
Performance Measurement
Using System Monitors

Erwin M. Thurner

Siemens AG, ZFE ST SN 13

D - 81730 Mfinchen

Abstract : System monitors record inner states of computing systems. They
are required for the debugging of computer systems as well as for the
measurement of performance and they are used for the verification of system
models, too. This paper first discusses the area of application of system mo-
nitors, and afterwards it introduces measurement-principles of the different
monitor types:
- Software monitors, that either analyze the account-log, or that are avail-

able as event-driven monitors, as samplers or as profiling-monitors.
- Hardware monitors, using the measurement-principles logic-analyzer,

events, sampling, and constructing classes of states.
- Hybrid monitors, which use the measurement-principles of hardware-

monitors on the hardware part, but differ by the software part that
generates the signals to be measured.

A t last, connections to performance-analysis based on models are discussed.

Key words: System Monitor, Bus Monitor, Software Monitor, Hardware
Monitor, Hybrid Monitor, Measurement of Performance, Debugging, Perfor-
mance Models, Event Monitor, Sampling Monitor, Monitor based on Classes
of States

1 What does "System Monitor" mean?

1.1 Usage of System Monitors

A system monitor has the task to protocol inner states of a computing
system. The results that can be obtained by system monitors allow to solve
problems in a broad area of application:
- to find some errors in a computing system (debugging),
- to check the resource utilization and the job load of system components,
- to say something about the performance of the systems,

538

- to provide a base for building models of the computing system,
- to find system bottlenecks.
The broadness of the requirements necessitates that more than only one
type of monitors is offered on the market. In the next sections, we will
classify these different kinds of monitors under aspects of objects of mea-
surement, type and principles of measurement.

1 . 2 M e a s u r e m e n t O b j e c t s o f S y s t e m M o n i t o r s

For system monitors, typical objects of measurement are:
�9 Bus Monitors:

The buses of a computer are the central connection elements between
its system components. The bus activity is an indication of the sytem
components' activity. By measuring the bus, we can make statements
- about errors in the bus protocol,
- about the kind and the amount of communication on the bus,
- about system bottlenecks,
- (indirectly) about the load of the sytem components.

�9 Cache Monitors:
The behaviour of the cache is very importan~ for the overall perfor-
mance of high-performance-sytems. If the real system behaviour is
known, one is able to tune the system purposefully.

�9 CPUMonitoring:
By doing this, one can directly measure the CPU load. Measurements
like these are particularly important for multi-processor systems,
because the process scheduling depends on it. That is why the system
must be checked continuously for busy and idle processors and which of
them are able to perform a waiting task.

�9 I/O Monitoring:
The I/O-system plays an important role for the overall-performance of a
computer, as pointed out by Hennessy and Patterson [14]. Besides this,
I/O-operations are very costly and therefore they are important for the
accounting of the system. For this reason, I/O-operations are measured
either via the system bus or on the components, via the working t ime of
an I/O-processor or the duration of moving the harddisk arm.

�9 Other System Monitors:
Basically, the performance of any system component can be measured
by a particular monitor. In practice, only such components are mea-
sured which are suspected of being faulty or retarding for the overall-
performance of the system.

539

1.3 Types of System Monitors

The types of system monitors are distinguished by the realization of their
detecting element into: software monitors, hardware monitors, and hybrid
monitors.
The evaluation on the one hand and the display of the measured system
parameters can basically be done independently of the measurement itself.
This fact enables the user to select the detecting element and the evalu-
ation programs separately. Furthermore, the evaluation tools must be
adapted both to the detecting element and the requirements.

2. Usage and Requirements of Sys tem Monitors

In this chapter, a survey is given about the usage of system monitors. The
results will be summarized in a table at the end of this chapter.

2.1 Debugging of System Components and Interconnections

Particularly in the test-phase of the system components, system monitors
are very often used for the debugging of system components and their
connections.
�9 Debugging of System Components:

Here, both the faults of the system components and faults that happen
by the cooperation of the components in a system are analyzed. Due to
the progress in simulation, a lot of faults of the system components can
already be discovered and corrected in the design phase of the system.
Nevertheless, in complex systems many faults of system components
and their cooperation are not discovered before their integration into
the system.

�9 Debugging of Connections (Buses) and Protocols:
When system components are connected with the standard backplane
bus of computing systems, the exact obediance to the bus protocol has to
be verified. The same is true for other connections like LANs and wires.
Besides a careful testing (e. g. by using a test suite, cf. [1]), Formal
Description Techniques (FDTs) are used for this purpose. FDTs are
available in languages Estelle, SDL or LOTOS (see [5] and [7]). FDTs
are being developed even for bus protocols [30]. Also Petri Nets are used
successfully for the verification of protocols [6].

For debugging, a high temporal resolution of the monitor is necessary, i.e. a
sampling frequency that is as fast as the bus clock. A good selectivity is very
useful, i. e. the monitor only records data when errors occur, but then the
erroneous data have to be recorded with as many details as necessary. For

540

debugging monitors, a long record-time is usually not very important. For
this purpose mostly event hardware-monitors or logic analyzers are used.

2.3 Load of System Components and Performance Measurement

To measure the load of system components, "software probes" are injected
into the source code of device drivers. These probes measure when an I/O-
operation is started and when it has been terminated (e. g. [9] and [24]).
The monitoring of system components can be done for several reasons:
- Accounting ofthe used CPU and the I/O computing power, to determine

the cost of the computing for every user.
- The load distribution, the allocation and the migration of tasks in a

multi-processor system or within loosely coupled systems.
- Optimization of the system performance by optimizing frequently used

system resources or parts of a program.
- To get a performance profile of a system, i. e. continuous watching of in-

teresting parts of a system and the overall-performance of the system.
- Response times of a system.
For load monitors, mostly statistical statements are made about a longer
duration, rather than to get measurement values that are as exact and
have as many details as possible. For load and performance monitors, event
hybrid and software-monitors are mostly used; but there are also hardware
monitors available e.g. the idle counter.

2.4 Building a System Model

The evaluation of the performance of computer systems requires the usage
of system models, which describe the system's behaviour. These models are
to represent realistically on the one hand all the system parameters of the
computer system and on the other hand the system load. For the construc-
tion and the verification of system models, some data are to be measured
concerning the characteristic load and the behaviour.
The evaluation of the system performance and other system parameters is
unavoidable, if the system is not yet available as hardware, but some
claims are to be made about it to make architectural decisions. This way is
gone frequently nowadays for the analysis and evaluation of new archi-
tectural approaches, and the quantitative influence of architectural para-
meters on the system performance. Due to this, the load profile of this
system must be available.
To make statements about the whole system, classes-of-states hardware
monitors are very well suited. For partial aspects, event or sampling hybrid
monitors or profiling software monitors are used. Table 1 gives a survey of
the typical usage of the monitor principles.

541

Type of H a r d w a r e Hybr id Monitor Sof tware
Monitor Monitor Monitor

Usage

Debugging

System Load
and System
Performance

~ystem
Bottlenecks

Model Building

event monitors,
logic analyzers,
classes-of-states

monitor with
attribute memory

classes-obstates
monitor,

idle counter

classes-of-states
monitor,

~)ig logic analyzers

classes-of-states
monitor

event monitors,
sampling
monitors

event monitors

event monitors,
sampling
monitors

analysis acc.-log,
event-driven,
sampling and

profiling

profiling

profiling

Table 1: Types of Monitors and Typical Usage

2.5 Classifying System Monitors

As mentioned above, the different classes of system monitors differ by
- their temporal resolution,
- their duration of measurement, and
- the amount of measured data.
So the selection of a monitor can be made by constructing a coordinate
frame with the axes temporal resolution, duration of measurement, and
amount of measured data (fig. 1). In this coordinate frame, the desired place
of one's monitor can be determined. Of course, the cost of a monitor grows
with growing coordinates.
Using this categorization, the different variants of monitors can be shown
very well. The monitor with the best cost-performance-ratio for a distinct
usage can be determined easily by assigning one's requirements in this
parameter space to a suitable monitor in this space.
Let us illustrate the classification of monitors by looking at some examples,
which are drawn in fig. 1: A logic analyzer has a temporal resolution of

542

temporal
resolution

ns

m s

s
S I

a m o u n t
o f data

..'! "ideal
.. : moni to r "

: .~---+--. -~
f-..~.-- ...

I . " ~ Io9ic
~.'"" ~ i analyzer

�9 ~___;~__~_#~v....'l
! ." ..'il ..!" f

"1

�9 :1 ." ~ , : . .
:1. ' " " .'" . " �9

.." . ! " :-'[. ;'. I "..,
,-" .'" : ~ I ,' -" I -'

.." .." : J IOOO~ .-" ..- u .-
.- .." : j n ." ." a . .

," "" :1 ~ " I . ' " . '" ~ '

....o

....-'-'-
; - :/- - - - J f - -. -s~'- - -~ counter.."

J r ~ - ' . . J " : . : " F , : " "

/70" ', ..."
. '" .'" I .'"

o." .'" I .~
�9 L . ' " " " - , L ' " ' " ' " �9 , . �9 ~ durationof
. r measurement
ns ps m s s h o n l i n e

Fig. 1: Classification of System Monitors

some nanoseconds, a measurement duration of some microseconds, and it
can display some 10 or 100 signals. An idle counter has the temporal reso-
lution of about one millisecond, a very long duration of measurement (up to
"online"), and it supports only one signal, namely idle. An "ideal monitoP',
i. e. a monitor that records and displays everything that happens within a
computer system, would be drawn into the right upper comer of fig. i. But:
"Ideal monitors" like this are virtually never realized due to the enormous
amount a data one has to cope with. Furthermore, the measurement results
obtained by this method are not so much better than results that can be
gained by monitors with reasonable limitations. That is why "ideal moni-
tors" actually have a very bad price-performance ratio. This approach to
collect as much data as possible and to reduce the amount of data not before
the evaluation has been realized only in the very first generation of system
monitors. Modem research in this area has the target of successive limi-
tation, where the exact formulation of the data to be gained and the parts to
be examined plays an essential role. Using the classification-diagram of fig.
1, also software and hybrid monitors can be categorized easily: At the

543

temporal resolution, hybrid-monitors begin in the microseconds, while soft-
ware-monitors begin in the milliseconds.

2.6 Problems During the Measurement with System Monitors

Besides the requirements discussed above, there are some specific problems
still to be considered which appear during the measurement.

Interference between Monitor and Measured System. The interference
between the measuring monitor and the measured system is a very impor-
tant criterion for the judging of system monitors. Generally spoken, hard-
ware monitors have no interference with the performance of the measured
system. (Interference given by impedances of the measuring device etc.
may be neglected here. But the hardware monitor designer has to take care
of these aspects, because ugly sporadic faults may be generated by such
effects.)
Software monitors however are part of the system to be measured. Due to
this, they consume system performance, namely between 3% and up to
more than 50% of the whole system. Hybrid monitors typically need from
1% to 3% of the system computing power during the measurement.
Due to these reasons, measuring real t ime systems can only be performed
by hardware monitors and - under some circumstances - by hybrid moni-
tors. Anyway, the interference between the measuring monitor and the
measured system does unfortunately exist, and it has to be considered both
at the evaluation and when load models of the system are based on these
measurements.

Measuring of Time. Another problem of system monitors is the measuring
of time: The used time slots must be fine enough to record every single
activity of a system. For hardware monitors and hybrid monitors, this is
not a real problem, because an external clock can be provided, which can be
selected freely. With software monitors however, the system clock is used
for all purposes in the computer and it provides in many cases only the
resolution of one second. This problem can be solved by introducing an
additional process clock, which can be read via a special register (cf. [26]
and [10], section 5.2.2).
An additional problem arises with multi processor system: Here, a global
system clock must be provided, to correlate the activities of the processors.
[15] proposes a synchronization signal, which is sent to the measuring
devices via Ethernet. For other monitors, cables with exactly the same
length from the measured system parts to the recording device are enough.

544

2.7 O t h e r Cr i t e r i a for the Judging of System Monitors

Evaluation Tools. After measurement , the collected data must be evalua-
ted. So one can ask which criteria suitable evaluat ion tools have to fulfill:
- How good do the tools work together with the measuring devices?
- How can they be handled?
- Generally: How fast can I say something about the system's behaviour?
The requirements of the evaluat ion are hard to quantify. It seems tha t
there is no al ternat ive to considering every evaluation tool to be used, if it
is really able to display what is needed for the desired application.

Flexibility. At system monitors, flexibility can be useful. Flexibili ty in this
context means, tha t one type of monitor can be adapted easily to more than
one bus or to more than only one object to be measured. So the user has to
learn only one concept, one user menu etc. The manufacturer could offer
only one type of monitors for a whole class of requirements.

Documentation and Archive Procedure of the Measurement Results. The
ability for documentation and the functionali ty of the archive procedure of
the measurement results is important, because usual ly many more than
one measurement must be performed to say something about the behaviour
of a computing system under several aspects.

3. Types of System Monitors

The types of system monitors are divided into
- software monitors (and f i rmware monitors),
- hardware monitors, and
- hybrid monitors.
For these types, the measurement principles and some typical implemen-
tat ion examples are given in this chapter.

3.1 Software Monitors

Software monitors were the first types of system monitors tha t have been
developed. Their first task was to measure, how much of computing time,
I/O throughput etc. are needed for a part icular user resp. for each part icular
task. Based on this, the cost for the computer usage are assigned to the
users. Aspects like performance came much later. In this section, first com-
mon principles and problems of software monitors are sketched. After-
wards, the measurement principles of software monitors are explained.

545

Principles and Problems of Software Monitors. Generally spoken, software
monitors are a part of the measured system and it is unavoidable, that they
interfere with it: They need memory, they use the CPU, and they perform
I/O-operations. This fact must be considered when using software monitors.
That is why there are several approaches to minimize the general load or

one of the discussed parameters caused by the monitor.
For a software monitor, additional program code must be inserted into the
system to be measured. Insert ing additional code into the examined places
of a program is called instrumentation. This can be done by three methods
(cf. [I0]):
�9 To use an additional program in the computing system:

Such a program can cyclically evaluate data of the operating system
and analyze them under some aspects. This approach is followed by
sampling monitors and by the analysis of the account-log.

�9 Modification of the program to be measured:
This method is mostly used by modern software and hybrid monitors.
Here, the examined parts of a program - like procedure calls, basis
blocks, program line, etc. - are "instrumented" by additional code,
which produces a protocol about the dynamic run of the program. This
method is used for the principles profiling and for event-driven soft-
ware monitors.

�9 Modification of the operating system:
This method is the least portable one, because it uses the internal data
of the operating system. This approach is used for generating the
account-log, but also for the interrupt-intercept approach at event-
driven monitors.

When measuring multi processor systems, the problem of the global time
for the whole system comes up once more. This problem can be solved either
by some hardware measure such as a system-wide common clock, or by a
synchronization signal for start and stop, from which the correct times can
be computed.

Analyzing the Account-Log. The data of the account-log are recorded
regularly at multi user systems. They include some details about duration
of tasks, process load, usage of peripheral devices, login times etc. So the
account-log can be used as a source for some statistics about the load of the
computing system. It shows load peaks and it is a first indication for system
bottlenecks. It has the advantage of giving no additional load to the system,
because these values are always measured. This methods depend very
much on the examined machine and the operating system.
In [25] a software monitor is introduced, which reads the account-log every
day and computes the difference to the last account-log. Based on this, the
monitor compiles some daily statistics about the usage of the hardware ~
resources, like CPU, I/O, paging etc., and the offered "service", here defined
as the response times at mul t i user mode.

546

Event-Driven, Interrupt-Intercept. An event is defined in [10] as any
change of the state of a computing system. (This definition must not be con-
fused with the notion of "event" at a hardware monitor!) An event-driven
software monitor is a machine that records changes of the states of a com-
puting system in a so-called event-trace. This approach has the disad-
vantage, that a complete trace ("full trace monitoring'9 generates an enor-
mous amount of data, so that the data flood is to be reduced by limitation on
distinct aspects.
It suggests itself only to consider important actions of the operating system
in the event-trace such as task switches or I/O-requests. Particularly for
this request, interrupt-intercept monitors are used. In these kind of moni-
tors the addresses of the interrupt routines are changed, so that every inter-
rupt-call in reality first calls a monitoring routine and then jumps to the
subroutine which actually handles the interrupt [17]. With this monitor,
meaningful traces about important actions of the operating system can be
captured.

Sampling Software Monitor. Sampling Monitors perform measurements in
periodical time slots. The monitor is subdivided into two parts (cf. [10],
section 5.2.1):
- The Extractor:

It periodically generates an interrupt, say 1 to 20 times per second. In
the software routine that handles the interrupt data are collected,
which are meaningful for the system state. This interrupt needs a high
priority, so that the interrupt routine cannot be interrupted and the
watched system data cannot become corrupted by that interrupt.

- The Analyzer:
It evaluates the data from the extractor under some aspects and shows
relevant system data.

It is clear, that sampling monitors can make only statistical statements
about system data. The exactness can be influenced in a broad range by the
sampling frequency.

Profiling Monitor. Profiling is the dynamical analysis of a program. See the
description of the tools p ro f , p i x i e , p i x s t a t s in [22] and p ro f , s in
[27]. The opposite is the static analysis of the assembler-code, which pro-
vides the relative frequency of one instruction. The instrumentation of the
examined program can be performed automatically and can simply be
chosen by a compiler option.
In most cases, the time used to execute a procedure is measured, or the
number of runs of every line or basic block of a program. By using data
gained this way, frequently used procedures and program parts can be
found, at which tuning will make sense. In addition, subroutines can be

547

found which are not called at all. This may be an indication of an error or of
a lack of fault coverage.
With this kind of monitors, data or instruction profiling can be executed:
With the MIPS-tool p i x i e traces can be made, which list the virtual
addresses of program data and instructions in the temporal sequence they
appear when the program is run. This list can be used as a base for a cache
simulator (e. g. cache2000 for MIPS computers), which computes the hit
rates of the caches.

3.2 H a r d w a r e Monitors

Hardware monitors measure electrical signals, which come from distinct
points of a computer (fig. 2). Such measuring points may be: bus signals,
critical signals within a computing system, control signals of peripheral
devices, e. g. the positioning arm of harddisks (see [101), or even more com-
plex signals, like the well-known "wait"-light of IBM/360 computers, (cf.
[23], p. 54).
Due to the amount of data becoming huge, if all signals in every bus cycle
are measured, after the probes of a hardware monitor a filter is installed,
which limits the amount of data. This filter moves ~ real hardware monitor
away from the "ideal monitor" of fig. I in at least one axis. The limitation
can be performed either by limiting the recorded period of time, or by con-
sidering only a subset of the signals to be measured, or by reduction of the
recorded number of cycles, or by limitation on some events etc. It must be
guaranteed by this filter, that even in the worst case all measured para-
meters are recorded without loss. The overflow of an intermediate buffer
may make a full measurement invalid.
For the online evaluation it must be ensured that the measured values can
be read continuousely from the intermediate buffer and that they can be
computed for the display. After displaying them, the computed values can
be stored. The continuous display requires a high data reduction, because
human watchers cannot follow fast changes of many signals. The offline
evaluation uses stored data as a base. These data can be computed and
displayed under a broad range of aspects.
The measured signals usually change with a frequency of some megahertz
(signals inside a computer or bus signals), sometimes in the range of kilo-
hertz (composed or peripheral signals). At the online evaluation the display
typically changes once a second.
With hardware monitors only low-level signals can be measured. If state-
ments about high-level processes are to be made, e. g. idle of the operating
system, subroutine calls, duration of I/O-operations, task switch etc.), then
the measured signals can be postprocessed or concentrated by suitable
tools, or they must have been preprocessed before the measured value is

548

I ' electrical signals
to be measured

~ probes
filter

(limitation of time, signals, events, ...)

I int to' u".r I
online evaluat ioJ

I computing of the I
evaluation function

r % r ~ - 1

t i I I

~'-~ ~= storing measurements , I) ,. J

ffline evaluation

I intermediate storage
on mass-storage 1 0

+
I computing / evaluation I

Fig. 2: Principle of a Hardware Monitor

taken, e.g. the wait-signal mentioned above or by the software part of
hybrid monitors.

Logic Analyzer. A logic analyzer is the simpliest form of a hardware moni-
tor: It records the signals to be examined with a variable resolution. The
data are displayed on a screen, which represents the signals as a sequence
of Os and ls. There are also triggering conditions available. With logic ana-
lyzers, it is possible not only to record the signals after the triggering
conditions, but even before it. Progress in logic analyzers resulted in higher
temporal resolution, more signals, longer traces, and the support of more
complex triggering conditions.
For the measurement of the system load, these devices are not very
suitable: On the one hand, every measurement causes a huge amount of
data, on the other hand, the evaluation only consists in looking through the

g

traces. Tools for the fast and purposeful evaluation are not available or
have to be written ad hoc for every usage.

Event Monitors. The most wide-spread measurement principle of hardware
monitors is the event monitor. The data reduction is provided by recording
signals not continuousely, but only when a distinct event appears. An event
is a class of signal combinations, e.g. "write on I/O-address 123", "read
from memory-address 500 to 1000". When this event appears, a definite
action is performed. The events are a purely combinatorical expression of a
subset of the examined signals. Events can be cut out under some circum-
stances.

549

I event I
marcher

control

trace buffer
(FIFO)

f

I process
clock

II

bus signals time stamp

bus signals time stamp

bus signals time stamp

bus signals time stamp

II]11111
",,,,11/ J storage medium

(main memory, harddisk)

Fig. 3: Principle of an Event Hardware Monitor, Time Mode

If an event happens, then all the signals are stored in a FIFO, which is
called truce-buffer. To get a temporal relationship, a time stamp is stored
together with the event data. The events and the actions to be performed
must be defined before the measurement takes place. The data reduction of
event monitors happens by the fact, that due to their triggering conditions

550

only 1% to 0.1% of the cycles are recorded. The trace-buffer FIFO is
necessary to deal with short peak-loads.
The action that is performed mostly at event monitors is to record all the
signals or a subset of them when the event occurs (so-called time mode).
Fig. 3 shows the principle of an event monitor: The event-matcher of the
monitor recognizes the signals, adds a t ime s tamp and stores them into the
trace-buffer FIFO. The trace-buffer is read out either after the measure-
ment or - for online and long-time measurements - during the measure-
ment. The content of the trace-buffer is stored into a storage medium. The
time mode needs about 64 to 128 bi ts for every line of the trace-buffer, and
its length is about 8 K to 64 K entries. Instead of using the t ime mode it is
possible only to count the number of events. This is performed by the count
mode.
It is also possible to make this monitor programmable. When an event
happens, one of a broad range of actions may be started. Anderson et al. [3]
introduce a monitor, which performs the following actions:
- Increment or reset external or internal counters.
- Buffering of signals, maybe with a time s tamp (similar to t ime mode).
- Wri t ing data from the buffer to an external storage-medium.
- Set and reset of the event counter.
With these measures, an event monitor can be made very flexible.

Sampling and Cumulation. At the sampling mode of system monitors, sig-
nificant values of the measured system are recorded in equidistant inter-
vals - e. g. every millisecond, see fig. 4 - or in stochastic intervals.

system
state
"Idle"-

"Not Idle" - ~ - - ~ - " - - - ~ ~ time

t t t t t t t
O ms 1 ms 2 ms 3 ms 4 ms 5 ms

sampling times(dotted: output of a sampling monitor)

6 ms

Abb. 4: Principle of a Sampling Monitor

With this kind of measurement , only statistical s ta tements about the
system can be made. Furthermore, measurement values are neglected. In
fig. 4 the system is not idle between 3 and 4 ms, but this is not noticed by a

551

sampling monitor, on the other hand it records the short not-idle at 5 ms.
The measured signals are shown by the thin broken line. With sampling
monitors, long measurements and even online-measurement is possible.
A typical sampling monitor is described by Hattenbach [13]: Here every
millisecond a measurement takes place. Recorded values are: the current
op-code in the instruction register, i. e. which operation is being executed at
the time of the recording, and the physical address of the main memory, to
get an impression of the usage of the main memory. The measurements
lasted over several hours resp. days. Based on this measurement data,
claims are made about the floating-point load of the computer and the
efficiency of paging. With these measurements some questions were to be
made clear, e. g. if an additional CPU is necessary. Furthermore, a software
monitor was checked by this sampling monitor.

Idle
counter division

..~ display
"% Idle"

Fig. 5: Principle of an Idle Counter (Cumulation)

An example for the cumulation is the idle counter. Fig. 5 shows its prin-
ciple: The idle counter consists of two counters CNT 1 and CNT2. CNT2 is in-
cremented continuously, CNT1 is incremented whenever the examined
system is idle. After the end of the measurement, the relative load of the
system can be expressed by the quotient <CNT 1 >/<CNT2 >. After having
read CNT 1 and CNT2, the both counters are reset. For practical use, one can
spare CNT2 and scale the percentage by a suitable choice of the measure-
ment interval. It is also possible to measure more system parameters with
this principle and to show the results with an Kiviat graph. Due to the low
data rate, this principle is very suitable for online measurements.
Event monitors can be used for sampling and cumulation, if the event
matcher is substituted by a timer-clock. The mesurement can be done
without the time stamp then.

Classes-of-States Monitor. The principles eventing and sampling are not
very suitable to find system bottlenecks and to look for their reasons. With
these monitors it may happen, that short state changes of the examined
object are averaged or vanish completely (sampling monitor), or state-

552

changes that are important for the performance are not recorded a t all
(event monitor), or the measurement interval is too short to answer the
questions asked by this measurement (logic analyzer). So it is necessary to
record every state-change of the system, i. e. to measure with the system
clock, and a longer time interval, say one second or more, has to be recorded
and analyzed. Therefore a Classes-of-States Monitor is very suitable (see
[29]).

Multibus II

bus clock
i i
i I

sco \ ', I
I I
I

SC2 ' ~ : / I

ADn,,
I I I ! I I I I

start of data transfer end of
transfer transfer

classes of states

I x I ASt2> c I transfer I transfer I transfer I transfer I transfer "n~176 I transfer X

encoding
0 5 1 1 1 1 1 9 0

Fig. 6: Message Passing Protocol of the Multibus H

The basic idea of this monitoring principle is to look at the actions, which
take place on a processor, on a bus or in a cache system, as a sequence of
states. The Multibus II in a message passing operation has the state-se-
quence "idle, start of transfer A->C, transfer data1, transfer data2, transfer
end, idle" (fig. 6, cf. [16]). A selected set of these states can be clustered to a
class-of-states (COS). The states in a class-of-states are different only by
their attributes, which are neglected by this method. In the example of fig.
6 "start of transfer A--,C" is shown as CoS 5, "transfer" as CoS 1, EOC
(End-Of-Cycle, transfer end) as CoS 9, and the classes-of-states out of the
transfer as as CoS 0. In the evaluation, the "Transfer A-~C" can be
searched by searching for the regular expression "5 [I] + 9". The acquisi-

553

tion of the measurement values at classes-of-states monitor consists of stor-
ing the sequence of CoS in a memory; at 32 CoS, 5 bits for the encoding are
necessary. The evaluation consists of the search for the patterns. The
occurence of these patterns can be shown by histograms and load-diagrams.
By this method the whole protocol of a bus - or all the states of a computing
system - can be represented as a sequence of CoS. The definition of the CoS
- i. e. the clustering of a set of states to one class-of-state - can be done as
the user likes. Due to this, it can be adapted to every requirement. To keep
the flexibility of this measurement principle even in the realization of the
monitor, programmable hardware should be selected, such as PALs or
LCAs/FPGAs (Logic Cell Arrays, Field Programmable Gate Arrays, see
e.g. [8]). It is important, that all of the system states without gaps are
encoded into classes-of-states. This can easily be guaranteed by using
commercial tools for the hardwre synthesis.
For the encoding of the classes-of-states s = log2(CoS) signals are necessary,
i.e. for 32 CoS, only log2(32)=5 bits are needed. A time stamp can be
avoided by using this method, because all cycles of the system are recorded
without any interrupt. A big advantage of this method is the possibility to
scrutinize the systems with the temporal resolution of the system clock and
furthermore, that no states can be forgotten. (If at the CoS-tree in fig. 7 an
important system state has been forgotten, then the CoS "REST" appears
very often during the measurements.)

I Multibus II protocol I

I start of t ~
............. j \

~176 k

o,
~ ~ _ _ . . _ _ ~ ~ t e CoS-t ee, i.e. the classes-

I B_r_??d_c__a__s_! " 11 !_?._#._A_ 1 to#C ~l.tO__.#C " I ..!.?..#..?IO#D i I Rest t of-states used here.

Fig. 7: CoS-tree of the Multibus II Protocol (32 CoS)

Fig. 7 shows as an example, how the protocol of the Multibus II can be divi-
ded into classes-of-states: First idle and transfer are distinguished. The
transfer is subdivided into three parts (cf. fig. 5): the start of transfer, trans-
fer itself, and the transfer end. At the start of transfer the address space can
be distinguished etc. This refinement is performed as long as the protocol is

554

subdivided into all the CoS to be differentiated. Of course, every other CoS-
t ree than this one may be constructed as well as the one of fig. 7. Using this
scheme, the CoS-tree can be constructed for any bus protocol, and even for
the states of a computer system or of a processor cache.
Based on this principle, one can go one step ahead and record the attributes
- i. e. the contents of address - in a special storage, the attribute-storage. By
doing this, the amount of data increases, but the advantage of a simple and
fast evaluation remains, and the debugging of systems becomes possible.

3.3 H y b r i d M o n i t o r s

Hybrid monitors are hardware monitors with a software front-end (fig. 8).
This software front-end generates some signals - in fig. 8 with the sub-
routine m o n i t o r () - and the hardware part records these signals. If an
event monitor is used as hardware part, then every call of the function
m o n i t o r () can be considered as an event and can be recorded.

software part:
instrumented C-program

hardware part:
(e.g.) event monitor

.

I

I ',i" rog () ports

', onitor (I0 SZARZ); '
', device driver () ; ',
', monit~ (I0 ENDE);
,,

i} "'"
L .

process clock I

hardware
monitor

Fig. 8: Principle of a Hybrid Monitor

From the software part, the hardware of a hybrid monitor is a device which
can be called by the C-function mon i tor (). The hardware part, however,
only sees a lot of signals, which appear on a bus or on a port of the computer.
That is why only the software part of a hybrid monitor - i. e. the procedure-
call and the driver-part of the call - interferes with the system. The transfer
of the signal, e. g. to a computer port, lasts some microseconds. The system
load caused by a hybrid monitor is about 1% to 3%.

555

The examined software has to be instrumented, before a measurement can
take place. Exactly spoken, in front of every interesting system-call, access
to variables etc. the call mon i t o r () has to be set. To differentiate the calls,
a value is given with them, in fig. 8 the values I0 START and IO END. If
not only the starting time of a call is to be considere-d, but also the duration
of system-calls, then the program has to be instrumented in front of the call
and behind it. The instrumentation should be done automatically.
By the interconnection with the software it becomes possible to watch even
high-level informations of the program, such as task switches, begin and
end of subroutines, duration of I/O-operations (i. e. I/O-drivers), how much
time a LAN-software needs in which OSI-levels (i. e. I/O-drivers), idle of the
operating system, writing onto (shared memory) variables, etc.
Hybrid monitoring is not limited to the recording of software-triggered
events. Virtually every hardware monitor can be used as a hybrid monitor,
if a port for the output of the software information is provided. The software
part can be used for a broad range of applications:
- as a single signal, e. g. as an event or as a trigger for the start and the

end of the data record of a hardware monitor;
- the software-data can be treated as an additional information to the

pure hardware information, e.g. to indicate the event number and
types;

- in the software preprocessing can take place, and the hardware part is
only to store the data.

The measurement principles of hybrid monitors are similar to those of
hardware monitors, because both of these types use the same principles of
recording, but they differ by the software preprocessing and the meaning of
what they measure.

Software-Triggered Events. In its hardware part a hybrid monitor with
software-triggered events is quite the same as an event hardware monitor.
The difference to a hardware monitor is, that the monitor is not triggered
by a hardware event, but by a special system-call. The system-call sends a
certain "word" to a system part - e. g. to the bus - that is measured by the
hardware part of the monitor. This word is considered as an event in the
hardware part and it it is stored in the usual way into the trace buffer.
Quick [24] describes a hybrid monitor which examines the load of a multi
processor system by setting software-probes to relevant parts in the oper-
ating system. The "relevant parts" are selected on the basis of the UNIX
process model. The record (event lane) has 9 bits width and is recorded by a
hardware monitor, whose clock has a temporal resolution of one micro-
second. The execution of one measurement lasts between 7 ps and 15 ps.
The interference with the measured system of course strongly depends on
the frequency of the system-calls. Usually it ranges from 0.1% to 10%. The
results of the measurement are displayed in several Gantt-diagrams.
Hofmann [15] introduces the next version of this monitor: The trace-buffer

556

has been enlarged to 96 Bit (40 Bit t ime stamp, 8 bit flags, 48 bit data) and
has the length of 32 K entries. The trace-buffer can be transfered stage-by-
stage, with a maximum of 10,000 events per second. The causal interdepen-
dencies between the activities of the processor - such as send and receive
mechanisms - were considered as to be important. Due to this, the temporal
resolution of the time stamp has been increased to 400 ns, and the clocks of
the submonitors in every processor are synchronized via Ethernet by a
special synchronization pulse and a pseudo-event.
In [11] the commercial "Software Analysis Workstation" of CADRE/Micro-
CASE is used. The port to the monitor is a so-called "monitor-register",
which can be accessed by special functions, i.e. software calls write into
this register during the measurement, and the hardware parts read the
words provided by the calls. One measuring event last "few microseconds".
The program to be measured is instrumented by the function "write to mo-
nitor-register".

Cumulation. At the cumulation the measuring takes place in equidistant
points of time. The difference to the sampling consists in the evaluation by
the host before the measurement. Typically the load percentage of the
system states "idle", "CPU busy" etc. is measured.

Software-Triggered Classes-of-States. The classes-of-states approach can
also be used for hybrid monitoring, after some slight changes. In this case,
the software-trigger is used to start and to terminate the measuring at a
definite place. Between these points, the usual functions of the classes-of-
states monitor are given. As long as no measurement takes place, a "pseudo
class-of-states" PAUSE is written into the CoS-memory. This class-of-state
PAUSE is used to keep the time correlation.
This measure makes sense if only some parts of a program, e. g. device-
drivers, are to be examined. By the pseudo class-of-states PAUSE, com-
bined with an efficient coding of the run length, the duration of the mea-
surement can be enlarged very much.

4. System Monitors and Measuring of Performance

Considered historically, the usage of system monitors has changed its main
focus: System monitors used to be used mostly for the accounting and for
the debugging. Today, they are mostly used to measure the performance of
a system. Even the measuring of performance has changed: Nowadays, per-
formance measuring is not only done in computing centers, who want to
have data about the system load of their machines, but more and more by
programmers and system designers, who want to find performance bottle-
necks in their system or program. A new usage arises to multi processor
systems and LAN-coupled computers: To control efficiently the task

557

migration to a processor or computer in idle, a continuous survey about the
system load has to be provided.
In parallel to the developments in the field of system monitors, many
methods have been developed, which can be used to make statements about
systems that not yet exist and to influence the design of this system before
its developement. To do this, models of computing systems are built, which
can be evaluated with several methods.
�9 S imula t ion:

Bemmerl et al. [4] use models on which the run of several benchmarks
is simulated. By varying some architectural parameters some claims
about the effect of these parameters for the performance of the com-
puting system can be made.

�9 A.nalytical Evaluat ion:
Besides queuing models (see [12] and [2]), Timed Petri Nets are used to
evaluate the performance and the reliability of new system archi-
tectures (cf. [2]). The tool which has been introduced by Klas and
Lepold in [18] supports the definition and the analytical evaluation of
Generalized Stochastic Petri Nets (GSPN). In [19], [20], [21] several
examples are described for the usage of GSPNs for the analysis of per-
formance and reliability of computing systems.

A problem that arises both at the simulation and at the analytical evalu-
ation is the validation of the load profiles: How can I know that I really use
a model which is near to reality? By the comparison with measured load
profiles - measured by system monitors - these methods have been en-
hanced very much. Finally, the agreement resp. the difference to the
assumptions made in the model with the real system has to be shown. Also
for this case measurement data are necessary, which can be gained by
system monitors.

References

[I] Adams, M.; Qian, Y.; Tomaszunas, J.; Burtscheid, J.; Kaiser, E.;
Juh~sz, C.: Conformance Testing of VMEbus and Multibus II
Products. IEEE Micro, February 1992, pp. 57-64

[2] Ajmone Marsan, M.; Balbo, G.; Conte, G.: Performance Models of
Multiprocessor Systems. The MIT Press: Cambridge (Mass.), 1986

[3] Anderson, C. S.; Armstrong, K. J.; Borriello, G.: Proceedings of CS
586. PHM - A Programmable Hardware-Monitor. Technical Report
89-09-11, University of Washington, Seattle (WA). August 1989

[4] Bemmerl, Th.; Karl, W.; Luksch, P.: Evaluierung yon Architektur-
parametern verschiedener Rechnerstrukturen mit Hilfe yon CAE-
Workstations. In: M~iller-Stoy, P. (Hrsg.): Architektur yon Rechen-

558

systemen. 11. GI/ITG-Fachtagung. VDE-Verlag: Berlin 1990, S. 255-
273

[5] Brinksma, E.: A Tutorial on LOTOS. Protocol Specification, Testing,
and Verification, V, 1986, pp. 171-194

[6] Civera, P.; Conte, G.; del Corso, D.; Maddaleno, F.: Petri Net Models
for the Description and Verification of Parallel Protocols. In:
Barbacci, M. R.; Koomen, C. J. (Eds.): Computer Hardware Descrip-
tion Languages and their Applications. North-Holland 1987, pp.
309-325

[7] Dembinski, P.; Budkowski, S.: Specification Language Estelle. In:
Diaz, M.; Ansart, J.-P.; Courtiat, J.-P.; Azema, P.; Chari, V.: The
Formal Description Technique Estelle. Results of the ESPRIT/
SEDOS Project. North-Holland 1989, pp.35-76

[8] Conner, D.: High-Density PLDs. EDN, January 2, 1992, pp. 76-88
[9] Fehlau, F.; Simon, Th; Spaniol, O4 Suppan-Borowka, J.: Messungen

des Leistungsverhaltens Lokaler Netze mit einem Software-Monitor.
Informatik Forsch. Entwick. (1987) 2:55-64

[10] Ferrari, D.; Serazzi, G.; Zeigner, A.: Measurement and Tuning of
Computer Systems. Prentice-Halh Englewood Cliffs 1983

[11] FSckeler, W.; Rfising, N.: Aktuelle Probleme und LSsungen zur Lei-
stungsanalyse yon modernen Rechensystemen mit Hardware-Werk-
zeugen. In: Informatik-Fachberichte 218, 1989, S. 39-50

[12] Gross, D.; Harris, C. M.: Fundamentals of Queuing Theory. Wiley
and Sons: New York 1985

[13] Hattenbach, J.: Hardware-Monitor-Messungen an einer SPERRY
1100/83. GWDG-Bericht Nr. 26, 1983, S. 1-21

[14] Hennessy, J. L.; Patterson, D. A.: Computer-Architecture: A Quanti-
tative Approach. San Mateo (CA) 1990

[15] Hofmann, R.: Gesicherte Zeitbez~ige beim Monitoring yon Multipro-
zessorsystemen. In: Mttller-Stoy, P. (Hrsg.): Architektur yon Rechen-
systemen. 11. GI/ITG-Fachtagung. VDE-Verlag: Berlin 1990, S. 389-
401

[16] Inteh Multibus II Bus Architecture Specification Handbook. Santa
Clara (CA), 1984

[17] Keefe, D. D.: Hierarchical Control Programs for System Evaluation.
IBM Systems Journal, Vol. 7, No. 2, 1968, pp. 123-133

[18] Klas, G.; Lepold, R.: TOMSPIN, a Tool for Modeling with Stochastic
Petri Nets. Proc. CompEuro 92, The Hague (The Netherlands), May
1992

[19] Klas, G.; Wincheringer, Ch.: A Generalized Stochastic Petri net Mo-
del of Multibus II. Proc. CompEuro 92, The Hague (The Nether-
lands), May 1992

[20] Lepold, R.: Performability Evaluation of a Fault-Tolerant Multipro-
cessor Architecture Using Stochastic Petri Nets. Proc. 5th Int. Conf.
on Fault-Tolerant Computing Systems. Niirnberg, September 1991

559

[21] Lepold, R.; Klas, G.: Generierung und analytische Auswertung sto-
chastischer Petri-Netz-Modelle zur Bewertung komplexer Rechen-
systeme. In: Miiller-Stoy, P.: Architektur von Rechensystemen. Ta-
gungsband 11. GI/ITG-Fachtagung. vde-Verlag: Berlin 1990

[22] MIPS Computer Systems Inc.: RISC/os User's Reference manual,
Vol. I (System V). Sunnyvale (CA), June 1990

[23] Nutt, G.: Tutorial: Computer System Monitors. IEEE Computer,
November 1975, pp. 51-61

[24] Quick, A.: Synchronisierte Software-Messung zur Bewertung des dy-
namischen Verhaltens eines UNIX-Multiprozessor-Betriebssystems.
In: Informatik-Fachberichte 218, 1989, S. 142-158

[25] Richter, E.: LS2 - Software-Monitor und Steuersystem ffir SVM.
rechentechnik / datenverarbeitung 26 (1989) 3, S. 19-22

[26] Rosenbohm, W.: Messung yon SVC-Ausffihrungszeiten mit Hilfe
eines Software-Monitors. In: Mertens, B. (Hrsg.): Messung, Modellie-
rung und Bewertung von Rechensystemen. Springer: Berlin, Heidel-
berg 1981, S. 58-72

[27] SCO (The Santa Cruz Operation): SCO Open Desktop Development
System, Programmer's Guide, ch. 9: C Programmer's Productivity
Tools. Santa Cruz (CA) 1989

[28] Svoboda, L.: Software Performance Monitors: Desing Trade-Offs. In:
CMG VII Conference Proceedings, 1976, pp. 211-220

[29] Thurner, E. M.: Hardware-Monitor Using Classes of States to Detect
Performance-Bottlenecks in Computer Systems. In: Krupat, C.: Proc.
Supercomputing Symposium '92, Montreal 1992, pp. 328-339

[30] Thurner, E. M.: Formal Specification of Bus-Protocols and a Way to
their Automatic Implementation. In: Eck, Ch. et al. (Eds.): Proc.
Open Bus Systems '92. Z~irich (Schweiz), 1992, pp. 123-128

