueing networks under RD-RS blocking. They considered networks of queues with 
each queue being served by multiple servers. Service times are assumed to follow 
arbitrary Coxian distributions. The topology of the network is such that if each 
service distribution is approximated by an exponential distribution with the same 
mean as the Coxian server, then the resulting exponential network is reversible and 
has a product form queue length distribution. The approximation is based on the 
notion of exponentialization. 
Kouvatsos and Xenios [1989] used the principle of maximum entropy to fred an 
approximate product form queue length distribution for closed queueing networks 
under RS-RD blocking. The algorithm requires the solution of non-linear equations 
using the principle of maximum entropy. An interested reader may refer to Kouvatsos 
[1983] for a detailed description of the maximum entropy principle. The procedure is 
based on decomposing the network into individual nodes and analyzing them in 
isolation with each node being studied as a GE/GE/I/B/FCFS queue, i.e. with 
generalized exponential arrival and service distributions. The service distribution at 
each queue is revised to accommodate the delays a customer might undergo due to 
blocking. 
Dallery and Frein [1989] developed an approximation algorithm for the analysis of 
cyclic networks under BAS blocking in which there is at least one node with an 
infinite capacity. The approach is similar to the ones developed in the literature for 
open queueing networks with blocking. The algorithm decomposes the network into 
individual nodes with revised capacities, revised service rates, and revised arrival rates. 
The service and the interarrival times at each node in isolation are assumed to be 
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exponentially distributed. The corresponding rates are determined iteratively assuming 
at each step that the network throughput is known. The algorithm was proven to be 
convergent. It produces both the throughput of  the network and the mean queue 
lengths. Frein and Dallery [1989] extended this algorithm to cyclic networks under 
BBS-SO blocking. 
We now discuss how a closed queueing network with blocking can be decomposed 
into individual nodes so that the marginal queue length probabilities obtained with 
these nodes analyzed in isolation are exact, i.e. the same as they are obtained from the 
joint steady state queue length distribution. Consider a cyclic network under BBS-SO 
blocking with N nodes, buffer capacities B i, exponentially distributed service times, 

and K customers in it. Let _n={nl,...,nN} denote the state of  this network, where n i is 

the number of customers at node i and P(n_n_) be the steady state queue length 
N 

distribution of the network. We have 0<ni<B i and E n i = K ,  i=l ..... N. Let us now 

i=l 
partition the state space of the network into disjoint sets, Si(j), with respect to the 

number of  customers, j, at node i. That is: 
Si(j) = {_nlni= j }, j=O ..... B i 

Then, the behavior of node i in isolation can be readily obtained from the global 
balance equations by summing them over the sets Si(j), j=0,...,B i. 

For presentation purposes, consider a four node cyclic network with parameters Bi=2, 
i=1,2,3,4 and K=5. The global balance equations for the set SI(O ) are given as 

follows: 
~t 4 P(0,1,2,2) = la 1 P(1,0,2,2) +/32 P(0,2,1,2) 

(/32+/34) P(0,2,1,2)=/31 P(1,1,1,2) + ~t 3 P(0,2,2,1) 

(/33+~4) P(0,2,2,1)=/31 P(1,1,2,1) 
Summing these equations side by side and canceling common terms, we have: 

/34 PI(O) =/al  { PI(1) - P(11,22) }, 
where P{ki,nj} is the joint probability of  having k and n customers at nodes i and j, 

respectively, and, Pi(k) is the marginal probability of having k customers at node i. 

Similarly, for the other two sets Sl(k ), k=l,2 we have: 

/34 { Pl(1) - P{ll,04} } +/-11 { PI( 1)- P{11,22} } = 

/34 PI(O) +/31 { Pl(2) - P{21,22}} 

/31 { P1(2) " P{21,22}} =/34 { PI(1) - P{II,04} } 
These equations can equivalently be written as: 

•4 PI(O) =/31 { 1 - P(11,22) t PI(1) } PI(1) 

~4 { 1 - P(11,04) / PI(1)} PI(1) = Vl {1 - P(21,22) / Pl(2)} Pl(2) 
In this example, we observe that node 1 in isolation behaves like an M/M/lIB i queue 
with state dependent arrival and service rates, which is generalized in the following 
lemma. 
Lemma 17: Consider a deadlock free cyclic network under BBS-SO blocking with 
parameters Bi, K, Vi, and Pij," i j = l  ..... N. The service times are distributed 

exponentially. Then, the state dependent arrival, ~iO'), and service rates, V iO'), of  a node 
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in isolation is given in terms of the joint steady state probabilities of the original 
network as foUows: 

hi(J) =~ti-l{l"P(Ok,]i) / Pi(J) }, j=O,...,Bi-1; i=1 ..... N 
tai(1) = Iai {1- PO'i,Bk)) /Pi(J) }, j=l ..... B i 

Furthermore, the marginal queue length probabilities of node i is obtained from the 
following set of equations: 

)ki(J') Pi(J) = Pi(J +1) Pi(J+ l),j=O,...,Bi-1; 
Bi 

and ~ Pi~)=l. 
j=v 

This result is rather surprising as a node of a closed queueing network under BBS-SO 
blocking in isolation behaves like an M/M/lIB queue. In particular, although the 
departure rate from a node of a blocking network is not Poisson, the above rate 

equations are the same rate equations of a )~i(j)tPiCl)/llBi queue with state dependent 

Poisson arrivals and exponential service time distributions. 
Although it is more involved than above construction, similar approach can be used to 
obtain the behavior of  nodes in isolation in networks under BAS blocking. The 
decomposition approach for this type of blocking is discussed in the context of  open 
networks. 
Approximations developed for closed queueing networks in the literature are either 
based on some empirical observations or applications of approximations developed for 
open networks with blocking. Unlike open networks, the use of  decomposition 
technique to approximately analyze closed networks is not a trivial task. In particular, 
in the simplest case, given the state of  a node in isolation, i.e. the number of  
customers, the server may not be subject to blocking in closed networks depending on 
the total number of customers in the network whereas knowing the state of a node in 
isolation does not provide much information on the number of customers in other 
nodes of  an open network. Hence, the state dependent arrival and service rates resulted 
by the exact decomposition appears to depend more strongly in closed networks on the 
number of  customers at the node in isolation than they are in open networks, 
complicating the process. 
3.2. Open Queueing Networks  
Most approximations developed in the literature to analyze open queueing networks 
with blocking are based on decomposing the network into individual nodes and 
analyzing each node in isolation. In order to analyze a node in isolation, it is necessary 
to determine its arrival and service processes as well as its capacity. 
In particular, consider a network under BAS blocking and let C be the capacity of a 
node with original capacity B in isolation. Furthermore, let the arrivals finding C 
customers at the node in isolation are assumed to be lost. In this case, if node i is 
blocked by node j, then the blocked customer is in fact can be viewed as a part of node 
j, i.e. joined queue j. This is because, when a departure occurs from node j then one of 
the blocked customers immediately joins node j. Hence, in general, C is equal to B 
plus the number of upstream servers connected directly to the node. However, if  the 
node in isolation is analyzed with an arrival process which is subject to blocking then 
C=B. In this case, upon its attempt to enter the node, if the arriving customer finds B 
customers already in the queue then the arrival process is suspended. When a space 
becomes available, the blocked arriving customer joins the queue unblocking the 
arrival process. 
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In other types of blocking mechanisms, the blocked customer can not be viewed as 
part of  its destination node as the blocked customer would be currently receiving 
service at its original node at a time a space becomes available at its destination. 
Hence, we have C=B in BBS and RS blocking mechanisms. 
For presentation purposes, let us consider a tandem network under BAS blocking with 
N nodes, buffer capacities Bi, and exponentially distributed service times with 

corresponding rates/a i. Arrivals are assumed to occur in a Poisson manner at the first 

node with rate 1. The exact behavior of  a node in isolation can be obtained from the 
global balance equations, similar to the way it was done in the context of  closed 
networks. Instead, we discuss intuitively how the arrival and service processes look 
like in isolation. Since node N is not subject to blocking, its service process in 
isolation is the same as it is in the original network. Node N-l,  on the other hand, is 
subject to blocking and its service process in isolation should include the delay that a 
blocked customer goes through. In particular, if  upon service completion at node N-l,  
there is no space available at node N then the customer is blocked and the service at 
node N-1 is suspended. The blocking delay in this case is the remaining service time 
at node N. However, due to the memoryless property of exponential distributions, this 
time is exponentially distributed with rate/a N. Hence, the service process at node N-1 

when analyzed in isolation is two phase Coxian, as illustrated in figure 7. 

Figure 7: Service process at node N-1 in isolation. 
The branching probability rt n depends on the state of the system and defined in terms 

of the joint queue length distribution of nodes N-1 and N-2. In particular, from the 
exact decomposition, we have 7r n equal to the conditional probability that node N is 

full given that there are n customers at node N-1. Similarly, the blocking delay a 
customer goes through at node N-2 is given as follows: Upon service completion at 
node N-2, there are two possibilities. There is a space at node N-1 and the customer at 
node N-2 joins node N-l ,  or node N-1 is full at that time blocking node N-2. If 
blocked, there are two more possibilities. In the first case, node N-1 may be blocked 
by node N. Then, the blocking delay is the remaining service time at node N which is 
distributed exponentially. On the other hand, if node N-1 is busy serving then the 
blocked customer first has to wait for service completion at node N-1. Upon service 
completion at node N-1, customer at node N-1 may join node N, unblocking node N- 
2, or may get blocked by node N. Hence, the service process at node N-2 in isolation 
is phase type with three stages corresponding to servers N-2, N-l, and N, as illustrated 
in figure 8. 

rrn:13 

Figure 8: Service process at node N-2 in isolation. 
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The branching probabilities are now expressed in terms of the joint queue length 
distributions of  nodes N-2, N-I, and N. For example, rfn:12 is the conditional 

probability that node N-1 is full and server N-1 is busy serving given that there are n 
customers at node N-2, 7rn:23 is the conditional probability that node N is full given 

that there are n customers at node N-2 and node N-2 is blocked by node N-I; and 
7rn:13 is the probability that node N-1 is full and blocked by node N given that there 

are n customers at node N-2. 
In general, the service process at node i includes all downstream servers with 
branching probabilities being positive for every j and k such that k>j. 
The arrival process at a node in isolation "behaves like" a state dependent Poisson 
process. In particular the arrival rate to node i when it is in state (n,p) ( i.e. there are 
n customers in it and service is in phase p) is equal to the product of the service rate at 
node i-1 and the conditional probability that node i-1 is not empty given that node i is 
in state (n,p). We note that the state (n,p) corresponds to, in general, nodes i to i+p-1 
are blocked and node p is busy serving. Accordingly, the exact values of arrival rates at 
node i are given in terms of the joint queue length distributions of nodes i-1 to N. 
An interested reader may refer to Perros [1989] for a survey of approximation 
algorithms reported in the literature for open networks with blocking. Tandem 
networks with blocking have been studied under a multiplicity of assumptions in the 
literature. Perhaps, one of the earliest result is developed by Hillier and Boiling 
[1967]. Assuming that the throughput of the network is known, the service rate at 
node i in isolation is fixed so that the throughput of the node is equal to the network 
throughput, whereas, the arrival rate is assumed to be equal to the throughput of the 
preceding node obtained at previous iteration. Further assuming that the corresponding 
distributions are distributed exponentially, each queue is analyzed as an M/M/1/Bi+ 1 

queue. The algorithm iterates between nodes until a convergence on the network 
throughput is achieved. 
Perros and Altiok [1986] developed an approximation in which each queue is analyzed 
as an M/PH/I/Bi+I queue. The service process in isolation is obtained exactly the 

same way as they are in the exact decomposition except branching probabilities which 
are approximated by applying Little's relation to downstream queues. The arrival 
process to the queue is assumed to be Poisson and its rate is determined iteratively 
assuming the network throughput is known. We note that if the first queue is infinite 
then the network throughput is known. Otherwise, the network throughput has to be 
approximated iteratively. Over the years, this algorithm is extended to split and merge 
as well as arbitrary configurations, Coxian server and arrival processes, and tandem 
networks with Coxian arrivals, Coxian servers and multiple classes of customers. 
Gershwin [ 1987, 1981] and Gun and Makowski [ 1989] studied tandem queues under 
BAS blocking where the arrival process is subject to blocking (as opposed to arrivals 
being lost in above cases). We note that in this case, the buffer capacity of a node in 
isolation is the same as it is in the original network. Casean and Pujolle [1979] 
analyzed tandem networks under RS blocking using single node decomposition. 
Kouvatsos and Xenios [1989] used the maximum entropy principle to solve each node 
in isolation to approximately obtain the performance metrics of queueing networks 
under RS-RD blocking. Brandwajn and Jow [ 1988] used two node decomposition to 
analyze tandem networks under BAS and BBS blocking. The network is decomposed 
into N-1 subsystem with each subsystem i consisting of nodes i and i+l. To solve 
each subsystem, it is necessary to approximate the interaction between nodes i and i-1 
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for the arrival process and nodes i+ 1 and i+2 for the effective service time at node i+ 1, 
which are obtained from the analysis of subsystems i-1 and i+l. The algorithm, in 
general, captures more information than that can be obtained in a single 
decomposition and produces more accurate results. However, the solution of a 
subsystem numerically is more time consuming than it is to solve single nodes. 

4. BUFFER ALLOCATION 
The performance of a system highly depends on its topology, routing in the network, 
and the capacities of its queues. Although a single optimization model may be 
formulated, for practical purposes, the problem is generally decomposed into three 
interrelated optimization problems (Smith and Daskalaki [1988]): optimal topology 
problem, optimal routing problem, and optimal resource allocation problem. 
In the buffer allocation problem, it is assumed that the topology of the system and the 
routing in the network are given. Then, the buffer capacities at service stations are 
determined such that the network throughput is close to its maximum value. This 
problem has a long history of research and development. However, most of the 
approximations reported in the literature considered tandem topologies of queueing 
networks in which service stations are connected in series (c.f. Buzacott and 
Shanthikumar [1992], Yamashita and Suzuki [1987] and Jafari and Shanthikumar 
[1989], Soyster. et. al. [1979], Sheskin [1976]). This model does not take the 
interactions between various tandem lines in the system into consideration. Smith and 
Daskalaki [1988] developed a heuristic to address the buffer allocation problem for 
tandem, merge, and split topologies of automated assembly lines. More recently, 
Yamashita and Onvural [ 1993]] proposed two approximation algorithms are developed 
to allocate the buffer capacities at each node such that the network throughput is close 
to its optimum value. 

5. CONCLUSIONS 
In this paper, we give a tutorial of queueing networks with blocking. Except for a 
few special cases, these networks could not be shown to have product form solutions. 
Although the steady state queue length distributions of these networks can, in theory, 
be calculated by solving the global balance equations together with the normalization 
equation numerically, this procedure can, in practice, be restrictive due to the time 
complexity of the procedure and the large storage required to store the rate matrices, 
particularly for large networks. Since exact values of their steady state queue length 
distributions are, in general, not attainable, good approximation algorithms are 
required to analyze queueing networks with finite queues. 
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