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Abstract :  System monitors record inner states of computing systems. They 
are required for the debugging of computer systems as well as for the 
measurement of performance and they are used for the verification of system 
models, too. This paper first discusses the area of application of system mo- 
nitors, and afterwards it introduces measurement-principles of the different 
monitor types: 
- Software monitors, that either analyze the account-log, or that are avail- 

able as event-driven monitors, as samplers or as profiling-monitors. 
- Hardware monitors, using the measurement-principles logic-analyzer, 

events, sampling, and constructing classes of states. 
- Hybrid monitors, which use the measurement-principles of hardware- 

monitors on the hardware part, but differ by the software part that 
generates the signals to be measured. 

A t  last, connections to performance-analysis based on models are discussed. 
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mance Models, Event Monitor, Sampling Monitor, Monitor based on Classes 
of States 

1 What does "System Monitor" mean? 

1.1 Usage of System Monitors 

A system monitor has the task to protocol inner states of a computing 
system. The results that can be obtained by system monitors allow to solve 
problems in a broad area of application: 
- to find some errors in a computing system (debugging), 
- to check the resource utilization and the job load of system components, 
- to say something about the performance of the systems, 
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- to provide a base for building models of the computing system, 
- to find system bottlenecks. 
The broadness of the requirements necessitates that  more than only one 
type of monitors is offered on the market.  In the next sections, we will 
classify these different kinds of monitors under aspects of objects of mea- 
surement,  type and principles of measurement.  

1 . 2  M e a s u r e m e n t  O b j e c t s  o f  S y s t e m  M o n i t o r s  

For system monitors, typical objects of measurement  are: 
�9 Bus Monitors: 

The buses of a computer are the central connection elements between 
its system components. The bus activity is an indication of the sytem 
components' activity. By measuring the bus, we can make statements 
- about errors in the bus protocol, 
- about the kind and the amount  of communication on the bus, 
- about system bottlenecks, 
- (indirectly) about the load of the sytem components. 

�9 Cache Monitors: 
The behaviour of the cache is very importan~ for the overall perfor- 
mance of high-performance-sytems. If the real system behaviour is 
known, one is able to tune the system purposefully. 

�9 CPUMonitoring: 
By doing this, one can directly measure the CPU load. Measurements 
like these are particularly important for multi-processor systems, 
because the process scheduling depends on it. That is why the system 
must  be checked continuously for busy and idle processors and which of 
them are able to perform a waiting task. 

�9 I/O Monitoring: 
The I/O-system plays an important  role for the overall-performance of a 
computer, as pointed out by Hennessy and Patterson [14]. Besides this, 
I/O-operations are very costly and therefore they are important  for the 
accounting of the system. For this reason, I/O-operations are measured 
either via the system bus or on the components, via the  working t ime of 
an I/O-processor or the duration of moving the harddisk arm. 

�9 Other System Monitors: 
Basically, the performance of any system component can be measured 
by a particular monitor. In  practice, only such components are mea- 
sured which are suspected of being faulty or retarding for the overall- 
performance of the system. 
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1.3 Types of System Monitors 

The types of system monitors are distinguished by the realization of their 
detecting element into: software monitors, hardware monitors, and hybrid 
monitors. 
The evaluation on the one hand and the display of the measured system 
parameters can basically be done independently of the measurement  itself. 
This fact enables the user to select the detecting element and the evalu- 
ation programs separately. Furthermore, the evaluation tools must be 
adapted both to the detecting element  and the requirements.  

2. Usage  and Requirements  of  Sys tem Monitors  

In this chapter, a survey is given about the usage of system monitors. The 
results will be summarized in a table at the end of this chapter. 

2.1 Debugging of System Components and Interconnections 

Particularly in the test-phase of the system components, system monitors 
are very often used for the debugging of system components and their  
connections. 
�9 Debugging of System Components: 

Here, both the faults of the system components and faults that  happen 
by the cooperation of the components in a system are analyzed. Due to 
the progress in simulation, a lot of faults of the system components can 
already be discovered and corrected in the design phase of the system. 
Nevertheless, in complex systems many faults of system components 
and their cooperation are not discovered before their integration into 
the system. 

�9 Debugging of Connections (Buses) and Protocols: 
When system components are connected with the standard backplane 
bus of computing systems, the exact obediance to the bus protocol has to 
be verified. The same is true for other connections like LANs and wires. 
Besides a careful testing (e. g. by using a test suite, cf. [1]), Formal 
Description Techniques (FDTs) are used for this purpose. FDTs are 
available in languages Estelle, SDL or LOTOS (see [5] and [7]). FDTs 
are being developed even for bus protocols [30]. Also Petri Nets are used 
successfully for the verification of protocols [6]. 

For debugging, a high temporal resolution of the monitor is necessary, i.e. a 
sampling frequency that  is as fast as the bus clock. A good selectivity is very 
useful, i. e. the monitor only records data when errors occur, but  then the 
erroneous data have to be recorded with as many details as necessary. For 
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debugging monitors, a long record-time is usually not very important. For 
this purpose mostly event hardware-monitors or logic analyzers are used. 

2.3 Load of System Components  and Performance Measurement 

To measure the load of system components, "software probes" are injected 
into the source code of device drivers. These probes measure when an I/O- 
operation is started and when it has been terminated (e. g. [9] and [24]). 
The monitoring of system components can be done for several reasons: 
- Accounting ofthe used CPU and the I/O computing power, to determine 

the cost of the computing for every user. 
- The load distribution, the allocation and the migration of tasks in a 

multi-processor system or within loosely coupled systems. 
- Optimization of the system performance by optimizing frequently used 

system resources or parts of a program. 
- To get a performance profile of a system, i. e. continuous watching of in- 

teresting parts of a system and the overall-performance of the system. 
- Response times of a system. 
For load monitors, mostly statistical statements are made about a longer 
duration, rather than to get measurement values that are as exact and 
have as many details as possible. For load and performance monitors, event 
hybrid and software-monitors are mostly used; but there are also hardware 
monitors available e.g. the idle counter. 

2.4 Building a System Model  

The evaluation of the performance of computer systems requires the usage 
of system models, which describe the system's behaviour. These models are 
to represent realistically on the one hand all the system parameters of the 
computer system and on the other hand the system load. For the construc- 
tion and the verification of system models, some data are to be measured 
concerning the characteristic load and the behaviour. 
The evaluation of the system performance and other system parameters is 
unavoidable, if the system is not yet available as hardware, but some 
claims are to be made about it to make architectural decisions. This way is 
gone frequently nowadays for the analysis and evaluation of new archi- 
tectural approaches, and the quantitative influence of architectural para- 
meters on the system performance. Due to this, the load profile of this 
system must be available. 
To make statements about the whole system, classes-of-states hardware 
monitors are very well suited. For partial aspects, event or sampling hybrid 
monitors or profiling software monitors are used. Table 1 gives a survey of 
the typical usage of the monitor principles. 
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Type of H a r d w a r e  Hybr id  Monitor  Sof tware  
Monitor Monitor Monitor  

Usage 

Debugging 

System Load 
and System 
Performance 

~ystem 
Bottlenecks 

Model Building 

event monitors, 
logic analyzers, 
classes-of-states 

monitor with 
attribute memory 

classes-obstates 
monitor, 

idle counter 

classes-of-states 
monitor, 

~)ig logic analyzers 

classes-of-states 
monitor 

event monitors, 
sampling 
monitors 

event monitors 

event monitors, 
sampling 
monitors 

analysis acc.-log, 
event-driven, 
sampling and 

profiling 

profiling 

profiling 

Table 1: Types of Monitors and Typical Usage 

2.5 Classifying System Monitors  

As mentioned above, the different classes of system monitors differ by 
- their  temporal resolution, 
- their  duration of measurement, and 
- the amount of measured data. 
So the selection of a monitor can be made by constructing a coordinate 
frame with the axes temporal resolution, duration of measurement, and 
amount of measured data (fig. 1). In this coordinate frame, the desired place 
of one's monitor can be determined. Of course, the cost of a monitor grows 
with growing coordinates. 
Using this categorization, the different variants of monitors can be shown 
very well. The monitor with the best cost-performance-ratio for a distinct 
usage can be determined easily by assigning one's requirements in this 
parameter space to a suitable monitor in this space. 
Let us illustrate the classification of monitors by looking at some examples, 
which are drawn in fig. 1: A logic analyzer has a temporal resolution of 
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Fig. 1: Classification of System Monitors 

some nanoseconds, a measurement duration of some microseconds, and it 
can display some 10 or 100 signals. An idle counter has the temporal reso- 
lution of about one millisecond, a very long duration of measurement (up to 
"online"), and it supports only one signal, namely idle. An "ideal monitoP', 
i. e. a monitor that records and displays everything that happens within a 
computer system, would be drawn into the right upper comer of fig. i. But: 
"Ideal monitors" like this are virtually never realized due to the enormous 
amount a data one has to cope with. Furthermore, the measurement results 
obtained by this method are not so much better than results that can be 
gained by monitors with reasonable limitations. That is why "ideal moni- 
tors" actually have a very bad price-performance ratio. This approach to 
collect as much data as possible and to reduce the amount of data not before 
the evaluation has been realized only in the very first generation of system 
monitors. Modem research in this area has the target of successive limi- 
tation, where the exact formulation of the data to be gained and the parts to 
be examined plays an essential role. Using the classification-diagram of fig. 
1, also software and hybrid monitors can be categorized easily: At the 
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temporal resolution, hybrid-monitors begin in the microseconds, while soft- 
ware-monitors begin in the milliseconds. 

2.6 Problems  During  the Measurement  with System Monitors  

Besides the requirements discussed above, there are some specific problems 
still to be considered which appear during the measurement. 

Interference between Monitor and Measured System. The interference 
between the measuring monitor and the measured system is a very impor- 
tant criterion for the judging of system monitors. Generally spoken, hard- 
ware monitors have no interference with the performance of the measured 
system. (Interference given by impedances of the measuring device etc. 
may be neglected here. But the hardware monitor designer has to take care 
of these aspects, because ugly sporadic faults may be generated by such 
effects.) 
Software monitors however are part  of the system to be measured. Due to 
this, they consume system performance, namely between 3% and up to 
more than 50% of the whole system. Hybrid monitors typically need from 
1% to 3% of the system computing power during the measurement.  
Due to these reasons, measuring real t ime systems can only be performed 
by hardware monitors and - under some circumstances - by hybrid moni- 
tors. Anyway, the interference between the measuring monitor and the 
measured system does unfortunately exist, and it has to be considered both 
at the evaluation and when load models of the system are based on these 
measurements.  

Measuring of Time. Another problem of system monitors is the measuring 
of time: The used time slots must be fine enough to record every single 
activity of a system. For hardware monitors and hybrid monitors, this is 
not a real problem, because an external clock can be provided, which can be 
selected freely. With software monitors however, the system clock is used 
for all purposes in the computer and it provides in many cases only the 
resolution of one second. This problem can be solved by introducing an 
additional process clock, which can be read via a special register (cf. [26] 
and [10], section 5.2.2). 
An additional problem arises with multi processor system: Here, a global 
system clock must be provided, to correlate the activities of the processors. 
[15] proposes a synchronization signal, which is sent to the measuring 
devices via Ethernet. For other monitors, cables with exactly the same 
length from the measured system parts to the recording device are enough. 
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2.7 O t h e r  Cr i t e r i a  for the Judging of System Monitors 

Evaluation Tools. After measurement ,  the collected data must  be evalua- 
ted. So one can ask which criteria suitable evaluat ion tools have to fulfill: 
- How good do the tools work together  with the measuring devices? 
- How can they be handled? 
- Generally: How fast can I say something about  the system's behaviour? 
The requirements  of the evaluat ion are hard to quantify. It seems tha t  
there is no al ternat ive to considering every evaluation tool to be used, if  it 
is really able to display what  is needed for the desired application. 

Flexibility. At system monitors, flexibility can be useful. Flexibili ty in this 
context means, tha t  one type of monitor can be adapted easily to more than  
one bus  or to more than  only one object to be measured. So the user has to 
learn only one concept, one user  menu etc. The manufacturer  could offer 
only one type of monitors for a whole class of requirements.  

Documentation and Archive Procedure of the Measurement Results. The 
ability for documentation and the  functionali ty of the archive procedure of 
the measurement  results  is important,  because usual ly many more than  
one measurement  must  be performed to say something about  the behaviour  
of a computing system under several  aspects. 

3. Types of System Monitors 

The types  of system monitors are divided into 
- software monitors (and f i rmware monitors), 
- hardware  monitors, and 
- hybrid monitors. 
For these types, the  measurement  principles and some typical implemen- 
tat ion examples are given in this chapter. 

3.1 Software Monitors 

Software monitors were the first types of system monitors tha t  have been 
developed. Their first task was to measure,  how much of computing time, 
I/O throughput  etc. are needed for a part icular  user  resp. for each part icular  
task. Based on this, the cost for the computer  usage are assigned to the  
users. Aspects like performance came much later. In this section, first com- 
mon principles and problems of software monitors are sketched. After- 
wards,  the measurement  principles of software monitors are explained. 
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Principles and Problems of Software Monitors. Generally spoken, software 
monitors are a part  of the  measured system and it is unavoidable, that  they 
interfere with it: They need memory, they use the CPU, and they perform 
I/O-operations. This fact must  be considered when using software monitors. 
That is why there are several approaches to minimize the general load or 

one of the discussed parameters  caused by the monitor. 
For a software monitor, additional program code must  be inserted into the 
system to be measured. Insert ing additional code into the examined places 
of a program is called instrumentation. This can be done by three methods 
(cf. [I0]): 
�9 To use an additional program in the computing system: 

Such a program can cyclically evaluate data of the operating system 
and analyze them under some aspects. This approach is followed by 
sampling monitors and by the analysis of the account-log. 

�9 Modification of the program to be measured: 
This method is mostly used by modern software and hybrid monitors. 
Here, the examined parts of a program - like procedure calls, basis 
blocks, program line, etc. - are "instrumented" by additional code, 
which produces a protocol about the dynamic run of the program. This 
method is used for the principles profiling and for event-driven soft- 
ware monitors. 

�9 Modification of the operating system: 
This method is the least portable one, because it uses the internal data 
of the operating system. This approach is used for generating the 
account-log, but also for the interrupt-intercept approach at event- 
driven monitors. 

When measuring multi processor systems, the problem of the global time 
for the whole system comes up once more. This problem can be solved either 
by some hardware measure such as a system-wide common clock, or by a 
synchronization signal for start and stop, from which the correct times can 
be computed. 

Analyzing the Account-Log. The data of the account-log are recorded 
regularly at multi  user systems. They include some details about duration 
of  tasks, process load, usage of peripheral devices, login times etc. So the 
account-log can be used as a source for some statistics about the load of the 
computing system. It shows load peaks and it is a first indication for system 
bottlenecks. It has the advantage of giving no additional load to the system, 
because these values are always measured. This methods depend very 
much on the examined machine and the  operating system. 
In [25] a software monitor is introduced, which reads the account-log every 
day and computes the difference to the last account-log. Based on this, the 
monitor compiles some daily statistics about the usage of the hardware ~ 
resources, like CPU, I/O, paging etc., and the offered "service", here defined 
as the response times at mul t i  user mode. 



546 

Event-Driven, Interrupt-Intercept. An event is defined in [10] as any 
change of the state of a computing system. (This definition must not be con- 
fused with the notion of "event" at a hardware monitor!) An event-driven 
software monitor is a machine that records changes of the states of a com- 
puting system in a so-called event-trace. This approach has the disad- 
vantage, that a complete trace ("full trace monitoring'9 generates an enor- 
mous amount of data, so that the data flood is to be reduced by limitation on 
distinct aspects. 
It suggests itself only to consider important actions of the operating system 
in the event-trace such as task switches or I/O-requests. Particularly for 
this request, interrupt-intercept monitors are used. In these kind of moni- 
tors the addresses of the interrupt routines are changed, so that every inter- 
rupt-call in reality first calls a monitoring routine and then jumps to the 
subroutine which actually handles the interrupt [17]. With this monitor, 
meaningful traces about important actions of the operating system can be 
captured. 

Sampling Software Monitor. Sampling Monitors perform measurements in 
periodical time slots. The monitor is subdivided into two parts (cf. [10], 
section 5.2.1): 
- The Extractor: 

It periodically generates an interrupt, say 1 to 20 times per second. In 
the software routine that  handles the interrupt data are collected, 
which are meaningful for the system state. This interrupt needs a high 
priority, so that  the interrupt routine cannot be interrupted and the 
watched system data cannot become corrupted by that  interrupt. 

- The Analyzer: 
It evaluates the data from the extractor under some aspects and shows 
relevant system data. 

It is clear, that  sampling monitors can make only statistical statements 
about system data. The exactness can be influenced in a broad range by the 
sampling frequency. 

Profiling Monitor. Profiling is the dynamical analysis of a program. See the 
description of the tools p ro f ,  p i x i e ,  p i x s t a t s  in [22] and p ro f ,  s  in 
[27]. The opposite is the static analysis of the assembler-code, which pro- 
vides the relative frequency of one instruction. The instrumentation of the 
examined program can be performed automatically and can simply be 
chosen by a compiler option. 
In most cases, the time used to execute a procedure is measured, or the 
number of runs of every line or basic block of a program. By using data 
gained this way, frequently used procedures and program parts can be 
found, at which tuning will make sense. In addition, subroutines can be 
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found which are not called at all. This may be an indication of an error or of 
a lack of fault coverage. 
With this kind of monitors, data or instruction profiling can be executed: 
With the MIPS-tool p i x i e  traces can be made, which list the virtual 
addresses of program data and instructions in the temporal sequence they 
appear when the program is run. This list can be used as a base for a cache 
simulator (e. g. cache2000 for MIPS computers), which computes the hit 
rates of the caches. 

3.2 H a r d w a r e  Monitors  

Hardware monitors measure electrical signals, which come from distinct 
points of a computer (fig. 2). Such measuring points may be: bus signals, 
critical signals within a computing system, control signals of peripheral 
devices, e. g. the positioning arm of harddisks (see [101), or even more com- 
plex signals, like the well-known "wait"-light of IBM/360 computers, (cf. 
[23], p. 54). 
Due to the amount of data becoming huge, if all signals in every bus cycle 
are measured, after the probes of a hardware monitor a filter is installed, 
which limits the amount of data. This filter moves ~ real hardware monitor 
away from the "ideal monitor" of fig. I in at least one axis. The limitation 
can be performed either by limiting the recorded period of time, or by con- 
sidering only a subset of the signals to be measured, or by reduction of the 
recorded number of cycles, or by limitation on some events etc. It must be 
guaranteed by this filter, that even in the worst case all measured para- 
meters are recorded without loss. The overflow of an intermediate buffer 
may make a full measurement invalid. 
For the online evaluation it must be ensured that  the measured values can 
be read continuousely from the intermediate buffer and that  they can be 
computed for the display. After displaying them, the computed values can 
be stored. The continuous display requires a high data reduction, because 
human watchers cannot follow fast changes of many signals. The offline 
evaluation uses stored data as a base. These data can be computed and 
displayed under a broad range of aspects. 
The measured signals usually change with a frequency of some megahertz 
(signals inside a computer or bus signals), sometimes in the range of kilo- 
hertz (composed or peripheral signals). At the online evaluation the display 
typically changes once a second. 
With hardware monitors only low-level signals can be measured. If state- 
ments about high-level processes are to be made, e. g. idle of the operating 
system, subroutine calls, duration of I/O-operations, task switch etc.), then 
the measured signals can be postprocessed or concentrated by suitable 
tools, or they must have been preprocessed before the measured value is 
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Fig. 2: Principle of a Hardware Monitor 

taken, e.g. the wait-signal mentioned above or by the software part of 
hybrid monitors. 

Logic Analyzer. A logic analyzer is the simpliest form of a hardware moni- 
tor: It records the signals to be examined with a variable resolution. The 
data are displayed on a screen, which represents the signals as a sequence 
of Os and ls. There are also triggering conditions available. With logic ana- 
lyzers, it is possible not only to record the signals after the triggering 
conditions, but even before it. Progress in logic analyzers resulted in higher 
temporal resolution, more signals, longer traces, and the support of more 
complex triggering conditions. 
For the measurement of the system load, these devices are not very 
suitable: On the one hand, every measurement causes a huge amount of 
data, on the other hand, the evaluation only consists in looking through the 
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traces. Tools for the fast and purposeful evaluation are not available or 
have to be written ad hoc for every usage. 

Event Monitors. The most wide-spread measurement principle of hardware 
monitors is the event monitor. The data reduction is provided by recording 
signals not continuousely, but only when a distinct event appears. An event 
is a class of signal combinations, e.g. "write on I/O-address 123", "read 
from memory-address 500 to 1000". When this event appears, a definite 
action is performed. The events are a purely combinatorical expression of a 
subset of the examined signals. Events can be cut out under some circum- 
stances. 
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Fig. 3: Principle of an Event Hardware Monitor, Time Mode 

If an event happens, then all the signals are stored in a FIFO, which is 
called truce-buffer. To get a temporal relationship, a time stamp is stored 
together with the event data. The events and the actions to be performed 
must be defined before the measurement takes place. The data reduction of 
event monitors happens by the fact, that due to their triggering conditions 
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only 1% to 0.1% of the cycles are recorded. The trace-buffer FIFO is 
necessary to deal with short peak-loads. 
The action that  is performed mostly at  event monitors is to record all the  
signals or a subset of them when the event occurs (so-called time mode). 
Fig. 3 shows the principle of an event  monitor: The event-matcher of the 
monitor recognizes the signals, adds a t ime s tamp and stores them into the  
trace-buffer FIFO. The trace-buffer is read out  either after the measure- 
ment  or - for online and long-time measurements  - during the measure- 
ment. The content of the trace-buffer is stored into a storage medium. The 
time mode needs about  64 to 128 bi ts  for every line of the trace-buffer, and 
its length is about  8 K to 64 K entries. Instead of using the t ime mode it is 
possible only to count the number  of  events. This is performed by the count 
mode. 
It is also possible to make this monitor programmable.  When an event  
happens, one of a broad range of actions may be started. Anderson et al. [3] 
introduce a monitor, which performs the following actions: 
- Increment  or reset  external  or internal  counters. 
- Buffering of signals, maybe with a time s tamp (similar to t ime mode). 
- Wri t ing data from the buffer to an external storage-medium. 
- Set and reset of the  event counter. 
With these measures,  an event monitor  can be made very flexible. 

Sampling and Cumulation. At the sampling mode of system monitors, sig- 
nificant values of the measured system are recorded in equidistant  inter- 
vals - e. g. every millisecond, see fig. 4 - or in stochastic intervals.  

system 
state 
"Idle"- 

"Not Idle" - ~ - - ~ -  " - - - ~  ~ time 

t t t t t t t 
O ms 1 ms 2 ms 3 ms 4 ms 5 ms 

sampling times(dotted: output of a sampling monitor) 

6 ms 

Abb. 4: Principle of a Sampling Monitor 

With this kind of measurement ,  only statistical s ta tements  about the 
system can be made. Furthermore,  measurement  values are neglected. In 
fig. 4 the  system is not  idle between 3 and 4 ms, but  this is not noticed by a 
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sampling monitor, on the other hand it records the short not-idle at 5 ms. 
The measured signals are shown by the thin broken line. With sampling 
monitors, long measurements and even online-measurement is possible. 
A typical sampling monitor is described by Hattenbach [13]: Here every 
millisecond a measurement takes place. Recorded values are: the current 
op-code in the instruction register, i. e. which operation is being executed at 
the time of the recording, and the physical address of the main memory, to 
get an impression of the usage of the main memory. The measurements 
lasted over several hours resp. days. Based on this measurement data, 
claims are made about the floating-point load of the computer and the 
efficiency of paging. With these measurements some questions were to be 
made clear, e. g. if an additional CPU is necessary. Furthermore, a software 
monitor was checked by this sampling monitor. 

Idle 
counter division 

..~ display 
"% Idle" 

Fig. 5: Principle of an Idle Counter (Cumulation) 

An example for the cumulation is the idle counter. Fig. 5 shows its prin- 
ciple: The idle counter consists of two counters CNT 1 and CNT2. CNT2 is in- 
cremented continuously, CNT1 is incremented whenever the examined 
system is idle. After the end of the measurement, the relative load of the 
system can be expressed by the quotient <CNT 1 >/<CNT2 >. After having 
read CNT 1 and CNT2, the both counters are reset. For practical use, one can 
spare CNT2 and scale the percentage by a suitable choice of the measure- 
ment interval. It is also possible to measure more system parameters with 
this principle and to show the results with an Kiviat graph. Due to the low 
data rate, this principle is very suitable for online measurements. 
Event monitors can be used for sampling and cumulation, if the event 
matcher is substituted by a timer-clock. The mesurement can be done 
without the time stamp then. 

Classes-of-States Monitor. The principles eventing and sampling are not 
very suitable to find system bottlenecks and to look for their reasons. With 
these monitors it may happen, that short state changes of the examined 
object are averaged or vanish completely (sampling monitor), or state- 
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changes that  are important  for the performance are not recorded a t  all 
(event monitor), or the measurement  interval is too short  to answer the 
questions asked by  this measurement  (logic analyzer). So it is necessary to 
record every state-change of the  system, i. e. to measure with the system 
clock, and a longer time interval,  say one second or more, has to be recorded 
and analyzed. Therefore a Classes-of-States Monitor is very  suitable (see 
[29]). 

Multibus II 

bus clock 
i i 
i I 

sco \ ', I 
I I 
I 

SC2 ' ~ : / I 

ADn,, 
I I I ! I I I I 

start of data transfer end of 
transfer transfer 

classes of states 

I x I ASt2> c I transfer I transfer I transfer I transfer I transfer "n~176 I transfer X 

encoding 
0 5 1 1 1 1 1 9 0 

Fig. 6: Message Passing Protocol of the Multibus H 

The basic idea of this monitoring principle is to look at the actions, which 
take place on a processor, on a bus or in a cache system, as a sequence of 
states. The Multibus II in a message passing operation has the state-se- 
quence "idle, start of transfer A->C, transfer data1, transfer data2, transfer 
end, idle" (fig. 6, cf. [16]). A selected set of these states can be clustered to a 
class-of-states (COS). The states in a class-of-states are different only by 
their attributes, which are neglected by this method. In the example of fig. 
6 "start of transfer A--,C" is shown as CoS 5, "transfer" as CoS 1, EOC 
(End-Of-Cycle, transfer end) as CoS 9, and the classes-of-states out of the 
transfer as as CoS 0. In the evaluation, the "Transfer A-~C" can be 
searched by searching for the regular expression "5 [ I ] + 9". The acquisi- 
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tion of the measurement values at classes-of-states monitor consists of stor- 
ing the sequence of CoS in a memory; at 32 CoS, 5 bits for the encoding are 
necessary. The evaluation consists of the search for the patterns. The 
occurence of these patterns can be shown by histograms and load-diagrams. 
By this method the whole protocol of a bus - or all the states of a computing 
system - can be represented as a sequence of CoS. The definition of the CoS 
- i. e. the clustering of a set of states to one class-of-state - can be done as 
the user likes. Due to this, it can be adapted to every requirement. To keep 
the flexibility of this measurement principle even in the realization of the 
monitor, programmable hardware should be selected, such as PALs or 
LCAs/FPGAs (Logic Cell Arrays, Field Programmable Gate Arrays, see 
e.g. [8]). It is important, that all of the system states without gaps are 
encoded into classes-of-states. This can easily be guaranteed by using 
commercial tools for the hardwre synthesis. 
For the encoding of the classes-of-states s = log2(CoS) signals are necessary, 
i.e. for 32 CoS, only log2(32)=5 bits are needed. A time stamp can be 
avoided by using this method, because all cycles of the system are recorded 
without any interrupt. A big advantage of this method is the possibility to 
scrutinize the systems with the temporal resolution of the system clock and 
furthermore, that no states can be forgotten. (If at the CoS-tree in fig. 7 an 
important system state has been forgotten, then the CoS "REST" appears 
very often during the measurements.) 

I Multibus II protocol I 

I start of t ~  
............. j \  

~176 k 

o, 
~ ~ _ _ . . _ _ ~ ~  t e CoS-t  ee, i.e. the classes- 

I B_r_??d_c__a__s_! " ...... 11 !_?._#._A_ ....... 1 to#C ~l.tO__.#C " ...... I ..!.?..#..?IO#D ................... i I Rest t of-states used here. 

Fig. 7: CoS-tree of the Multibus II Protocol (32 CoS) 

Fig. 7 shows as an example, how the protocol of the Multibus II can be divi- 
ded into classes-of-states: First idle and transfer are distinguished. The 
transfer is subdivided into three parts (cf. fig. 5): the start of transfer, trans- 
fer itself, and the transfer end. At the start of transfer the address space can 
be distinguished etc. This refinement is performed as long as the protocol is 
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subdivided into all the CoS to be differentiated. Of course, every other CoS- 
t ree  than this one may be constructed as well as the one of fig. 7. Using this 
scheme, the CoS-tree can be constructed for any bus protocol, and even for 
the  states of a computer system or of a processor cache. 
Based on this principle, one can go one step ahead and record the attributes 
- i. e. the contents of address - in a special storage, the attribute-storage. By 
doing this, the amount  of data  increases, but  the advantage  of a simple and 
fast  evaluation remains, and the debugging of systems becomes possible. 

3.3 H y b r i d  M o n i t o r s  

Hybrid  monitors are hardware  monitors with a software front-end (fig. 8). 
This software front-end generates some signals - in fig. 8 with the sub- 
routine m o n i t o r (  ) - and the hardware part  records these signals. If an 
event  monitor is used as hardware part,  then every call of the function 
m o n i t o r  ( ) can be considered as an event  and can be recorded. 

software part: 
instrumented C-program 

hardware part: 
(e.g.) event monitor 

. . . . .  

I 

I ',i"  rog ( ) ports 

',  onitor (I0 SZARZ); ' 
', device driver ( ) ; ', 
', monit~ (I0 ENDE); 
,, 

i} "'" 
L . . . . . . . . . . . . . . . . . . . . . . . .  

process clock I 

hardware 
monitor 

Fig. 8: Principle of a Hybrid Monitor 

From the software part, the hardware of a hybrid monitor is a device which 
can be called by the C-function mon i tor (). The hardware part, however, 
only sees a lot of signals, which appear on a bus or on a port of the computer. 
That is why only the software part of a hybrid monitor - i. e. the procedure- 
call and the driver-part of the call - interferes with the system. The transfer 
of the signal, e. g. to a computer port, lasts some microseconds. The system 
load caused by a hybrid monitor is about 1% to 3%. 
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The examined software has to be instrumented, before a measurement can 
take place. Exactly spoken, in front of every interesting system-call, access 
to variables etc. the call mon i t o r  ( ) has to be set. To differentiate the calls, 
a value is given with them, in fig. 8 the values I0 START and IO END. If 
not only the starting time of a call is to be considere-d, but also the duration 
of system-calls, then the program has to be instrumented in front of the call 
and behind it. The instrumentation should be done automatically. 
By the interconnection with the software it becomes possible to watch even 
high-level informations of the program, such as task switches, begin and 
end of subroutines, duration of I/O-operations (i. e. I/O-drivers), how much 
time a LAN-software needs in which OSI-levels (i. e. I/O-drivers), idle of the 
operating system, writing onto (shared memory) variables, etc. 
Hybrid monitoring is not limited to the recording of software-triggered 
events. Virtually every hardware monitor can be used as a hybrid monitor, 
if a port for the output of the software information is provided. The software 
part can be used for a broad range of applications: 
- as a single signal, e. g. as an event or as a trigger for the start and the 

end of the data record of a hardware monitor; 
- the software-data can be treated as an additional information to the 

pure hardware information, e.g. to indicate the event number and 
types; 

- in the software preprocessing can take place, and the hardware part is 
only to store the data. 

The measurement principles of hybrid monitors are similar to those of 
hardware monitors, because both of these types use the same principles of 
recording, but they differ by the software preprocessing and the meaning of 
what they measure. 

Software-Triggered Events. In its hardware part a hybrid monitor with 
software-triggered events is quite the same as an event hardware monitor. 
The difference to a hardware monitor is, that the monitor is not triggered 
by a hardware event, but by a special system-call. The system-call sends a 
certain "word" to a system part - e. g. to the bus - that is measured by the 
hardware part of the monitor. This word is considered as an event in the 
hardware part and it it is stored in the usual way into the trace buffer. 
Quick [24] describes a hybrid monitor which examines the load of a multi 
processor system by setting software-probes to relevant parts in the oper- 
ating system. The "relevant parts" are selected on the basis of the UNIX 
process model. The record (event lane) has 9 bits width and is recorded by a 
hardware monitor, whose clock has a temporal resolution of one micro- 
second. The execution of one measurement lasts between 7 ps and 15 ps. 
The interference with the measured system of course strongly depends on 
the frequency of the system-calls. Usually it ranges from 0.1% to 10%. The 
results of the measurement are displayed in several Gantt-diagrams. 
Hofmann [15] introduces the next version of this monitor: The trace-buffer 
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has been enlarged to 96 Bit (40 Bit t ime stamp, 8 bit flags, 48 bit data) and 
has the length of 32 K entries. The trace-buffer can be transfered stage-by- 
stage, with a maximum of 10,000 events per second. The causal interdepen- 
dencies between the activities of the processor - such as send and receive 
mechanisms - were considered as to be important. Due to this, the temporal 
resolution of the time stamp has been increased to 400 ns, and the clocks of 
the submonitors in every processor are synchronized via Ethernet  by a 
special synchronization pulse and a pseudo-event. 
In [11] the commercial "Software Analysis Workstation" of CADRE/Micro- 
CASE is used. The port to the monitor is a so-called "monitor-register", 
which can be accessed by special functions, i.e. software calls write into 
this register during the measurement,  and the hardware parts  read the 
words provided by the calls. One measuring event last "few microseconds". 
The program to be measured is instrumented by the function "write to mo- 
nitor-register". 

Cumulation. At the cumulation the measuring takes place in equidistant 
points of time. The difference to the sampling consists in the evaluation by 
the host before the measurement. Typically the load percentage of the 
system states "idle", "CPU busy" etc. is measured. 

Software-Triggered Classes-of-States. The classes-of-states approach can 
also be used for hybrid monitoring, after some slight changes. In this case, 
the software-trigger is used to start and to terminate the measuring at a 
definite place. Between these points, the usual functions of the classes-of- 
states monitor are given. As long as no measurement takes place, a "pseudo 
class-of-states" PAUSE is written into the CoS-memory. This class-of-state 
PAUSE is used to keep the time correlation. 
This measure makes sense if only some parts of a program, e. g. device- 
drivers, are to be examined. By the pseudo class-of-states PAUSE, com- 
bined with an efficient coding of the run length, the duration of the mea- 
surement can be enlarged very much. 

4. System Monitors and Measuring of Performance 

Considered historically, the usage of system monitors has changed its main 
focus: System monitors used to be used mostly for the accounting and for 
the debugging. Today, they are mostly used to measure the performance of 
a system. Even the measuring of performance has changed: Nowadays, per- 
formance measuring is not only done in computing centers, who want to 
have data about the system load of their machines, but more and more by 
programmers and system designers, who want to find performance bottle- 
necks in their system or program. A new usage arises to multi processor 
systems and LAN-coupled computers: To control efficiently the task 
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migration to a processor or computer in idle, a continuous survey about the 
system load has to be provided. 
In parallel to the developments in the field of system monitors, many 
methods have been developed, which can be used to make statements about 
systems that not yet exist and to influence the design of this system before 
its developement. To do this, models of computing systems are built, which 
can be evaluated with several methods. 
�9 S imula t ion:  

Bemmerl et al. [4] use models on which the run of several benchmarks 
is simulated. By varying some architectural parameters some claims 
about the effect of these parameters for the performance of the com- 
puting system can be made. 

�9 A.nalytical Evaluat ion:  
Besides queuing models (see [12] and [2]), Timed Petri Nets are used to 
evaluate the  performance and the reliability of new system archi- 
tectures (cf. [2]). The tool which has been introduced by Klas and 
Lepold in [18] supports the  definition and the analytical evaluation of 
Generalized Stochastic Petri  Nets (GSPN). In [19], [20], [21] several 
examples are described for the usage of GSPNs for the analysis of per- 
formance and reliability of computing systems. 

A problem that  arises both at the simulation and at the analytical evalu- 
ation is the validation of the load profiles: How can I know that  I really use 
a model which is near to reality? By the comparison with measured load 
profiles - measured by system monitors - these methods have been en- 
hanced very much. Finally, the agreement resp. the difference to the 
assumptions made in the model with the real system has to be shown. Also 
for this case measurement  data are necessary, which can be gained by 
system monitors. 
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