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Abs t rac t .  In this tutorial paper, we introduce a number of issues that 
arise in the design of distributed real-time systems in general, and hard 
real-time systems in particular. These issues include time management, 
process scheduling, and interprocess communications within both local 
and wide area networks. In addition, we discuss an evaluation, based 
on a simulation model, of a variety of scheduling policies used in real- 
time systems. Finally, we examine some relevant examples of existing 
distributed real-time systems, describe their structuring and implemen- 
tation, and compare their principal features. 

1 I n t r o d u c t i o n  

The principal responsibility of a real-time (RT) system can be summarized as 
that  of producing correct results while meeting predefined deadlines in doing so. 
Hence, the computat ional  correctness of the system depends on both the logical 
correctness of the results it produces, and the timing correctness, i.e. the ability 
to meet deadlines, of its computations. 

Hard real-time (HRT) systems can be thought of as a particular subclass of 
RT systems in which lack of adherence to the above mentioned deadlines may 
result in a catastrophic system failure. In the following we shall use the phrase 
"soft real-time (SRT) systems" to indicate to those RT systems in which the 
ability to meet deadlines is indeed required; however, failure to do so does not 
cause a system failure. 

The design complexity of HRT and SRT systems can be dominated by such 
issues as the application timing and resource requirements, and the system re- 
source availability. In particular, in the design of a HRT system that  support  
critical applications (e.g. flight control systems, nuclear power station control 
systems, railway control systems), that  complexity can be exacerbated by such 
possibly conflicting application requirements as the demand for highly reliable 
and highly available services, under specified system load and failure hypothe- 
ses, and the need to provide those services while satisfying stringent t iming 
constraints. 

* Partial support for this work was provided by the Italian National Research Council 
(CNR) under contract N. 92.00069.CT12.115.25585. 
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In particular, as a HRT system has to provide services that be both timely 
and highly available, the design of any such system requires that appropriate 
fault tolerance techniques, capable of meeting hard real-time requirements, be 
deployed within that system. 

Current technology allows the HRT system designer to implement cost- 
effective fault tolerance techniques, based on the use of redundant system com- 
ponents. However, the development of redundancy management policies, that 
meet real-time requirements, can introduce further complexity in the system 
design (and validation) process. Thus, in essence, the design of a HRT system 
requires that a number of performance/reliability trade-off issues be carefully 
evaluated. 

Both HRT and SRT systems may well be constructed out of geographically 
dispersed resources interconnected by some communication network, so as to 
form a distributed RT system. (Conforming to the definition proposed in [8, 
29, 36], distributed HRT systems can be classified as responsive systems, i.e. 
distributed, fault tolerant, real-time systems.) 

In this tutorial paper, we shall focus on issues of design and implementation of 
distributed RT systems, and describe five operational examples of those systems, 
namely [52, 17, 33, 56, 47]. In particular, we shall discuss the key paradigms for 
the design of timely and available RT system services, and examine techniques 
for process scheduling, time management, and interprocess communications over 
local and wide area networks. 

This paper is structured as follows. In the next Section, we discuss the princi- 
pal issues arising in the design of RT systems. In Section 3, we examine a number 
of scheduling policies that are usually deployed in those systems. In addition, in 
that Section we introduce an evaluation of those policies, based on a simulation 
study, that allows one to asses the adequacy of those policies with respect to 
different parameters that can characterize the system load and its communica- 
tion costs. Section 4 introduces the distributed RTOSs mentioned above. Finally, 
Section 5 proposes some concluding remarks. 

2 D e s i g n  I s s u e s  

A generic (i.e. hard or soft) real-time system can be described as consisting of 
three principal subsystems [23], as depicted in Figure 1 below. 

! co ll  L con o i i ~176 I subsystem - -[ subsystem subsystem 
Application "~ Man Machine 
Interface Interface 

Fig. 1. Example of Real-Time System Organization 

In Figure 1, the controlled subsystem represents the application, or environ- 
ment (e.g. an industrial plant, a computer controlled vehicle), which dictates 
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the real-time requirements; the control subsystem controls some computing and 
communication equipment for use from the controlled subsystem; the opera- 
~or subsystem initiates and monitors the entire system activity. The interface 
between the controlled and the control subsystems consists of such devices as 
sensors and actuators. The interface between the control subsystem and the 
operator consists of a man-machine interface. 

The controlled subsystem is implemented by tasks (termed application tasks, 
in the following) that execute using the equipment governed by the control sub- 
system. This latter subsystem can be constructed out of a possibly very large 
number of processors, equipped with such local resources as memory and mass 
storage devices, and interconnected by a real-time local area network (i.e. a local 
network that provides bounded maximum delay of a message exchange - see Sub- 
section 2.4). Those processors and resources are governed by a software system 
that we term the Real-time Operating System (RTOS). 

The deployment of RTOSs in safety critical environments (e.g. guidance and 
navigation systems) imposes severe reliability requirements on the design and 
implementation of those RTOSs [10]. As discussed in [26], these requirements 
can be defined in terms of maximum acceptable probability of system failure. 
Thus, for example, flight control systems, such as that used in the Airbus A-320, 
require 10 - l~  probability of failure per flight hour. Vehicle control systems in 
which the cost of a failure can be quantified in terms of an economic penalty, 
rather than loss of human lifes (e.g. systems for satellite guidance, unmanned 
underwater navigation systems), require 10 -6 to 10 -7 probabilities of failure per 
hour. 

Fault tolerance techniques, based on the management of redundant hardware 
and software system components, are commonly used in order to meet these relia- 
bility requirements. However, it is worth pointing out that the implementation of 
these techniques, that indeed determine the system reliability, require that some 
of the system performance be traded for reliability. Methodological approaches 
that allow one to assess these trade-off issues are discussed in [1, 38, 57, 39]. 

The principal issues concerning the design of a RTOS are introduced below, 
in isolation. In particular, in the following we shall discuss (i) relevant character- 
istics of the RT applications that may use a RTOS, (it) two general paradigms 
that can be applied to the design of a RTOS, (iii) time management, and (iv) 
interprocess communication issues in distributed RT systems. 

2.1 RT Applications 

A R T  application can be modelled as a set of cooperating tasks. These tasks can 
be classified, according to their timing requirements, as hard real time (HRT), 
8oft real time (SRT), and not real time (NRT) tasks. A HRT task is a task whose 
timely (and logically correct) execution is deemed as critical for the operation 
of thc entire system. The deadline associated to a HRT task is conventionally 
termed hard deadline, owing to the critical nature of that task. As a consequence, 
it is assumed that missing a hard deadline can result in a catastrophic system 
failure. A SRT task, instead, is characterized by an execution deadline whose 
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adherence is indeed desirable, although not critical, for the functioning of the sys- 
tem (hence, the SRT task deadline is usually termed soft deadlirte). N R T  tasks  
are those tasks which exhibit no real-time requirements (e.g. system maintenance 
tasks that  can run occasionally in the background). 

Application tasks can be further classified as periodic, aperiodic (or as!lrt- 
ehrortous [60]), and sporadic tasks. P e r i o d i c  t asks  are those tasks that  enter 
their execution state at regular intervals of time, i.e. every T time units. These 
tasks, generally used in such applications as signal processing and control, are 
typically characterized by hard deadlines [34]. A p e r i o d i c  t asks  are those tasks 
whose execution time cannot be anticipated, as their execution is determined 
by the occurrence of some internal or external event (e.g. a task responding 
to a request from the operator). These tasks are usually characterized by soft 
deadlines. Finally, aperiodic tasks characterized by hard deadlines are termed 
s p o r a d i c  t asks  [30] (e.g. tasks dealing with the occurrence of system failures; 
or with emergency requests from the operator). 

In view of the above classifications, one can observe that  the principal re- 
sponsibility of a RTOS is to guarantee that each individual execution of each 
application task meet the timing requirements of that  task. However, it is worth 
noting that,  in order to fulfil that responsibility, the objective of a RTOS cannot 
be stated just as that  of minimizing the average response time of each applica- 
tion task; rather, as pointed out in [58, 60], the fundamental concern of a RTOS 
is that  of being predictable, i.e. the functional and timing behaviour of a RTOS 
should be as deterministic as necessary to meet that RTOS specification. Thus, 
fast hardware and efficient algorithms are indeed useful, in order to construct 
a RTOS that  meet real-time requirements; however, they are not sufficient to 
guarantee the predictable behaviour required from that  s y s t e m . .  

2.2 RTOS Design Paradigms 

Two general paradigms for the design of predictable RTOSs can be found in the 
literature. These paradigms have led to the development of two notably different 
RTOS architectures, termed Event-Triggered (ET) and Time-Triggered (TT) 
architectures [24], respectively. In essence, in ET RTOSs (e.g. [55]), any system 
activity is initiated in response to the occurrence of a particular event, caused 
by the system environment. Instead, in TT RTOSs (e.g. [21]), system activities 
are initiated as predefined instants of the globally synchronized time (see next 
Subsection) recur. 

In both architectures, the RTOS predictability is achieved by using (different) 
strategies to assess, prior to the execution of each application task, the resource 
needs of that  task, and the resource availability to satisfy those needs. However, 
in ET architectures, these resource needs and availability may vary at run-time, 
and are to be assessed dynamically. Thus, resource need assessment in ET archi- 
tectures is usually based on parametric models [40]. Instead, in TT architectures 
these needs can be computed off-line, based on a pre-run time analysis of the 
specific application that requires the use of the TT architecture; if these needs 
cannot be anticipated, worst-case estimates are used. 
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TT architecture advocates criticize the ET architectural approach as the ET 
architectures~ owing to their very nature, can be characterized by an excessive 
number of possible behaviors that must be carefully analyzed in order to establish 
their predictability [24]. In contrast, ET architecture advocates claim that these 
architectures are more flexible than TT architectures, and ideal for a large class 
of applications that do not allow to predetermine their resource requirements. In 
particular, they argue that TT architectures, owing to the worst case estimate 
approach mentioned above, are prone to waste resources in order to provide 
predictable behavior. 

In both ET and TT architectures the resource need and availability assess- 
ment is to be carried out while taking into account the timing requirements of 
the applications. Hence, issues of time management~ that characterize the sys- 
tem's temporal behaviour, are of crucial importance in the design of any RT 
system. 

2.3 Time Management 

One of the principal concerns, in the field of time management in RT systems, 
consists of providing adequate mechanisms for measuring (i) the time instants 
at which particular events must occur, and (ii) the duration of the time intervals 
between events. In a distributed RT system, these concerns become particularly 
critical, as the occurrence of the same event can be observed from such inherently 
asynchronous devices as a number of different processors. 

However, this problem can be adequately dealt with by providing the RT 
applications with a common time reference of specified accuracy. This time ref- 
erence can be constructed by synchronizing the values of the local real-time 
clocks, incorporated in each processor of the system, so as to obtain a global 
notion of time within that system. 

A large variety of clock synchronization algorithms can be found in the lit- 
erature, e.g. [28, 42, 27, 5, 50], based on the exchange of clock synchronization 
messages among the system nodes. We shall not describe these algorithms here, 
as they are discussed in detail in the already cited references. However, we wish 
to mention that, as pointed out in [41], any such algorithm has to meet the 
following four requirements: 

I. the clock synchronization algorithm is to be capable of bounding, by a known 
constant, the maximum difference of the time values between the observation 
of the same event from any two different nodes of the system (measured 
according to the value of the local clock of each of these two nodes); 

2. the notion of global time constructed by the synchronization algorithm is to 
be sumciently accurate to allow one to measure small time intervals at any 
point in time; 

3. the clock synchronization algorithm is to be capable of tolerating the possible 
fault of a local RT clock, or the loss of a clock synchronization message; 

4. the overall system performance is not to be degraded by the execution of the 
clock synchronization algorithm. 



440 

In order to meet these requirements, either centralized or decentralized clock 
synchronization algorithms can be deployed. A centralized approach can be im- 
plemented by means of a central synchronization unit, e.g. a "time server" node 
responsible for periodically distributing time synchronization messages to the 
other nodes in the system; some such an approach can typically be very vul- 
nerable to failures of the synchronization unit itself. Instead, a decentralized 
approach, owing to the redundancy inherent in the distributed infrastructure 
that can be used for its implementation, can offer better guarantees as to fault 
tolerance (provided that implementation be based on a realistic fault model). 

As already mentioned, the clock synchronization algorithms in distributed 
RT systems can be implemented by message exchanges. However, it is worth 
pointing out that these implementations may introduce overheads that can affect 
the overall system performance, thus violating the requirement 4 above. In order 
to overcome this problem, a practical and effective solution has been proposed in 
[41] (and developed within the context of the MARS project [21]). This solution 
is based on the implementation of an accurate clock synchronization algorithm 
in a special-purpose VLSI chip; this chip can be incorporated in a subset of 
nodes of the system, and used by those nodes to exchange clock synchronization 
messages. The rest of the system nodes can maintain their clocks synchronized 
by monitoring the synchronization message traffic. This implementation notably 
reduces (to less than i%, it is claimed in [41]) the CPU load and the network 
traffic caused by the clock synchronization algorithm. 

2.4 Interprocess Communications 

In view of the predictability requirement mentioned earlier, distributed RT 
systems require primarily that the communication support they use provide 
them with deterministic behaviour of the communication infrastructure. This 
behaviour can be achieved by constructing a communication protocol architec- 
ture characterized by such deterministic properties as bounded channel =ecess 
delay, and bounded message delay. 

The channel access delay is defined as the interval of time between the instant 
in which a task issues a request for sending a message, and the instant in which 
the communication interface, local to the node where that task is running, actu- 
ally transmits that message on the communication channel. The message delay, 
instead, is defined as the interval of time between the instant in which a task 
requests the transmission of a message, and the instant in which that message 
is successfully delivered to its destination; hence, the message delay includes the 
channel access delay. If a message is delivered with a message delay that exceeds 
a target (e.g. application dependent) value, that message is considered lost. 

It as been pointed out in [14] that, in such distributed RT applications as 
those based on non-interactive audio and video communications, an additional 
property that RT protocols are required to possess consists of the provision of 
bounded message delay jigger; this jitter is the absolute value of the difference be- 
tween the actual message delay of a transmitted message, and the target message 
delay. Issues of delay jitter control in packet switching networks are discussed 
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in [13]; protocols characterized by the bounded delay jitter property, for use for 
communications over those networks, are described in [14, 122 11]. 

Further general properties that can be required from a RT protocol include 
stability, and fault tolerance. The former property refers to the ability of the 
protocol to continue to operate effectively in the presence of network traffic 
variations and temporary network overloading. The latter property refers to the 
protocol ability to survive communication channel failures (e.g. omission failures 
[6], such as those that can be caused by a noisy channel). 

A survey of basic techniques for the design of protocols for distributed RT 
systems is discussed in [25]. In this paper, the authors examine time constrained 
protocols that can be deployed in distributed RT systems based on broadcast 
(both local and wide area) networks. In particular, they classify these protocols in 
controlled access and coa~e~tiou based protocols. The former class includes Time 
Division Multiple Access Protocols; the latter, instead, includes token based 
schemes. In addition, this paper points out a number of performance/reliability 
trade-off issues that arise in the design of these protocols. These issues include 
the relations among the message loss percentage, the message transmission rate, 
and the timing constraints associated to the messages. 

Further work on RT communications, emphasizing HRT communication is- 
sues, can be found in [49, 61]. In [49], the author proposes a protocol for HRT 
communication in local area networks that provides bounded channel access de- 
lay. In [61], the authors evaluate the performance of four protocols for HRT 
communications, termed Virtual Time CSMA protocols. The performance met- 
rics they use for this evaluation are based on the percentage of messages that 
miss their deadlines, and the effective channel utilization. 

Finally, an interesting protocol for communications in distributed HRT sys- 
tems has been recently proposed in [24]. This protocol, designed for the sup- 
port of distributed TT architectures, provides principally (i) predictable message 
delay, (ii) group communications and membership service [7], (iii) redundancy 
management, and (iv) accurate clock synchronization. A further attractive (and 
unconventional) property of this protocol is that it is designed so as to be highly 
scalable, i.e. capable of operating efficiently on different communication media 
(e.g. twisted pairs as well as optical fibers). 

3 S c h e d u l i n g  

In a RT system, the responsibility of the scheduling algorithm is to determine 
an order of execution of the RT tasks that be feasible, i.e. that meet the resource 
and timing requirements of those tasks. In the design of a RT system, the choice 
of an appropriate scheduling algorithm (or policy) may depend on several is- 
sues, e.g. the number of processors available in the system, their homogeneity 
or heterogeneity, the precedence relations among the application tasks, the task 
synchronization methods. In addition, application dependent characteristics of 
the RT tasks may contribute to determine the choice of the scheduling algorithm. 
For example, RT application tasks can be preemptable, or non-preemptable. A 
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preemptable task is one whose execution can be suspended by other tasks, and 
resumed later; a non-preemptable task must run until it completes, without in- 
terruption. Thus, both preemptive and non-preemptive algorithms have been 
proposed. (However, for the purposes of this tutorial paper, non-preemptive 
scheduling will not be discussed as a large number of non-preemptive scheduling 
problems has been shown to be NP-hard [4].) 

RT scheduling algorithms can be classified as either static or dynamic al- 
gorithms. A static scheduling algorithm is one in which a feasible schedule is 
computed off-line; one such algorithm typically requires a priori knowledge of 
the tasks' characteristics. In contrast, a dynamic scheduling algorithm deter- 
mines a feasible schedule at run time. Thus, static scheduling is characterized 
by low run-time costs; however, it is rather inflexible, and requires complete 
predictability of the RT environment in which it is deployed. Instead, dynamic 
scheduling entails higher run-time costs; however, it can adapt to changes in the 
environment. 

The literature on task scheduling algorithms is very vast (e.g. see [16, 4, 60]); 
a complete taxonomy of these algorithms and their properties is beyond the scope 
of this paper. Rather, we shall confine our discussion below to summarizing the 
most common scheduling algorithms that are used in the implementation of RT 
systems, and introduce the results obtained from a recent simulation study of 
these algorithms, that we have carried out. 

3.1 Scheduling Algorithms 

The scheduling of periodic tasks on a single processor is one of the most classical 
scheduling problems in RT systems [34]. Two alternative approaches have been 
proposed to solve this problem, based on the assignment of either a fixed or, al- 
ternatively, a dynamic priority value to each task. In the fixed priority approach, 
the task priority value is computed once, assigned to each task, and maintained 
unaltered during the entire task life time. In the dynamic priority approach (also 
termed deadline dr!yen), a priority value is dynamically computed and assigned 
to each task, and can be changed at run-time. These approaches have led to 
the development of a variety of preemptive scheduling policies (preemption, in 
priority driven scheduling policies, means that the processing of a task can be 
interrupted by a request for execution originated from a higher priority task). 
These include the Rate Monotonic (RM), the Earliest Deadline First (EDF), 
and the Least Slack Time First (LSTF) policies, introduced below. 

The RM policy assigns a fixed priority value to each task, according to the 
following principle: the shorter the task period, the higher the task priority. It 
has been shown in [34] that this policy is optimal among fixed priority policies 
(i.e. given a set of tasks, it always produces a feasible schedule of that set of 
tasks, if any other algorithm can do so). 

The EDF and LSTF policies implement dynamic priorities. With the EDF 
policy, the earlier the deadline of a task, the higher the priority assigned to that 
task. Instead, with the LSTF policy, the smaller the slack time (see below) of 
a task, the higher the priority value assigned to that task. The task slack time 
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is defined as the difference between the amount of time from the current time 
value to the deadline of a task, and the amount of time that task requires to 
perform its computation. 

In order to deal with the scheduling of aperiodic tasks, the following five 
different policies have been proposed [30]. The first policy consists of scheduling 
the aperiodic tasks as background tasks, i.e. aperiodic tasks are allowed to make 
their computations only when no periodic tasks are active. The second policy, 
termed Polling, consists of creating a periodic process, characterized by a fixed 
priority, that serves the aperiodic task requests (if any). The main problem with 
this policy is the incompatibility between the cyclic nature of this policy, and 
the bursty nature of the aperiodic tasks. 

The third and fourth policies are the Priority Ezchaage (PE) and the De- 
ferrable Server (DS) policies. Both these policies aim to maximizing the respon- 
siveness of aperiodic tasks by using a high priority periodic server that handles 
the aperiodic task requests. In both the PE and the DS policies, the server 
preserves the execution time allocated to it, if no aperiodic task requests are 
pending. (In fact, these policies are also termed bandwidth preserving, as they 
provide a mechanism for preserving the resource bandwidth allocated for aperi- 
odic services if, when this bandwidth becomes available, it is not needed.) 

The difference between these two policies is in the way they manage the 
high priority of their periodic servers. In the DS policy, the server maintains its 
priority for the duration of its entire period; thus, aperiodic task requests can be 
serviced at the server's high priority, provided that the server's execution time 
for the current period has not been exhausted. In contrast, in the PE policy, the 
server exchanges its priority with that of the pending, highest priority, periodic 
task, if no aperiodic task requests occur at the beginning of the server period. 

The DS and PE policies have been developed in order to deal with sporadic 
tasks (i.e. aperiodic HRT tasks, as defined in Subsection 2.1 of this tutorial 
paper). The fifth policy that we consider, i.e. the Sporadic Server (SS) policy, 
has been designed to deal with the scheduling of aperiodic (SRT) tasks. This 
policy, yet again based on the creation of a periodic server of aperiodic requests, 
is characterized by a response time performance comparable to that of the DS 
and PE policies, and a lower implementation complexity than these two policies. 
The SS policy is discussed in detail in [30]. 

Task scheduling in tightly coupled distributed systems, such as a shared 
memory multiprocessor, can be governed by a single scheduler responsible for 
allocating the processing elements to the application tasks. McNaughton, in 
[37], has proposed an optimal, preemptive scheduling algorithm for independent 
tasks. This algorithm has been extended to deal with such different issues as 
tasks having DAG precedence graphs, and periodic executions (see [16] for a 
complete survey). 

In loosely coupled distributed RT systems, owing to the high cost of process 
migration between processors, and to the loss of predictability that operation 
may entail, tasks can be statically assigned to the system processors. In these 
systems, the scheduler is usually structured in two separate components; namely, 
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an allocator, and a local acheduler. The allocator is responsible for assigning tasks 
to the distributed system processors; the local scheduler (one for each proces- 
sor) implements a single processor scheduling policy, such as those introduced 
earlier, to dispatch the (local) execution requests. It is worth mentioning that 
the allocation algorithms are usually based on some heuristic approach, as the 
problem of allocating tasks to processors can be very complex. (For example, it 
has been shown [3] that finding an optimal assignment of tasks, characterized 
by an arbitrary communication graph, to four or more processors with different 
speeds is an NP-hard problem.) 

The I /O subsystem of a real-time system may require its own scheduler. The 
simplest way to access an I/O resource is by using a non-preemptive FIFO policy. 
However, the preemptive scheduling techniques introduced above for processor 
scheduling (i.e. RM, EDF, LSTF) can be implemented to schedule I /O requests. 

Relevant figures of merit that can be used to assess the effectiveness of a 
scheduling policy include the Breakdown Utilization (BU), the Normalized Mean 
Response Time (NMRT), and the Guaranteed Ratio (GR), introduced below. 

The BU, as defined in [30], is the degree of resource utilization at or below 
which the RTOS can guarantee that all the task deadlines will be met. This 
figure provides a metric for the assessment of the effectiveness of a scheduling 
policy, as the larger the breakdown utilization, the larger the cpu time devoted 
to task execution. 

The NMRT is the ratio between the time interval in which a task becomes 
ready for execution and terminates, and the actual cpu time consumed for the 
execution of that task. Yet again, this figure provides a metric of the effectiveness 
of the selected scheduling policy as, the larger the NMRT, the larger the task 
idle time. 

Finally, for dynamic algorithms, a relevant performance metric is the GR, i.e. 
the number of tasks whose execution can be guaranteed versus the total number 
of tasks that request execution. 

3.2 S imula t ion  S t u d y  

In order to evaluate the effectiveness of the algorithms introduced above, we 
have developed a distributed RT system simulation model that incorporates the 
majority of those algorithms, suitable for the scheduling of periodic, aperiodic, 
and sporadic tasks [43]. 

In particular, our model implements the RM, the EDF, and the LSTF algo- 
rithms, for the scheduling of periodic tasks. 

Aperiodic task scheduling can be supported, in our model, by means of the 
background (BG), the Polling (PL), the DS, and the SS algorithms. The BG 
scheduling algorithm is implemented by executing aperiodic tasks in those time 
intervals in which no periodic tasks are active. The PL, DS, and SS algorithms 
are implemented by periodic servers that schedule aperiodic tasks at regular 
intervals of time, provided that no periodic task be in execution. 

The scheduling of the sporadic tasks is simulated by implementing a periodic 
server, fully dedicated to the scheduling of those tasks, that is enabled sufficiently 
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frequently to guarantee not to miss the sporadic task hard deadlines. 
Moreover, in our model, the scheduling of tasks accessing I/O resources can 

be governed by one of the preemptive scheduling algorithms mentioned above 
(i.e. the RM, the EDF, and the LSTF algorithms). In addition, our model allows 
its user to choose a FIFO discipline for I/O resource management, and to specify 
arbitrary network delays. 

Finally, our model embodies a number of task synchronization protocols that 
implement concurrency control mechanisms, and solve (or prevent [2]) the pri- 
ority inversion problem [46]. 
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The phrase 'priority inversion' is used to indicate the situation in which the 
execution of a higher priority task is delayed by lower priority tasks [9]. With  
priority driven RT schedulers, this problem can occur when there is contention 
for shared resources among tasks with different priorities. In order to simulate 
the mastering and control of that  problem, our model implements the Basic 
Priority Inheritance (BPI), the Priority Ceiling (PC), the Priority Limit (PL), 
and the Semaphore Control (SC) protocols [51]. The principal scope of each of 
these four protocols is to minimize the so-called Worst Case Blocking Time, i.e. 
the time interval in which the execution of a higher priority task can be delayed 
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by lower priority tasks. 
An alternative approach to the solution of the priority inversion problem has 

been proposed in [2], and is based on preventing the occurrence of that problem. 
In order to assess the effectiveness of that approach, our model incorporates a 
particular priority prevention protocol described in [2]. 

Our simulation model has been implemented, using the C programming lan- 
guage, so as to accept in input a description of the distributed RT system to 
simulate, and to produce, as output, statistical results of the simulation experi- 
ments. 
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The input DRTS description consists of the specification of both system 
load, and operating system parameters. The system load parameters include the 
following random variables: number of periodic (PT) and aperiodic tasks (AT) 
that may request execution, the task period (P), the CPU request (CR) and 
the deadline (D) of each task, and their probability distribution. The operating 
system parameters include the scheduling and task synchronization policies the 
operating system is to use, and the two random variables: operating system 
preemption cost (PrC), and network overhead (NO). 

The output produced by our implementation is intended to allow one to 
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evaluate the performance of the various algorithms mentioned above. Thus, our 
model provides its users with the BU and NMRT figures of merit, introduced 
earlier. 

3.3 Simulation Study 

In our simulation study, we have examined the performance of the algorithms 
introduced previoulsy, under a .variety of different system load conditions, and 
operating system characteristics. The results we have obtained are summarized 
below. 

To begin with, the BU obtained with the RM, EDF and LSTF algorithms, 
for the scheduling of per iodic  tasks, have been examined as a function of 
the operating system preemption cost. In the following, we shall assume that 
the task deadline coincide with the task period, and that the cpu request of a 
generic task i is 'generated' from the uniform distribution in the interval [0,pi], 
where ps denotes the task i period. The simulation results discussed in this 
Subsection have been obtained by using the method of independent replications 
(300 independent runs for each experiment), and 95% confidence intervals have 
been constructed for the performance indices. 

Assuming that: 

i. the PrC is the same for each one of these three algorithms, 
2. PT is a constant, equal to 10, 
3. P is uniformly distributed in the interval [i, 100], 

our results show that the EDF and LSTF dynamic algorithms perform better 
than the KM static algorithm, as illustrated in Figure 2. However, in practice, 
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the above assumption 1 can be unrealistic, as the dynamic algorithms must 
compute and assign the task priorities at run time, thus introducing additional 
overheads to the preemption cost; hence, the use of the RM algorithm can be 
favored to that  of the dynamic algorithms, as its implementation is simpler, and 
the preemption cost it entails is lower. 

This observation has led us to concentrate our investigation on the RM algo- 
rithm, as far as periodic task scheduling is concerned. Thus, we have examined 
its behavior as the number of tasks in execution grows. In addition, we have 
considered the following four different probability distributions of the random 
variable P: 

1. Uniform distribution in [1, 100] (variance = 816.8), 
2. Beta distribution with parameters a = 15 and b = 15 (variance = 79.4), and 

parameters a = 0.5 and b = 0.5 (variance = 1862.2), 
3. Normal distribution with parameters mean = 50.5 and variance = 78.4, 
4. Exponential distribution with parameter a = 0.5, 

The Beta, Normal and Exponential distributions are scaled in the interval 
[1,100]. The results produced by our simulation model are illustrated in Figure 
3. 

This Figure shows that the RM algorithm is extremely sensitive to the vari- 
ance of the random variable P. In particular, low variance of P can notably 
degrade the RM scheduling performance. In essence, this can be explained as 
follows. The RM algorithm assigns higher priority to tasks with shorter periods. 
Thus, if P has low variance, the different task periods are characterized by short 
time intervals between the periods' terminations. Owing to this observation, we 
have developed an algorithm that allocates independent tasks to the distributed 
RT system CPUs, so as to provide a high variance for P on each of these CPUs. 

Figure 4 depicts the result produced by our model as a function of the number 
of CPUs. This Figure illustrates that  a conventional task allocation algorithm 
(indicated as Normal in Figure 4), that ignores the task distribution issue by, 
for example, polling each CPU in the system until it finds one available for task 
execution, produces very low BU values compared to our allocation algorithm 
(indicated as Enhanced in Figure 4). 

As to a p e r i o d i c  tasks ,  the NMRT is the most relevant figure of merit when 
these tasks are introduced in a distributed RT system, and coexist with the 
periodic tasks. The experiment we have carried out consisted of simulating the 
presence (on the same CPU) of both periodic and aperiodic tasks. We assume 
that  : 

- the scheduling algorithm used is the RM algorithm, 
- the periodic task load is about 69%, and the number of periodic tasks is 10, 

with period uniformly distributed in the interval [1,100], 
- the number of aperiodic tasks is 10, 
- the time between consecutive activations of each aperiodic task is exponen- 

tially distributed with mean equal to 20, 
- the aperiodic task server is the task with highest priority. 
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The NMRT simulation results we have obtained, as a function of the aperi- 
odic task load, show that the bandwidth preserving algorithms (i.e the DS, SS, 
IS algorithms) perform better than such traditional algorithms as polling and 
background, as depicted in Figure 5. 

Essentially, this is because the aperiodic task execution can start any time 
during the server period. Thus complex algorithms, such as DS, SS, and IS, 
allow the scheduler to start rapidly, the execution of the aperiodic tasks. Com- 
pared with easier methods, such as polling, these algorithms meet effectively 
the execution requirements of those aperiodic tasks that request short execution 
time (even if these requests are very frequent). However, we have observed that, 
when an aperiodic task requires an amount of CPU execution time close to that 
of the most time consuming task of the system, the differences among the various 
methods tend to disappear. 

As pointed out in [45], I / O  requests  are scheduled, in general, according 
to a FIFO discipline; this can lead to a low resource utilization, as illustrated in 
Figure 6. The results shown in this Figure have been obtained by simulating a 
system characterized as follows : 

1. a variable number of periodic tasks, with period P uniformly distributed in 
the interval [1,100], are concurrently running in the system, 

2. every task is divided in three parts: input, processing, and output. We assume 
that the time spent during the I/O phase is the same consumed for processing 
data. 

We have considered both non-preemptive and preemptive I/O controllers. A 
non preemptive controller is one that cannot interrupt an I/O operation once 
this has been started. With a preemptive controller, instead, a high priority 
I/O operation can preempt a lower priority one. Consequently, the use of a 
preemptive controller may appear to be more appropriate in a Real Time system. 
However, if the RM algorithm is implemented in order to assign priorities to the 
tasks (and hence to the task I/O requests) the following non obvious results can 
be observed. 

We have carried out a number of simulations that show the performance 
differences (in terms BU) between the preemptive and the non preemptive con- 
trollers. 

We have examined the behavior of these two controllers when the task peri- 
ods are generated with a variety of different distributions. Figure 7 shows the BU 
values obtained when the task periods are uniformly distributed in the interval 
[1,B]. It can be seen that the preemptive controller can lead to a greater resource 
BU for a limited number of values of B, only. Using a low variance distribution 
(i.e. the normal distribution with variance equal to 78.4) for the period random 
variable P, we have obtained that, for all values of B, the BU achieved by the 
non preemptive controller is always greater than that achieved by the preemptive 
controller. In contrast, using a high variance distribution (i.e. a beta distribution 
with variance equal to 1862.2) the preemptive controller exhibits its superiority, 
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as illustrated in Figure 8. Moreover, we have noted that the difference in terms 
of performance between the two kinds of controllers tend to disappear as the 
number of tasks grows. Thus, the benefits that can be obtained using a preemp- 
tive controller cannot be considered as absolute, as these benefits depend upon 
the system load. 

The p r io r i ty  invers ion problem can typically occur when RT tasks share 
data. Concurrent accesses to those data can be handled by means of concurrency 
control mechanisms such as semaphores. However, if a low priority task locks a 
semaphore, higher priority tasks which require that semaphore are forced to 
wait its release, thus incurring in a so-called blocking time overhead. Priority 
control protocols that limit this overhead in a RT system have been developed 
in order to guarantee the tasks deadlines (i.e. the BPI, SC, PL, and PC protocols 
already mentioned). As illustrated in Figure 9, these protocols exhibit different 
performance; in particular, as the blocking time grows, the BPI degrades notably. 
Instead, the performance of the PC, the SC, and the PL protocols maintain 
values which are very close to each other (the PL protocol performance results 
are omitted from Figure 9). However, the SC protocol is an optimal but hard 
to implement protocol; hence, a number of recent RT system implementations 
(e.g. Real Time MACH [59]) favor the use of the PC protocol. 

Finally, our simulation model implements a recently proposed priority pre- 
vention protocol [2]. This protocol differs from the priority control protocols 
previously examined as it is capable of eliminating the priority inversion prob- 
lem. Using this protocol, the analysis of a RT system is indeed easier, as less 
effort is required to construct a feasible schedule for that system. However, the 
performance of this priority prevention protocol turns out to be lower than that 
obtained with the priority control protocols discussed above, as illustrated in 
Figure 10. 

4 Case Studies  

In this Section we introduce five relevant examples of distributed RT systems; 
namely, the SPRING kernel, HARTS, MARS, MARUTI, and CHAOS. These 
systems are discussed below, in isolation. 

4.1 S P R I N G  

SPRING is a distributed RTOS kernel developed at the University of Mas- 
sachusetts. The SPRING designers claim that the development of conventional 
RT systems has been often affected by a number of misconceptions and im- 
plementation deficencies, as discussed at length in [58]. The SPRING kernel 
[48, 47] aims to overcoming those misconceptions and deficiencies. In particular, 
the key issues addressed in the SPRING design approach include t{ezibilit!l and 
predictability, within the context of an ET distributed RT system. 

In SPRING, tasks are classified as follows, on the basis of their relative costs 
of a deadline miss: 
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- Critical tasks (or HRT tasks) are those which must meet their deadlines, 
otherwise catastrophic failures may occur; 

- Essential tasks are those which are indeed relevant to the operation of the 
system; however, in case of fault, they cannot cause dangerous situations to 
Occur .  

- Non-essentiai tasks may or may not have RT constraints. However, a non- 
essential task missing a deadline may cause only a poorer quality of service, as 
its t iming constraints are very loose (i.e. those constraints specify a preferred 
answer time, only). 

Each essential and non-essential task is characterized by a "criticalness" pa- 
rameter associated with it. This parameter is used to quantify the relevance of 
a task, relative to the specific application it implements. The SPRING kernel 
executes essential and non-essentiai tasks by maximizing the value that  can be 
obtained as the sum of the criticalness parameters of those tasks. (Critical tasks 
are outside the scope of this maximization process, as they are executed with 
the highest priority.) 
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Fig. 11. A schematic view of the Springnet system 

The hardware model for the SPRING kernel is a multiprocessor distributed 
system. Each node is composed by one (or more) application processors, one 
(or more) system processors and an I /O subsystem (see Fig. 11). Application 
processors execute critical and essential tasks; system processors run most of the 
operating system, as well as specific tasks which do not have deadlines. The I /O 
subsystem handles non-criticai I/O, slow I /O devices and fast sensors. 

The SPRING kernel is able to schedule task groups. A task group is a col- 
lection of tasks having precedence constraints among themselves but sharing a 
single deadline. Moreover, SPRING supports incremental tasks, i.e. tasks that  
compute an answer as soon as possible, and continue to refine the return value 
for the rest of their requested computation time. (A complete discussion on 
incremental tasks can be found in [35]). 

In a loosely coupled processors environment, such as that  used in SPRING, 
an optimal scheduling algorithm, in the worst case, may perform an exhaustive 
search on all the possible task partitions; this is a computationaily intractable 
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problem. SPRING addresses the scheduling problem by using a heuristic ap- 
proach. In essence, whenever the execution of a task is requested, SPRING at- 
tempts to guarantee that execution locally, i.e. it tries to construct a feasible 
schedule that include that task in the same node where its execution request 
occurred. If that attempt fails, SPRING allocates a different node for that re- 
quest. Finally, it is worth mentioning that fault tolerance issues have received 
little attention in the design of the SPRING Kernel. 

4.2 HARTS 

5 

 .10 

14 15 15 16 16 17 

Fig. 12. An example of network mesh for HARTS: the hexagonal mesh of size 3 

The distributed RT architecture of the HARTS project (Hexagonal Architecture 
for Real Time Systems [56]) is based on shared memory multiprocessor nodes 
interconnected by a wrapped hexagonal network (Fig. 12 shows an example of the 
HARTS hexagonal network). This architecture aims to providing RT applications 
with high performance, reliability, and predictability. 

The HARTS network can be conveniently implemented in hardware (e.g. by 
means of a VLSI chip), as it is planar, and characterized by a fixed number of 
connections. This network is scalable, and provides fault tolerance support. 

One of the main research interests of the HARTS project is to focus onto low- 
level architectural issues, such as message routing and buffering, scheduling, and 
instruction set design. Moreover, as HARTS embodies both distributed system 
and multiprocessor architectural features, it allows one to evaluate the behavior 
of RT programs in both distributed and multiprocessor environments. 
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HARTOS [19] is the operating system developed for HARTS. The HARTOS 
kernel aims to providing a uniform interface for real-time communications be- 
tween processes, regardless of their physical location. In particular, the HARTOS 
link-level protocol supports the co-existence, in the communication network, of 
a mix of normal and real time traffic. The application interface provides system 
calls for RT communications, as well as remote procedure calls, naming, and 
datagram delivery. 

In addition, HARTOS supports fault tolerance, queued message passing, non 
queued event signals, and shared memory (between processors in the same node). 
Fault-tolerance is implemented at two separate levels of abstraction; namely, 
the task and network levels. At the task level, HARTOS provides replication 
features, and multicast communications; instead, at the network level, HARTOS 
implements a message rcrouting scheme that deals with faulty nodes or links. 
An early implementation of HARTOS was based on pSOS kernel, an operating 
system for uniprocessor Real-Time systems; the current implementation is based 
on ~-kernel [18]. 

4.3 M A R S  

MARS (MAintainable Real-time System) [52] is a fault-tolerant distributed real- 
time system architecture for process control, developed at Technishe Universits 
Wien. It is intended for use from industrial applications that impose hard-real- 
time constraints. MARS is designed so as to maintain a completely deterministic 
behavior even under peak-load conditions, i.e. when all possible stimuli occur 
at their maximum allowed frequency. MARS guarantees this behavior as it is 
strictly time driven and periodic. In MARS, all the activities are synchronous, 
and based on a globally synchronized clock (in particular, the only interrupt 
present in the system is the clock interrupt, which marks both CPU and bus 
cycles); this feature favors the system predictability. 

MArS bus 

! I" ~'t network con~oUer si 
t I 

"'N '\~ , /  , 

Fig. 13. A schematic view of a MARS duster 

replicated node 
for fault tolerace. 

I 
NODE I 

The current implementation runs on a cluster of single-board mono-processor 
nodes (see Fig. 13 for a schematic view of a MARS cluster). From a physical point 
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of view the network hardware of the cluster is a standard ethernet; instead, the 
channel access protocol is based on a TDMA discipline (as the standard ethernet 
CSMA-CD (IEEE 802.3) protocol cannot guarantee peak-load timing correct- 
ness). As already discussed, a custom chip implements the clock synchronization 
protocol. 

Key issues of this project include: 

- fault tolerance: MARS can deal effectively with fail silent nodes and omission 
failures by using replicated hardware and messages; 

- static scheduling: MARS implements static, pre-run time scheduling of the 
application tasks; 

- repeatability: in MARS, redundant components may be removed from a 
running duster (e.g. for repair), and reintegrated later without affecting the 
system behavior, 

- management of redundant networks (still under development). 

Finally, an important development of this project, that is worth mentioning, 
is the real-time programming environment of MARS [44], a graphical based 
CASE for RT software development. 

4.4 M A R U T I  

MARUTI [33, 32] is a hard-real-time, fault tolerant, distributed operating system 
developed at the Department of Computer Science of the University of Maryland. 
MARUTI is built as a modular system, using an object oriented approach; its 
architecture emphasizes the independence between the system elements. This 
system is driven by a time constrained model which imposes restrictions on both 
execution beginning and ending of the application tasks. In MARUTI, interrupt 
driven tasks can co-exist with conventional ones. A basic concept that MARUTI 
implements is that of the calendar; this is a data structure which is used to allow 
the verification of the schedulability of the application tasks, the reservation of 
guaranteed services, and the synchronization among tasks. 

Jobs in MARUTI are invocations of executable objects. MARUTI accepts 
new jobs during the execution of already accepted jobs; it implements the fol- 
lowing two different scheduling disciplines: the off-line and on-line disciplines. 
Tasks having non deterministic execution, as well as tasks which do not have 
timing constraints, are scheduled using the off-line discipline; instead, HRT tasks 
are executed in on-line mode. On-line tasks can preempt, if necessary, off-llne 
ones. 

The system provides the following two classes of objects: Kernel and Appli- 
cation level objects. At the Kernel level, MARUTI provides an Interrupt handler 
object, used to define a service object for any kind of interrupt in the system, a 
time service object, used for synchronization and ordering of events, and a sched- 
uler. At the Application level, this system includes the allocator, which maps 
tasks (running in off=line mode) to processors, a file service, and a name service. 
Objects can communicate by either using shared buffers (if they are running at 
the same site), or message passing. 
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4.5 C h a o s  

CHAOS [17, 53] (Concurrent Hierarchical Adaptable Object System), is a com- 
plete programming and operating system for Real-Time applications. 

Similar to MARUTI, CHAOS is object-based. The CHOS run-time system 
offers kernel level primitives which support the development of real-time software 
structured as a collection of interacting objects. CHAOS is particularly suitable 
for the development of large, complex real-time applications characterized by 
stringent timing constraints. Its goal is to support the programming of adaptable, 
efficient, predictable, and accountable applications. 

Effciency is important since RT applications are time-constrained; hence, 
system overload should be kept to a minimum so that these constraints can 
be satisfied, however, the system is to provide efficiency of execution, without 
compromising accountability, predictability, or reliability. 

Accountability means that the kernel must either honor its critical commit- 
ments, or it has to report detected failure to the higher level software, before the 
system reach an unsafe state. (For example, in CHAOS an unanticipated change 
in the system environment, noted by the kernel, might cause that an invocation 
miss its hard deadline, and the kernel raise an appropriate exception.) Thus, one 
of the goals of accountability is to allow the application programmer to develop 
application specific methods for recovering from failures. 

RT applications using CHAOS can be constructed using system provided 
primitives, customizing these primitives to the applications needs, or by defining 
new, application-specific primitive operations. CHAOS ensures the predictable 
behavior of all those synthesized primitives. In addition, it provides mechanisms 
by means of which the application programmer can monitor the application soft- 
ware, and adapt it to achieve the required performance. CHAOS is particularly 
suitable for supporting the implementation of robotics applications (the major 
test bed for CHAOS implementations is a 6-legged walking machine). 

As to scheduling, CHAOS uses a two-level scheduling model [54, 15]. The 
higher level consists of the 0 bjec~ scheduler; this scheduler receives the invocations 
and assigns them to specific threads of execution, on the basis of their attributes 
and processors' load. This scheduler (or allocator) is based on a heuristic greedy 
algorithm. At the processor level, scheduling is carried out by using an Earliest 
Deadline First dispatcher. Finally, CHAOS inherits, from the distributed data- 
base theory, the concept of atomicity. Transactional methods can be used to 
drive the invocation of recovery actions that avoid that partial execution results 
be permanently stored. Atomicity in Chaos refers to RT correctness, as recovery 
actions may be caused by timing faults. 

To conclude this Section, we wish to point out that the five different systems 
we have introduced have been chosen as they are sufficiently representative of a 
rather wide spectrum of design choices that can be made in the design of a RT 
system. 

For example, SPRING, although designed to provide ET applications with 
a predictable RT infrastructure, essentially neglects issues of fault tolerance; 
rather, its designers have favored the development of a flexible architecture that 
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can accommodate application tasks characterized by different requirements (i.e. 
critical, essential, and non-essential tasks). 

The design of HARTS emphasizes low level architectural issues, and investi- 
gates the use of a special-purpose network for distributed RT communications. 

MARS is a predictable, time-triggered, distributed architecture; its design 
exploits the properties of the synchronous systems in order to provide its users 
with a dependable, real-time, distributed infrastructure for HRT applications. 

Finally, MARUTI and CHAOS explore the use of an object oriented approach 
to the design of fault tolerant RTOSs. However, the design of MARUTI empha- 
sizes issues of integration of conventional, and interrupt-driver RT tasks; instead, 
CHAOS emphasizes issues of accountability, and support for the development of 
application dependent fault tolerance techniques. 

5 Concluding Remarks 

In this tutorial paper we have discussed a number of RT system design issues, 
and described briefly five examples of distributed RT systems, that have been 
recently developed. To conclude this paper, we summarize below the principal 
criteria and metrics that can be used to evaluate RT systems in general, and 
distributed RT systems in particular. 

To begin with, we have pointed out that "timeliness" is indeed a crucial 
requirement to be met in the design of a RT system; however, this requirement 
is not sufficient to guarantee the effectiveness of any such system, as a RT system 
is to be designed so as to be "predictable", primarily. 

We have examined and contrasted two principal architectural paradigms for 
the design of predictable RT systems; namely, the Time Triggered and the Event 
Triggered paradigms. These two paradigms aim to meeting the predictability 
requirement mentioned above by implementing static or dynamic strategies, re- 
spectively, for the assessment of the resource and timing requirements of the RT 
application tasks. 

Issues of clock synchronization in distributed RT systems have been intro- 
duced next. In this context, we have observed that the overhead introduced by 
the exchange of the clock synchronization messages is a relevant metric to assess 
the effectiveness of the clock synchronization algorithms that can be used in 
those systems. 

We have then discussed interprocess communication design issues in RT sys- 
tems. The principal requirements to be met by the communication infrastructure, 
in order to support RT applications, have been introduced (namely, bounded 
channel access delay, bounded message delay, and bounded delay jitter). Rele- 
vant figures of merit for the evaluation of RT communication mechanisms, that 
have emerged from our discussion, include: the message loss percentage, the 
message transmission rate, the deadline miss percentage, the effective channel 
utilization, and the scalability of the mechanism. 

Finally, we have examined issues of scheduling in RT systems, and discussed 
the results of a simulation study that we have carried out in order to assess a 
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number  of scheduling policies. The figures of merit  that  we have proposed for 
the assessment of the those policies include: the resource breakdown utilization, 
the normalized mean response time, and, for dynamic scheduling policies, the 
guaranteed ratio. 
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