
Performance Instrumentation Techniques for
Parallel Systems

Daniel A. Reed*

Department of Computer Science
University of]lllnois

Urbana, 111~nois 61801

Abstract. Although the nascent state of parallel systems makes empiri-
cal performance measurement, analysis and tnnlng critical, rapid techno-
logical evolution, coupled with short product life cycles, hw often made it
di~cult to isolate fundamental experimental principles from implementa-
tion artifacts. By definition, the apparatuz for experimental performance
analysis (i.e., instrumentation specification, data buffering, timestamp
generation, and data extraction) is shaped by the intended experiment
and the object of study. In some environments, certain experiments are
not feasible. Balancing the volume of captured performance data against
its accuracy and timeliness requires both appropriate tools and an un-
derstanding of instrumentation costs, implementation alternatives, and
support infrastructure.

1 I n t r o d u c t i o n

The same production economics that have made personal computers so power-
ful, inexpensive and ubiquitous, are driving the development of scalable paralhl
systems. By exploiting commodity microprocessors and memory chips, it is now
technically and economically feasible to build systems that scale from tens to
hundreds or thousands of processors. However, achieving a large fraction of peak
performance across a range of applications has proven much more difficult than
first expected - - many massively paralhl systems exhibit performance instability
(i.e., the variance in performance is high, both in a single application and across
a group of applications). Even more distressing than performance instability is
our current inability to predict the performance of a particular application on a
given parallel system.

As an illustration of performance instability, consider a simple gedanken ex-
periment involvin 8 workstations and parallel systems. Select ten application pro-
grams, measure their execution times on an arbitrarily chosen workstation, and

* This work was supported in part by National Science Foundation grants NSF
CCR87-06653 and NSF CDA87-22836 (Tapestry), NASA ICLASS Contract No.
NAG-I-613, DARPA Contract No. DABT63-91-K-0004, and by grants from the
Digital Equipment Cozporation External Research Program and the Intel Super-
computer Systenm Division.

464

then rank the applications based on their measured execution times. Now repeat
the process for another workstation with comparabh peak performance and then
compare the two rankings. Not only win the rankings be permuted, but the rel-
ative separation between ranked elements also will have changed. Finally, repeat
the experiment using two parallel systems with comparable peak performance. 2
Not only will there be little correlation between rankings, but the differences in
program execution times may well vary by multiple orders of magnitude.

Although single figures of merit (e.g., peak MIPS, MFLOPS, or clock rate)
cannot be used to predict the performance of an isolated application code, for
single processor systems they do provide rough performance guidelines, and one
can be reasonably confident that a system with a 100 MHs clock will execute
almost any application code faster than a comparable system with a 50 MHs
clock. In contrast, a paralld system with lower peak performance may well ex-
ecute a wide range of codes more quickly than another that has higher peak
performance. Simply put, consistently achievable performance across a broad
range of applications is the desired, though still elusive, goal.

The underlying causes of performance instability and low performance lie in
the patterns of interaction among application software, the operating system,
and the parallel hardware. For parallel systems, these interactions involve hun-
dreds or thousands of processors and dynamic behavior on a microsecond time
scale. Just as effective management techniques for small, human organizations
do not readily scale to larger groups, well-understood techniques for harness-
ing the power of two or four processor systems are not directly extensible to
massively parallel systems. In both contexts, accurate, timely information is the
prerequisite to developin 8 and implementing decision procedures that marlmlze
performance. Obtaining this information is the goal of performance instrumen-
tation.

Performance instrumentation itself is part of the larger discipline of exper-
imental performance analysis. As Fig. 1 suggests, experimental performance
analysis contains four phases: hypothesis construction, identifying measurement
points, instrumentation and measurement, and data analysis.

All but instrumentation and measurement depend on the experimental goal.
For example, an effective task scheduling strategy for a shared memory par-
allel system depends on the application programming model, the cost of task
preemption, the expected multiprogramming level, and the hardware's memory
hierarchy. Changes to any one of these will shift the scheduling strategy design
point, the experimental hypothesis, the instrumentation points, and the data
analysis, but usually not the instrumentation and data capture infrastructure.

Given the enormous breadth of possible performance analysis hypotheses,
as well as space limitations, techniques for performance instrumentation and
data capture are the primary focus of this survey. For lucid introductions to the
broader issues of hypothesis testing and performance data analysis, see [2, 23, 24].

a In practice, conducting this experiment on two parallel systems is a formidable task.
Prograrnmlng modelJ and system configurations differ so greatly that simply porting
a code to multiple architectures is problematic.

465

Hypothesis construction

Performance Experiment

---=. Measurement point specification

Instrumentation and measurement

Data analysis

Figure I Experimental performance analysis phases

To provide a context for understanding experimental, parallel system per-
formance analysis, ~2 begins with a brief survey of parallel architectures and
performance measurement levels, followed in w by a discussion of counting,
timing, and tracing instrumentation. In w we compare hardware and software
approaches to event tracing and discuss the importance of high resolution, low
latency clocks. In ~5 we describe potential performance instrumentation pitfalls
and suggest guidelines for effective instrumentation, followed in w by a dis-
cussion of open problems and possible solutions. Finally, [7 concludes with a
synopsis of our observations.

2 Parallel Processing and Instrumentation Levels

Although many of the techniques for experimental performance analysis apply
generally to all classes of parallel systems, others are inextricably tied to partic-
ular classes of parallel architectures or particular programming models. Below,
we briefly review common approaches to parallel processing, followed by a dis-
cussion of measurement levels and their instrumentation implications.

2.1 Para l le l A r c h i t e c t u r e s and ProgrAmrn;ng Mode l s

Although a plethora of high-performance parallel systems have been proposed,
the market is dominated by only three architecture classes: SIMD, shared mem-
ory MIMD, and distributed memory MIMD. Exemplars of these classes in-
dude the bit-serial SIMD Thinking Machines CM-2, the shared memory Cray
C90 vector multiprocessor, and the Intel Paragon XP/S distributed memory
multicomputer. 8 Not only does each have certain performance advantages and
disadvantages, each also requires different performance measurements and differs
in the ease of access to pertinent performance data.

3 Other examples include, but are not limited to the SIMD Masspar MP-2, the Think-
ing Machines CM-5, Ncube/3, Cray T3D, and Convex MPP.

466

Hardware

System Software

Run-time System

Application

Figure 2 Performance instrumentation levels

The Thinking Machines CM-2 consists of up to 64K, one-bit processing el-
ements (PEs), 2K high-speed floating point units, and a modest amount of lo-
cal memory for each PE, all managed by a control processor that broadcasts
instructions to the PEs. The PEs are connected by a two-dlmensional mesh,
for nearest neighbor communication, as well as a hypercube network, used for
message routing to arbitrary destinations. The standard programrning model is
data parallel, arrays are distributed across the processors, and hlgh-level array
operations (e.g., array addition or reduction) are implemented by broadcasting
instructions to the processor array. Key performance issues include maintaining
a high degree of parallelism, minimizing delays for instruction broadcast, and
minimizing interproeessor communication.

Because all instructions are issued by the control processor, capturing soft-
ware performance data on a SIMD system is conceptually simple; one need only
instrument instruction broadcast on the control processor to measure the exe-
cution time of particular operations (e.g., array or floating point operations).
Moreover, because all PEs execute in lock step, one can halt instruction broad-
cast and interrogate the local memory of any PEs to extract additional data
without perturbing the system state.

In striking contrast to the Thinking Machines CM-2, the Cray C90 contains
up to 16 high-speed, pipelined vector processors that share access to a highly
interleaved memory system. As a replacement for the Cray X/MP and Y/MP,
the C90 relies on aggressive compilation of sequential Fortran codes to exploit
vector operations, and on tasking directives to exploit multiple processors. Hard-
ware semaphores provide synchronization for task schednllng. Key performance
issues include maximizing vectorisation, minimizing memory bank conflicts, and
maintaining good load balance across the processors.

Shared memory simultaneously exacerbates and ameliorates performance in-
strumentation difficulties. The shared memory programming model encourages
small, frequent state changes with synchronization only where necessary to en-
sure correctness. This makes it exceedingly difficult to capture the pattern of

467

processor interactions. Conversely, shared memory does enable an instrumen-
tation system to observe the entire system state; although care is necessary to
avoid introducing memory bank conflicts or excessive context switching.

Final]y, distributed memory systems like the Intel Paragon XP/S consist of
hundreds or thousands of nodes that interact via message passing rather than
through shared memory. On the XP/S, the processors are connected in two-
dimensional mesh via a wormhole routing network. Each node contains a local
memory, a commodity microprocessor, and a interface to the routing network.
Key performance issues include hiding message passing latency by computation,
balancing the computation across the processors, and choosing a distribution of
data across processors that minimizes communication while m~Timlzing paral-
lelism.

In message passing, the interaction pattern among processors is explicit, and
the m ~ m u m interaction frequency is low compared to that for shared memory
systems. Although the relative isolation of the processors makes it easy to cap-
ture message passing performance data, the absence of a shared memory makes
determining a global order for events difficult; see w Moreover, extracting per-
formance data often must rely on the same network used to pass application
messages; this can perturb the system.

The absence of a central control on both shared and distributed memory
MIMD systems makes unobtrusive data capture and extraction more difficult
than on SIMD systems. In consequence, the majority of vendor and research
performance instrumentation efforts have focused on MIMD instrumentation
implementations.

2.2 P e r f o r m a n c e M e a s u r e m e n t Levels

The goal of performance instrumentation is to provide the requisite data to an-
swer the basic question "How fast is it?" and its consequent "What should be
modified to make it faster?" The meaning of the first question depends on its
context. As Fig. 2 suggests, there are at least four potential instrumentation lev-
els, namely hardware, system software, run-time software, and application code.
In general, optimization requires correlation of performance data across two or
more of these levels. For example, maximizing vector lengths is key to achieving
good performance on most pipelined vector processors. An ideal performance
instrumentation would include hardware support to count the number of scalar
and vector floating point operations and software instrumentation in the applica-
tion to record loop bounds and procedure call patterns. By combining hardware
and application performance data, one could identify those code fragments that
most need optlmlzation. 4

From the instrumentation perspective, the techniques used to obtain perfor-
mance data depend strongly on whether hardware, system software or applica-
tion data are sought; see Table 1. Capturing hardware performance data without

4 The Cray Hazdware Performance Monitor (HPM) [9], together with application trac-
ing, provides precisely this capability.

468

Table 1 Example performance measurements and instrumentation techniques

Example
Level Measurement Technique Support

Hardware cache misses counting hardware
network contention timing hardware
instruction rn iY counting hardware

Operating system

Run-time system

Application

system cal/s
context switches
page faults
task creation
task synchronisation
procedure occupancy
message passing

counting/tracing
counting/traclng
counting
counting/tracing
counting/tracing
proKllng/t;ming
tracing

software/hardware
sos
software
software/hardware
so'ware
software
software/hardware

hardware support is sometimes possible, though extremely difficult. Not only are
many types of hardware data are not accessible via software (e.g., cache misses
or pipeline stalls), but the trend is toward increasing inaccessibility. As micro-
processors continue to replace discrete component designs, previously accessible
measurement points axe migrating onto the chip, and packaging constr~Lints pre-
clude the use of scarce pins for performance data extraction, s For example, it
is not possible to capture a complete trace of physical memory references by
monitoring memory accesses at a microprocessor's chip boundary; only mi~gses
to the on-chip cache are asserted on the chip's scldress pins.

Unfortunately, market pressures axe unlikely to force microprocessor vendors
to provide access to internal performance data. The paral]el systems market,
which increasingly relies on commodity processor building blocks, is a tiny frac-
tion of the microprocessor market, and the predominant consumers of micropro-
cessors, personal computer and workstation users, have not expressed interest in
hardware instrumentation support.

Despite the lack of access to microprocessor internals, a plethora of hardware
performance data remains accessible. Almost all parallel systems are constructed
by augmenting microprocessors with ancillary logic to support either memory

�9 coherence (shared memory systems), message passing (distributed memory sys-
tems), or instruction issue (SIMD systems). By adding hardware counters and
performance data extraction paths to these components, parallel systems ven-
dors could provide ready access to a wealth of hardware performance data at
minimal cost.

Hardware instrumentation can be unobtrusive, but is necessarily limited in
scope and flexibility. The time scale for hardware events is small, theiz frequency
is very high, and the number and type of instrumentation points must be chosen

s Increasing inaccessibility is a problem for chip testers as well. Builtin self-test (BIST)
and scan logic for serial extraction of internal state are reactions to this limitation.

469

when the hardware is designed. In contrast, the software performance instrumen-
tation options are much more rich and varied - - both data capture techniques
and instrumentation points can be changed long after the software has been
designed.

The primary distinction between application instrumentation and that for
operating system or run-time systems is the use of system services. Application
instrumentation and data capture are free to use any system services if that
use will not substantively change the application's performance or behavior.
However, when designing operating system instrumentation and data capture,
one must not use any system services that are potential instrumentation tarsets.
For example, when measuring the performance of an input/output system, the
performance data capture software must not rely on the input/output system for
real-time data extraction. Similarly, a separate performance monitoring task can
change the task scheduling pattern, and an instrumentation of a virtual memory
system should not buffer performance data in virtual memory.

$ P e r f o r m a n c e M e a s u r e m e n t T e c h n i q u e s

Regardless of the instrumentation level, there are four basic approaches to per-
formance data capture: timing, counting, sampling, and tracing. Each represents
a different balance between information volume, potential instrumentation per-
turbation, accuracy, and implementation complexity.

3.1 T iming

Speedup, the ratio of sequential to parallel execution time, relies on the simplest
form of timing - - a measure of aggregate execution time. If the execution time
is sufficiently large, this measure requires no system support and introduces no
perturbations, a simple stopwatch suffices. Aggregate system timing is a measure
of success (i.e., it allows one to estimate how closely one approached the ideal),
but it provides no insight when further performance optimization is required.
Instead, one must measure the execution times of individual system components.

Although detailed timing data can identify where a system spends the ma-
jority of its time, it is insufficient to determine when or why. A procedure or
hardware component may be in use a large fraction of time time, not because
it was poorly optimized, but because some other component repeatedly and un-
necessarily invokes it (i.e., timing can reveal proximate bottlenecks but not when
or why particular hardware or software components were invoked).

To implement a timing facility, one needs only low latency access to a clock
whose resolution is high compared to the elapsed time of the events being
measured, e Both clock resolution and access latency are critical to accurate tim-
ing; the clock resolution limits the effective granularity of measurements, and
the access latency bounds the instrumentation perturbation - - access times for

6 See |4 for a discussion of clocks and clock access.

470

a high latency clock can exceed the lifetime of the measured behavior. Finally,
unless the number of timing points is large, the total volume of performance
data produced by timing instrumentation is small.

3.2 Coun t ing and Sampl ing

In contrast to timing, counting records the number of times an event occurred,
but not where or why. Given both counts and total times, one can accurately
compute average execution times. Unless the number of counters is exorbitant,
counting is efficient, minimally intrusive, and produces only a modest amount of
data. To implement a counting facility, one need only allocate sufficient storage
for the array of counters, then during execution, index the counter array and
increment the appropriate counter.

sampling is an approximation to counting, obtained by periodically observing
the system state and incrementing a counter that corresponds to the observed
state. Standard profiles (e.g., Unit gprof [5]), sample the program counter at
fixed time intervals, use the program counter as the index to a bin, and increment
the associated counter. After program execution, the counter value in each bin
is proportional to the total time spent executing code in the associated address
range.

The primary limitations of profiling are its dependence on an external sam-
piing task and the potential errors inherent in sampling. On single processor
systems, the operating system implements profiling by sampling the task pro-
gram counter at each clock tick, typically every 10-20 milliseconds. If the total
program execution time is too low, the sampling error may be high. The operat-
ing system dependence of standard profiling techniques makes profiling operating
system activity difficult.

On parallel systems, the existence of multiple processors can skew profiling
statistics [16, 11]. Consider a code fragment that achieves linear speedup on P
processors. The observed execution time for that code fragment is ~ that for the
comparable sequential code, and a program counter sample will underestimate
its contribution to total execution time unless the samples across all P processors
are combined.

3.3 Even t Tracing

Event tracing is potentially the most invasive of the four instrumentation tech-
niques, but it also is the most general and the most flexible. Event tracing
generates a sequence of event records. Each event is some significant physical or
logical activity, and the event record is an encoded instance of the action and
its attributes. Each record typically includes the following.

1. what action occurred (i.e., an event identifier),
2. the time when the event occurred,
3. the location where the event occurred (e.g., a llne number), and
4. any additional data that defines the event circumstances.

471

Not only does event tracing identify what happened and where it happened, the
event timestamps impose an order on the events that defines control flow and
system component interactions.

Event tracing subsumes timing, counting, and sampling; one can compute
times and counts from trace data. For example, given a trace of procedure en-
tries and exits, one can compute the total number of calls to each procedure
by counting the number of instances of each event type, as well as the total
procedure execution times by matching procedure entry and exit events, com-
puting the difference in their event times, and adding the difference to a running
sum for that procedure. In addition, the trace provides the dynamic procedure
call graph Similarly, a trace of message passing events on a distributed memory
parallel system defines the sequence of processor interactions, as well as load im-
balances due to message waiting (i.e., by computing the waiting time to receive
messages).

The disadvantage of tracing is its potential intrusion, the implementation
complexity, and the large volume of generated performance data. Like timing,
event tracing require low latency access to a high resolution clocks, but it also
must unobtrusively buffer event data and extract it without excessively perturb-
hag the measured system. Because software events can occur on a microsecond
or millisecond time scale, and hardware events on an even smaller microsecond
or even nanosecond scale, even on a single processor system, the data volume
can exceed a megabyte per second. Fortunately, data rates for many common
events are not that high, and, as we shall see, there are techniques to reduce the
rate while retaining the advantages of tracing.

Despite its potential disadvantages, tracing is the software equivalent of a
hardware logic analyzer. With tracing, one can capture component interactions,
dynamic behavior, and transients. Too often, performance analysts treat soft-
ware as a "black box" that can be stimulated externally but not probed inter-
nnlly. Event tracing allows users and performance analysts to study software and
hardware interactions; in short, to understand why components perform as they
do.

Because we believe event tracing is the most powerful tool for system under-
standing, and because the implementation issues for event tracing are a superset
of those for counting and timing, tracing is the focus of the remainder of this
survey. For a discussion of counting and timing facilities, see [23, 24].

4 Event Tracing

Event tracing is possible at either the hardware or software level. As discussed
in 52.2, some components of hardware performance instrumentation (e.g., probe
points) ate inherently system dependent, and these dependences have profound
implications for the other components. This is particularly true for event tracing,
where the data rates are high and hardware solutions are closely linked to the in-
tended application. In consequence, hardware event tracing is rarely used except
in isolated circumstances (e.g., to obtain address traces). In contrast, software

472

event tracing is effective with operating systems, run-time systems, and appli-
cation codes. Moreover, the majority of the software implementation issues are
independent of specific system idiosyncrasies. For this reason, our focus is sup-
port for capture of software events (i.e., events that occur in software).

Whether used with system or application software, any software event tracing
implementation must resolve the following six issues:

1. timestamp generation,
2. trace buffer allocation,
3. event recording,
4. trace extraction,
5. data volume constraints, and
6. intrusion.

The expected data rates, system software environment, and the parallel architec-
ture all constrain a particular implementation. To minimize the instrumentation
intrusion, hardware support for some aspects of software data capture and ex-
traction may be required.

As an example, on a distributed memory parallel system, event trace data
can be buffered in individual processor processor memories, but when the vol-
ume of trace data exceeds the allocated storage, it must be removed from the
node or some trace data must be discarded. Unless all nodes are preempted
while the event trace data is extracted via the interprocessor communication
network, using the network will interfere with system and application message
passing and potentially change the timestamps or order of any events captured
during the extraction. Given a separate, external performance data collection
network, the data can be extracted from the system without using the standard
communication network. However, writing the data to the collection network
still consumes processor cycles. If the event data rate is extremely high, a data
extraction co-processor may be needed as well.

In short, the instrumentation circumstances may dictate a software imple-
mentation, a hybrid of software and hardware, or a hardware implementation of
software event tracing. Choosing an appropriate combination of hardware and
software is part of the performance analyst's art.

4.1 Even t Orde r s and Clocks

On a single processor system, sequential execution totally orders the event se-
quence - - there is only one thread of control. For oper,~ting system or run-time
systems, the event order is dependent on asynchronous events, and the event
sequence may change across multiple executions. However, for most sequen-
tinl application codes the event sequence is repeatable, given the same inputs.
Moreover, at the application level, perturbations created by instrumentation can
change the elapsed time between events, but they cannot change the event order;
see Fig. 3.

473

_m ~m _n
~ m - m ~ m

Partial event order ~ ms ~ ~ --,.
(parallel) ~mm ~ ~mm

~ m ~ m m ~ m

Processor 0

Processor I

Processor 2

tl t2
Total event order ~ ass ~ mm ~

(sequential)

Figure $ Partial and total event orders

On parallel systems, there are multiple threads of control, each potentially
generating an event sequence. Just as for sequential execution, the event se-
quence for each thread is totally ordered. The global event order for the entire
computation is obtained by merging the event orders from the individual event
sequences.

If instrumentation differentially delays the threads, not only will the elapsed
time between events change, but the global event order itself may change. Con-
sider Fig. 3 where t l and t2 denote the times that two difl~erent processors send
messages to a third, t3 and t4 denote the times that those messages arrive, and
the events A and B denote the two message arrivals. Delays on the parallel exe-
cution paths may result in the messages ~rivin 8 in the order A B (i.e., t3 < t4)
or the order BA (i.e., t4 < t3).

More perniciously, when merging the individual traces, it may be impossible
to determine the correct event order. Continnin 8 the example of Fig. 3, it may
be impossible to determine which message was sent first (i.e., if t l < t2). Three
factors can prevent accurate event ordering: low resolution clocks, high latency
clock access, and clock skew.

First and simpllst, if the clock resolution is less than the nominal inter-event
time, multiple events may have the same timestamp. On an individual processor
or thread, these events still are totally ordered by the sequential execution, but
across threads or processors they are unordered and apparently occur simulta-
neously. In the example of Fig. 3, if the measured times are such that t l = t2,
the order that the two message sends began cannot be resolved.

Unfortunately, many operating systems provide a user-accessible clock with
a resolution equal to the power line frequency, either 50 or 60 Hs. In many
cases, however, the hardware includes a higher resolution timer; it simply is
not exported to the user by the system software. As processor speeds have in-
creased, event frequencies have risen dramatically. This, coupled with low res-
olution clocks, has made accurate measurement of common software constructs

474

200

O r

O

O
D

i

150 -

100-

50-

1 . I . 1

Choices (system call)

Unix (memory mapped)

L , | i

M e a s u r e m e n t N u m b e r

Flgure 4 Encore Mtdtimax event recording times

(e.g., procedure lifetimes) impossible.

Second, even if the clock resolution is high, a highly variable access cost can
negate its effects. If events are t imestamped under software control, a memory
mapped clock that can be read by a single memory reference is imperative. As
an example of its importance, Fig. 4 shows the cost to record an event on an
Encore Mnltimax using two different operating systems, one with a memory
mapped hardware clock and the other with the same clock accessible only via
an operating system call [7]. With Encore's Unix implementation, accessing the
clock requites only a memory read, and events can be recorded in as little as
fifteen microseconds. Under the experimental Choicea operating system, the sys-
tem call not only increases the event recording time ten-fold, it also increases
the access time variance. In addition to a protection boundary crossing, there
are multiple procedure calls, memory references, and cache misses. Closely sepa-
rated events on different processors may lie within the measurement uncertainty
of the clock system call.

The third cause of uncertainties in global event orders is clock skew. Normally,
we accept the classical physics view of time; we assume it flows at an equal rate at
all locations, that it orders local and remote events, and that causality violations
ate impossible. Intuitively, an omniscient observer would see all events occurring
in their "true" order with cause preceding effect.

Unfortunately, the classical view of time is inconsistent with reality on many
patallel systems. If each processor has its own clock, measured time can pc,-

475

5000

,~ 4O0O-

.'~ 2ooo

0
o io o 2o'oo 40'00 5ooo

Measurement Number

Figure 5 Clock drift in measured message transmission times

tentially flow at a different, non-uniform rate on each processor. 7 Non-uniform
rates mean that the measured time between events on a single processor may
be inaccurate. More troubling, however, is the effect of different rates - - when
comparing event t imestamps on two different processors, causality violations can
occur (i.e., effect can, based on timestamps, seem to precede cause).

Figure 5 illustrates the effect of inconsistent clocks on a Intel iPSC/860; each
processor has a local clock with 100 nanosecond resolution. The figure shows
a sequence of measured, message transmission times between a pair of nodes.
The elapsed times were determined by computing the difference between the
t imestamp for a message send event on the transmitter and the t imestamp on
the associated message receive event on the receiver. The increasing time for
a round trip message transmission is an artifact of clock drift, and the spikes
are due to context switches on one or the other of the two processors. Near
the beginning, the two clock values are nearly the same. As the measurement
proceeds, the clocks drift apart . In this example, the separation is positive, but
only a few of the estimates are accurate. If the identities of the receiver and
sender were exchanged, the message transmission times would be negative.

Clock drift can be eliminated either by distributing the value of a single clock
to all processors or by synchronizing all clocks to a master time base. Unless the
clock resolution is very low, clock distribution requires hardware support via a

7 This problem is not unique to parallel systems. The existence of unsynchrnnised local
clocks motivated the creation of an international time base, Universal Time (UT).

476

clock distribution network. Even for a system with hundreds or thousands of
processors, the cost of such a network is low. s

Software clock synchronization [3, 17] is the alternative to a global time base.
Intuitively, one chooses one processor's clock as the master and synchronizes all
other clocks to that master. To bound the potential difference between clocks,
one initially measures the drift rate using measures similar to that in Fig. 5.
and uses that to compute a resynchrouization interval. The frequency of clock
resynchrouization depends on the drift rate, the desired error bound, and the
tolerable synchronization cost, but it must be high enough to prevent causality
violations in the measured event times.

To summarize, obtaining accurate, total event orders for parallel systems is
dependent on high resolution, globally consistent, low latency clocks. Techniques
for minimizing instrumentation overhead may involve software, hardware, or a
combination of the two. Failure in any area can lead to inaccurate data and
incorrect event orders.

4.2 Sof tware S u p p o r t

Because software support for performance instrumentation can take many forms,
implementation issues are best understood in a specific context. Hence, we de-
scribe three different software implementations of event tracing, Crystal, Pablo,
and CTrace, each intended for a different environment. Crystal [20] supports
operating system and application performance data capture on the Inte] iPSC/2
hypercube, the Pablo instrumentation library [19] supports portable application
event tracing, and the CTrace library [10] supports application and operating
system tracing on a hierarchical, shared memory parallel system.

Crys ta l : O p e r a t i n g S y s t e m I n s t r u m e n t a t i o n . The Intel iPSC/2 hypercube
typified second generation distributed memory systems. The iPSC/2 hypercube
nodes were based on an Intel 80386/80387 pair, each node contained up to
sixteen megabytes of memory, and the nodes sent messages via fixed path circuit-
switching [1]. In addition, a subset of the nodes supported a parallel input/output
system [15] with on commodity disks. Because the iPSC/2's salient features are
an integral part of current systems (e.g., the Intel Paragon XP/S and Thinking
Machines CM-5), most of the performance instrumentation issues are directly
transferable to newer architectures.

Crystal [13, 20, 22, 21], based on a modified version of the Intel NX/2 operat-
ing system, was an event tracing facility designed to capture both application and
operating system events. Application instrumentation could be inserted either
manually by users or automatically by a compiler. In either case, the generated
events were passed to a modified version of Intel's NX/2 operating system, which
executed on each of the hypercube nodes.

s Despite its low cost, many r systems still lack a global time base.

477

Fie ZoemOut She~Even~ F.,xpw~l

' , ~:~': ~: �9 :::~.'L': :::~' :: ~,,

................... . ,~.._._....

P

2 ~ ~ H I I E E I E E B i E E E E I I I E !
P

4 @ ~ @ ~ I E E : ~ E t E | l l E i l I | I I E |] i | I
r

~

6 ~ ~ ~ E E I E i E E i E I l I E E I I i l E i i l E i l
7 ~ ~ U l l l l l l E l l] E l l l i l l i E l i m

~econds

L . .;.~ .

trvim~: SDI9 Even1;: Correepondtn s RECs :ll
Node: 4 Node= t

i
Ttww: 4.674733 T.tme= 4.@75672
nel~lr',a~lor~: 1
@Ize: 1432
Twpe = 35

Figure @ Crystal Inte] iPSC/2 event time line

In addition to recording the application data, the modified NX/2 internally
captured three classes of operating system events: message passing, process con-
text switches, and all system calls. On each node, the application and operating
system events were merged and stored in a trace buffer that was preallocated
in the node's local memory. Because each node of the iPSC/2 had a local clock,
the modified NX/2 synchronized all node clocks before event recozdin 8 began
and compensated for clock skew using the known clock drift rates.

Finally, when a node's trace buffer filled, tracing on that node normally was
disabled. As a more intrusive alternative, a double buffering scheme allowed
extraction of one trace buffer via the circuit-switched network while the other
was being filled. The NX/2 operating system did not support viztual memory,
and the Crystal instrumentation was a delicate balance between application
memory needs and trace storage capacity. Allocating too much memory to trace
capture left too little for the application code to execute. AJ]ocating too little
memory to trace buffers I;rnlted the amount of captured data.

Experience showed that the limited operating system instrumentation sup-
ported by Crystal was surprisingly powerful. Tracing the operating system mes-
sage passing code showed the contributions of message buffer management, hazd-

478

ware setup, and transmission time to message latency, as well as the effects of
the Intel iPSC/2 communication protocol s Moreover, because all application
file requests were realized using messages, the instrumented message passing
showed all file-related communication traffic synthesized by the operating sys-
tem. Finally, the context switch and system call data exposed the coupling of
application requests for services with the operating system responses, as well as
idle time due to load imbalances.

Figure 6 shows a portion of a graphical time line, constructed using trace
data captured by Crystal. The event trace is from an eight processor execution
of a parallel linear optlml-.ation code [25]. Notice the message send, highlighted
on processor 4 and the corresponding receive, highlighted on processor 1. The
series of parallel horizontal lines following the "s" are the hardware message
transm;-~ion of a fixed size message header. Following this, the sending node
is idle (indicated by light gray) while the receiver operating system on node 1
processes the message header (indicated by dark gray). Processor 4 then trans-
mits the remainder of the message, shown by the second series of horizontal lines
between times 4.875 and 4.876. More generally, the alternating light and dark
gray pattern on the time llne is a sequence of context switches between the ap-
plication code and the operating system, as the application probes for message
arrivals.

The primary strength of Crystal, its access to operating system internals,
also proved to be its greatest weakness. Retrofitting instrumentation to a pro-
prietary operating system required source code access, and licensing restrictions
prevented redistribution of modified source code. Unless the operating system
source code widely available (e.g., Mach or OSF/1), operating system instru-
mentation is best supported by a parallel systems vendor.

Pablo" Appl ica t ion I n s t r u m e n t a t i o n . The Pablo Performance Analysis En-
vironment I~ [19, 18] is a portable performance instrumentation and data analysis
environment designed for large-scale parallel systems, with primary emphasis
on the Intel Paragon XP/S and Thinking Machines CM-5. Unlike the Crystal
instrumentation, Pablo's instrumentation software is designed to be architecture
neutral and easily portable to new systems. 11

Intended primarily for capturing application performance data, the Pablo in-
strumentation is implemented as a library that isolates architecture-independent
data buffering and recording software from architecture-dependent aspects such
as processor synchronization and timestamp acquisition. The data tecordlng

t The iPSC/2 used a two-phase protocol to send messages longer than I00 bytes m
Krst, a fixed slse header was sent that contained the message length and an initial
portion ot the meusge. After the receiver acknowledged the receipt and its w;ll;ngneu
to accept additional data, the sender transmitted the remainder of the message.

10 Pablo is a trademark of the Board of Trustees of the University of n];nois.
11 PICL, the portable, instrumented communication library [4], developed by the Oak

Ridge National Laboratory, shares these attributes, though its primary focus is on
portable message passing.

479

model is similar to that for the Crystal instrumentation; there is a separate trace
buffer for each processor or thread of control, and performance data are written
to these buffers. When any buffer fills, all processors are interrupted and all write
their trace data to secondary storage. The cost of buffer dumping is recorded in
the trace data, allowing buffering dumping overheads to be removed from the
trace data during post-processing. For parallel systems that lack a global time
base, the Pablo instrumentation periodically synchronizes the processors using
an implementation of Duuigan's distributed synchronization algorithm [3].

The architecture-independent instrumentation interface supports counting,
interval timing, and event tracing. Counts can be accumulated or periodically
flushed to trace buffers. If they are flushed only once, at the end of data cap-
ture, the canonical definition of counting holds; conversely, flushing a count each
time it changes is equivalent to event tracing. Periodic flushing of counts allows
the performance analyst to balance data volume against instrumentation data
granularity.

To further constrain data rates and to provide user control of instrumentation
perturbations, the Pablo instrumentation library supports both user-specified
and internal event rate controls. The instrumentation library monitors the data
recording rate for each event. While the rate lies below a pre-specified event
threshold, the event stream is recorded. However, when the rate exceeds the
threshold, the instrumentation library substitutes less invasive data recording
(.e.g., by converting trace events into periodic counts). When the event rate
declines, more detailed data recording is re-enabled. By a~ustin 8 the event rate
threshold, the user can balance data rates, event volume, and instrumentation
perturbation against the need for specific performance data.

For counting, interval timing, and event tracing, the Pablo instrumentation li-
brary supports user-written extension functions. Because all event data is passed
to these functions before being written to trace buffers, users can create higher-
level events, selectively discard certain events, or modify the event data. For
example, given a sequence of procedure entry and exit trace events, an exten-
sion function could replace the raw event trace with dynamic procedure profiles,
a histogram of procedure lifetimes, or a matrix of procedure ca]] transition prob-
abilities.

To support user extensions and to ma~mise portability, Pablo generates
performance data files in a self-describing data format (SDDF). These files in-
clude definitions of the record formats contained in the file; the definitions are
then used to parse the record instances. Because new record definitions can be
easily added, new types of performance data relevant to specific application or
architecture contexts can be added without modifying the Pablo data capture
library.

The strengthes of the Pablo instrumentation library's approach are its porta-
bility and extensibility. However, this emphasis does limit the library's ability to
exploit system-specific features and to easily capture system-level performance
data.

480

CTrace: Sha red M e m o r y I n s t r u m e n t a t i o n . CTrace [10] is an event tracing
system for the experimental Cedar multiprocessor. Cedar [8] consists of multiple
processor clusters connected via a multistage Omega network to a global, shared
memory. In turn, the individual clusters are modified AUiant FX/8 systems, each
with eight vector processors, a shared cache, and a shared cluster memory.

Cedar programs are expressed in Cedar Fortran, a Fortran dialect that sup-
ports both loop and task parallelism. Parallel loop iterations can be either re-
stricted to a particular cluster, or they can be distributed across multiple clusters.
In either case, loop iterations can execute in parallel, vector, or parallel-vector
mode, Parallel tasks executing on different clusters can cooperate via the global
shared memory.

CTrace supports both operating system end application event tracing, with
a default set of events captured by an instrumentation of the Cedar operat-
ing system and the Cedar Fortran run-time library. Specifically, operating sys-
tem context switches are recorded by instrumenting the process switching code,
and task creation, activation, suspension, and deletion, as well as invocations of
synchronization primitives are captured by instrumenting the run-time library.
Procedure, basic block, and loop entry/exit trace event instrumentation is gen-
erated on request by the Cedar Fortran compiler; additional trace events can be
specified by manually by the user.

Like Crystal, Pablo, and PICL, CTrace is implemented as a library with mul-
tiple trace buffers to eliminate contention and synchronization when recording
data. The Cedar hardware maintains a global time base across all clusters, no
clock synchronization is required, and event causality is assured.

Unlilre most distributed memory parallel systems, the shared memory Cedar
system is multiprogrammed. Elapsed times, computed using the difference be-
tween to values of the real-time clock, may be inaccurate m a task may be forced
to relinquish its processor during the measured interval. Using operating system
context switch trace, elapsed times are adjusted to remove these anomalies and
to correctly charge each task.

4.3 H a r d w a r e S u p p o r t

When the event data rate is very high, trace buffer storage capacities are low,
or clock synchronisation costs are high, hardware support for performance data
recording and extraction becomes essential. By shifting portions of the instru-
mentation implementation from software to dedicated hardware, larger event
traces can be captured with lower overhead.

Ideally, the balance between hardware and software implementations is de-
termined during system design. Unfortunately, many instrumentation systems
are added late in the design process, necessitating accommodation with exist-
ing design features. Below, we describe two examples of hardware support for
software performance data capture, Hypermon [11, 12], a retrofit to the Intel
iPSC/2 hypercube, and Multikron [14], a performance data recording chip.

481

H y p e r m o n : An I n s t r u m e n t a t i o n H a r d w a r e Re t ro f i t . Users of Crystal's
software instrumentation on the Intel iPSC/2 often struggled to overcome its
two major I;mltations: insufficient event data storage capacity and the lack of
an accurate, global time base. In an attempt to remedy these limitations and to
explore the feasibility of retrofitting An existing system with hardware support
for performance data capture, Malony developed Hypermon [11, 12], a board set
for hardware data buffering and timestamp generation.

Hypermon exploited a little-known feature of the Intel iPSC/2, a five bit
interface from each node board to a spare node slot in the system cabinet.
This interface was mapped to the input/output address space of each iPSC/2
node, with one bit used as a valid data strobe and four bits for input/output.
By modifying the Crystal instrumentation to write performance data to this
address, rather than buffering it in memory, performance data from all nodes
was accessible at a single location.

The Hypermon hardware exploited the data collection interface to capture,
buffer, and timestamp the four-bit event data. Crystal trace events normally in-
eluded an event identifier and several bytes of ancillary data; transmitting these
events from each node required several, four-bit writes to the memory-mapped
interface. Because there was no hardware mechanism to identify event bound-
aries, Hypermon generated hardware event frames, rather than trace events,
when one or more nodes wrote data to the interface within any 800 nanosecond
window. Each frame contained four bits from each node, a bit vector indicating
which nodes had sent valid data, and a timestamp. The resulting event frames
were buffered and then transferred to a Intel iPSC/2 input/output node. Based
on the event data rate, the frames could either be processed as they arrived or
written to secondary storage for post-processing.

Hypermon performance measurements revealed two serious bottlenecks. The
four-bit interface from the nodes proved debilitating. First, and not surprisingly,
the nodes were forced to assert data validity via software strobing and to shift
and mask the event bytes before writing to the data capture interface; this
overhead proved two orders of magnitude higher than that for software data
buffering. This was an unfortunate artifact of retrofitting. An eight bit wide
interface with hardware strobing would have greatly reduced the overhead and
made the overheads comparable to those for software event recording.

Second, event data rates were bursty; these bursts can lead to hardware
buffer data overruns. Moreover, the total event data volume increased supertin-
early with the number of nodes. As an example, Fig. 7, from [12], shows the
Crystal event data rate, in one rnii]i~cond windows, for a standard cell place-
ment code run on the Intel iPSC/2. The single processor trace includes only
the context switch events that occur each fifty milliseconds. As the number of
nodes increases, the number of message passing events increases and the data
rate rises dramatically. In one second intervals, the data rate can exceed one
megabyte/second for even a modest number of nodes.

4 8 2

Data
Volume
(bytes)

32

1

0 ,
8.000

l J l
I

8.125

I

One Node

I 1
8.250

Time (seconds)

I

J] l
I

8.375 8.500

Data
Volume
(bytes)

5 1 2] , , ' t 384 ~ Two Nodes

128-L J. I L 1
0 ! ! ' ' ~ ' I I

8.000 8.125 8.250 8.375 8.500

Time (seconds)

Data
Volume
(bytes)

2048 [f Bight Nodes I]

N 612-LC, v-v I
0 , , j , ,
8.000 8.125 8.250 8 . 3 7 5 8.500

Time (seconds)

4096 , , ,

Volume 2048 - n Nodes

(bytes) 1024-~
0 t , ~ ! ,w I~1"1 " 1 " * " ~t . t . , ~ .

I ! I

8.000 8.125 8.250 8.375 8.500

Time (seconds)

Pigux'e 7 Crystal event data rates for standard cell placement

M u l t i k r o n - A P e r f o r m a n c e M o n i t o r i n g C h i p . The NIST Multikron [14]
integrates support for counting, event trace buffering, t imes tamp generation, and
da ta extraction on a single chip. In its intended operational mode, each node or
processor of a parallel system would include a Multlkron chip for unobtrusive
da ta recording.

Unlike Hypermon ' s constrained, four-bit interface, Multikron supports a set
of 64-bit, memory-mapped interfaces tha t can be both read and written. Some of
the interfaces are used for configuration commands, some to record event trace
data , and some to query the Multlkron state. Because the da ta recording and

483

timestamp generation axe managed by the Multikron hardware, instrumentation
points consist only of instruction stores to the appropriate Multikron addresses.

The Mtdtikron chip generates slxteen-byte hardware trace records that con-
taln a 40 bit timestamp from a 10 MHs clock, processor and process identifiers,
and 48 bits of event trace data. Optionally, the hardware trace record can also
contain sixteen, 32-bit resource counters. These resource counters can be either
physically connected to hardware signals if accessible (e.g., cache misses or in-
terrupts) or incremented under software control.

To reduce the overhead for data recording, the Multikron supports a set
of registers that contain the identity of both the local node and the currently
executing process. The node identity is specified by wiring appropriate Multi-
kron pins to a hardware node identification source; the process identifier register
can be maintained by instrumenting the operating context switch code to up-
date it appropriately. Because the contents of these registers are automatically
prepended to all Mtdtikron trace records, the overhead for most trace events is
one or two store instructions.

The Multikron chip also contains a sixteen-bit filter register. The contents of
this trace register and the low-order four bits of the memory-mapped Multikron
address where the trace data is stored determ;ne the trace record's disposition.
The low-order four address bits select one of the sixteen bits in the trace filter
register. If that bit is set, the just stored data are used to construct a trace record,
otherwise the data is discarded. With a filter register, code instrumentation can
be selectively enabled and disabled simply by changing the contents of the filter
register.

Finally, each Multikron chip supports a synchronous, byte-wide, external
data collection interface with a two-way handshaking protocol. The m~Yimum
network data extraction rate is roughly 1.5 ml]llon, sixteen byte trace records
per second.

5 I n s t r u m e n t a t i o n G u i d e l i n e s a n d P i t f a l l s

On parallel systems, the range of potential performance analysis goals is broad,
and the types of performance data needed to test performance hypotheses are
equally diverse. To meet their instrumentation needs, vendors, performance an-
alysts, researchers, and application software developers have all developed per-
formance instrumentation hardware and software. Some instrumentation tools
were designed to explore the design space for parallel computer systems, others
to optlmi~e system or application software performance.

Despite the diversity of intents and the variety of instrumentation techniques,
several general lessons have emerged from the design, implementation, and use
of multiple generations of performance instrumentation hardware and software.
Succinctly,

I. instrumentation is best included early in a system's design, rather than
retrofitted to an existing system,

484

2. performance data rates must be balanced against instrumentation overhead
and data utility,

3. no single instrumentation technique is appropriate in all circumstances, and
finally,

4. some aspect of the captured data usually surprises the analyst, motivating
additional instrumentation.

Although these observations apply to performance instrumentation on any com-
puter system, designing instrumentation for parallel systems poses special chal-
lenges. First, only a small portion of the large paralld system design space has
been explored, and both hardware and software architectures for parallel sys-
tems are evolving rapidly. By the time instrumentation techniques for a partic-
ular parallel architecture are tested and well-understood, that architecture may
have been abandoned in favor of another, la Second, paralhlism introduces par-
tial, rather than total, event orders and the data volume problems inherent with
large numbers of processors. Below, we summarize some guidelines and pitfalls
when developing instrumentation specifically for parallel systems.

5.1 I n s t r u m e n t a t i o n I n f r a s t r u c t u r e

Implementation of a performance instrumentation system is necessarily depen-
dent on extant hardware and software features and services. The absence of
particular feature may preclude certain measurements. For example, measuring
individual procedure invocation lifetimes is impossible with a clock whose reso-
lution is equal to the power line frequency. To capture timestamped event traces
on a parallel system, one minimally needs

1. high resolution clocks (i.e., microsecond or better),
2. memory-mapped, low latency clock access, and
3. global clock synchronisation,

with the marimum allowable clock drift bounded by the clock resolution. For
software events, the timestamp clock resolution need not be equal to that of the
processor clock, but it should be close to an instruction execution time. When
capturing hardware events, the clock resolution must equal or exceed that for
the processor clock.

The data buffeting and extraction facility must support bursty, potentially
high volume, event data while minlmiv.ing the number of system services used. If
the data rates are sufficiently high to perturb execution and stress a software data
capture implementation, one should first ask if all the data is really necessary to
understand the phenomenon being studied. If not, less invasive instrumentation
(e.g., counting rather than tracing) is appropriate. Otherwise, hardware support
for data buffering and extraction (e.g., llke that provided by the NIST Multikron
chip [14]) may be necessary.

12 This temporal dependence is a cogent argument that vendors should include support
for performance instrumentation early in their system designs.

485

Finally, quantifying instrumentation perturbation is difficult. To determine
if instrumentation is perturbing system behavior, disable some subset of the
instrumentation points or substitute less invasive instrumentation (e.g., counting
rather than tracing). Where possible, compute equivalent performance metrics
from both instrumentations and compare their values for consistency. Although
this does not guarantee the absence of perturbation, it does lessen the likelihood
that it is undetected.

5.2 Ins trumentat ion Probes

Although choosing appropriate instrumentation points is constrained by the per-
formance analysis goal, inappropriate instrumentation can grossly perturb sys-
tem behavior and quickly generate large volumes of inaccurate performance data.
Across a broad range of parallel architectures and performance experiments, cap-
turing certain types of performance data has repeatedly proved valuable, while
not excessively perturbing system activity.

In an operating system, capturing

1. processor context switches,
2. interrupts, and
3. system calls

provides the largest return on instrumentation investment. These instrumenta-
tion points capture the interactions of application code with system services,
task schednllng patterns, busy and idle times, and many internal operating sys-
tem component interactions. Moreover, only a few instrumentation points are
required, and changes to system services (e.g., file systems or scheduling algo-
rithms) normally do not affect the instrumentation.

In an application, standard instrumentation points include

I. procedure entries and exits,
2. loop entries and exists,
3. on shared memory systems, synchronization and tasking primitives, and
4. on distributed memory systems, message passing primitives.

When inserting instrumentation, it is best to begin with the smallest possible
set of instrumentation points, then insert additional points based on an analy-
sis of the previously captured data. When instrumenting nested loops, ensure
that lifetime of the inner loop is substantially larger than the instrumentation
overhead; otherwise instrumentation will dominate the lifetime of the loop nest.

Finally, recognize that inserting instrumentation in source code can inhibit
certain compiler optlrni~ations. For example, bracketing the body of a procedure
with two instrumentation points to capture its lifetime may prevent a compiler
from inlln~ng the code at the point of call. Similarly, source code instrumenta-
tion can prevent loop interchanges, change register allocations, and inhibit local
code motion. To mitigate many of these effects, compilers should automatically
generate standard types of instrumentation in response to user requests.

486

5.3 I n s t r u m e n t a t i o n ScalabiHty

Scalabillty is a key feature of most high-performance parallel systems. Using
standard building blocks that contain a processor, local memory, and a network
interface, a single parallel architecture can scale from tens to hundreds or thou-
sands of processors. To achieve high performance and to exploit architectural
scalabillty, system and application software must scale as well.

Regrettably, some instrumentation techniques do not scale to hundreds or
thousands of processors. As an illustration, Table 2 shows the event data rates
and expected event volumes when capturing processor utilizations and message
send events on a 1024 processor system. Message tracing produces nearly 300K 13
bytes second, and even the simple processor utilization metric produces perfor-
mance data at 32K bytes/second.

Moreover, as w illustrated, event data volume is not a linear function of
the number of processors. For the example of Table 2, the time interval between
message passing events will decrease as the number of processors increases, and
the total data rate will increase. In small time intervals, the message passing
event data rate might approach 3-5 megabytes/second for a thousand processor
system.

Simply put, for systems with hundreds or thousands of processors, either
hardware support for data capture or, preferably, real-time data reduction is
imperative, For massively parallel systems, real-time" data reduction is itself a
parallel task. The number of data reduction processors must scale with the par-

Table 2 Example event data rates for 1024 processors

Processor Utilization Message Traffic

processor identifier
uti]isation estimate

source processor
source task
destination processoz
destination task
timestamp
message length
message type

Data capture interval (milliseconds)
250 10G

Total data rate (bytes/second)
32K 28TK

Total data volume (one hour)
118 MB 1 GB

13 fprsctice, the actual amount is nearly twice this high because both message trans-
mission and message receipt are traced.

487

allel system size, and a separate data extraction network must connect the data
reduction processors to the data sources. Using the NIST Multikron chip as an
example, one might place a Multikron chip on each processor, connect the exter-
nal interfaces of each group of 8-1614 Multikron chips to a single data reduction
processor, and connect the set of data reduction processors via a high-speed
network. In essence, one constructs two parallel systems, one executing the ap-
plication and a second, smaller system, connected to the first via the Multikron
chip external data collection interfaces.

6 Open Instrumentation Problems

Despite our breadth of experience with instrumentation techniques for sequential
systems, and our growing experience with parallel systems, many open problems
remain. Of these, two of the most pressing are those associated with data parallel
languages and performance queries.

The tacit assumption underlying source code instrumentation is that the
organization and structure of the compiler-generated code are similar to that in
the source code. xs When this assumption is false, instrumentation may either
inhibit or change the normal optlmilations or it may measure something other
than what might expected when examining the source code. Compilation of data
parallel programs for distributed memory parallel systems is an apt illustration.

Historically, most distributed memory parallel systems were programmed in
single program multiple data (SPMD) mode using an explicit message passing
style, and standard workstation compilers were used to generate code. Data
parallel languages like High-Performance Fortran (HPF) [6] express parallelism
by specifying parallel operations on arrays that have been distributed across the
memories of the system. Compilers for data parallel languages then create code
that reads and writes the distributed arrays using compiler-synthesized message
passing.

Not only must the translation from data parallel source code to message-
based executable code bridge a large "semantic gap," but the translation pro-
cedure is hidden from the application programmer. Moreover, the translation
is strongly dependent on how the arrays are distributed and accessed; small
changes to either can dramatically alter the generated code.

Instrumenting the data parallel source code will not reveal the causes of poor
performance; they lie in both the application source code and the compiler-
synthesized code. Conversely, instrumenting the compiler-synthesized code pro-
vides accurate performance data but no mechanism to relate that data to source
code constructs.

i, The exact D11mher depends on the event data rate, the complexity of the data re-
duction operations, and the speed of the data reduction processors.

is This wumptlon also underlies the implementation of most break'point debuggers.
New te~-h,,;ques for debur~On s opthnised code remain an active research topic, and
only a few commercial debuggers now support it.

488

Obtaining accurate performance data that can be correlated with source
code is an open research problem. However, it is clear that effective performance
tuning and performance correlation for data parallel codes will require compiler
support; it is not possible via standard source code instrumentation.

Ideally, the compiler would synthesize performance instrumentation and an-
ciliary tools would reduce the resulting data to satisfy user performance queries.
This query-response model dLCfers from current approaches in two ways. First,
the instrumentation points would be generated by the compiler, based on its
knowledge of program structure and the synthesized code, and would not be vis-
ible to the user. Second, data analysis is inextricably tied to compilation and code
generation. Only with access to program dependencies and generated data ac-
cess patterns can query responses be computed. Implementing a query-response
performance analysis model for data parallel languages will require close cou-
piing of performance analysis tools, compiler-synthesized instrumentation, data
capture libraries, and the compiler's program analysis data base.

7 Summary

Although parallel systems continue to change rapidly, a set of standard per-
formance instrumentation techniques for parallel systems has begun to emerge.
High resolution clocks with low access costs are fundamental to unobtrusive in-
strumentation. Similarly, data capture and extraction techniques must support
high volume, bursty performance data rates. For massively parallel systems,
hardware support for data extraction and real-time data reduction may be nec-
essary if detailed event data are required.

Despite advances, many open issues remain, notably techniques for perfor-
mance instrumentation and analysis of codes written in data parallel languages.
To bridge the semantic gap between program source and generated code, perfor-
mance analysis and instrumentation must be closely coupled with compilation.

Acknowledgments

My heartfelt thanks to the past and present members of the Pablo and Picasso
research groups, without whom this work would not have been possible. Special
thanks to Allen Malony, now at the University of Oregon, for many fruitful,
pleasant discussions about instrumentation techniques.

References

i . A~AUSKAS, R. iPSC/2 System: A Second Generation Hypercube. In Proceed-
ingm of the Third Conference on Hypervube Concurrent Computerm and Applica-
tiona, Volume I (Pasadena, CA, Jan. 1988), Association for Computing Mschlnery,
pp. 3 8 - 4 2 .

2. DONGAI~.A, J. J., AND TO~CHBAU, B., Eds. EnvironmentJ and Toola for
Parallel Scientific Computing. North-Holland Publishing Company, 1992.

489

3. DUmGAN, T. H. Hypercube Clock Synchronization. Concurrency: Practice and
Ezperience ~, 3 (May 1992), 258-268.

4. GBIST, G. A., HBATH, M. T., PBYTON, B. W., AND WORLBY, P .H. A User's
Guide to PICL A Portable Instrumented Communication Library. Tech. Rep.
ORNL/TM-II616, Oak Ridge National Laboratory, Aug. 1992.

5. G ~ , S., KBSSLBR, P., AND McKuSICK, M. gprof: A Call Graph Execution
Profiler. In Proceedings of the SIGPLAN '82 Symposium on Compiler Construction
(Boston, MA, June 1982), Association for Computing Ms,-hlnery, pp. 120-126.

6. HPFF. H/gh-Pefformance Fortran Language Specfication, version 1.0. Tech. rep.,
High Performance Fortran Forum, May 1993.

7. KOHR, D. R., ZHANG, X., R~gD, D. A., AND RAHMAN, M. Object-Oriented,
Parallel Operating Systems: A Performance Study. Tech. rep., University of Illinois
at Urbana-Champalgn, Department of Computer Science, May 1993.

8. KucK, D. J., DAvmsoN, E. S., Lxws~, D. H., AND SAM~H, A.H. Parallel
Supercomputing Today and the Cedar Approach. Science 231 (February 28 1986),
967-974.

9. LARSON, J. Cray X-MP Hardware Performance Monitor. Cray Channels (1985).
I0. MALONY, A. D. Muitiprocessor Instrumentation: Approaches for Cedar. In In-

strumentation for Future Parallel Computing Systems, M. Simmons, R. Koskela,
and I. Bucher, Eds. Addlson-Wesley, 1989, pp. 1-33.

II. MALONY, A. D. Performance Observability. Phl) thesis, University of T]]inois at
Urbana-Champaigu, Department of Computer Science, Aug. 1990.

12. MALONY, A. D., AND R~BD, D. A. A Hardware-Based Performance Monitor for
the Intel iPSC/2 Hypercube. In Proceedings of the 1990 ACM International Con.
ference on Supercomputing (June 1990), Association for Computing Mw-hlnery,
pp. 213-226.

13. MALONY, A. D., I~BD, D. A., AND RUDOLPH, D.C. Integrating Performance
Data Collection, Analysis, and Visualization. In Parallel Computer Systems: Per-
formance Instrumentation and Visualization, M. Simmons and R. Koskela, Ed.s.
Addlson-Wesley Publishing Company, 1990, pp. 73-97.

14. MINK, A., A/VD CA~-NTBR, R. J. Operating Principles ofMULTIXRON Perfor-
mance Instrumentation for MIMD Computer. Tech. Rep. NISTIR 4737, National
Institute of Standards and Technology, Mar. 1992.

15. Pmltcg, P. A Concurrent File System for a Highly Parallel Mass Storage Subsys-
tem. In Proeeedinge of the Fourth Conference on Hypercubes, Concurrent Com-
puter# and AppJicatior~ (Monterey, CA, Mar. 1989), Association for Computing
Machinery, pp. 155-160.

18. PONDmt, C., AND FXTBMAN, R. Inaccuracies in Program Profiling. Software:
Practice and Ezperience 18, 5 (May 1988), 459--467.

17. RAMANATHAN, P., SHIN, K. G., AND BUTLBR, R. W. Faudt-tolerant Clock Syn-
chronisation in Distributed System. IEEE Computer ~.$ (1990), 33-42.

18. ~-~- , D. A., AYDT, R. A., MADHYASTHA, T. M., NoB, R. J., SHIELDS, K. A.,
AND SCHWARTZ, B. W. The Pablo Performance Analysis Environment. Tech. rep.,
University of]]]inois at Urbana-Champaign, Department of Computer Science,
Nov. 1992.

19. R.BED, D. A., OLSON, R. D., AYDT, R. A., MADHYASTHA, T. M., BIR~TT, T.,
JENSEN, D. W., NAZIBF, B. A. A., AND TOTTY, B.K. Sealable Performance
Environments for Parallel Systems. In Proceedings of the Sizth Distributed Memory
Computing Conference (1991), IEEE Computer Society Press, pp. 562-569.

490

20. REED, D. A., ~'O RUDOLPH, D. C. Experiences with Hypercube Operating Sys-
tem Instrumentation. International Jou.nal of High-Speed Computing 1, 4 (Dec.
1989), 517-542.

21. RUDOLPH, D. C. Performance Instrumentation for the Intel iPSC/2. Master's the-
sis, University of]1]inois at Ur]mna-Champaign, Department of Computer Science,
July 1989.

22. RUDOLPH, D. C., AND It~BD, D. A. CRYSTAL: Operating System Instrumenta-
tion for the Intel iPSC/2. In Peoceedinga of the Fourth Conference on H~/pe~ube
Concurrent Computere and Applicationa (Monterey, CA, Mar. 1989), pp. 249-252.

23. SIMMONS, M., AND KOSKELA, R., Eds. Parallel Computing Syatemm: Performance
Inatrumentation and Viaualization. Addlson-Wesley Publishing Company, 1990.

24. SIMMONS, M.~ KOSKBLA, R., AND BUCHBR, I., Eds. Inatrumentation for Future
Parallel Computing SyJtema. Addison-Wesley Publishing Company, 1989.

25. STUNI~L, C. B., FUCHS, W. K., RUDOLPH, D. C., AND Rs D .A. Linear
Opt;mlsation: A Case Study in Performance Analysis. In Peoceedingm of the Fourth
Conference on Hypercube Concurrent Computers and Applications (Monterey, CA,
Mar. 1989), pp. 265-268.

