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Abstract .  Future advances in networking coupled with the rapid advances in 
storage technologies will make it feasible to build multimedia on-demand servers 
that provide services similar to those of neighborhood videotape rental stores on a 
metropolitan-area network. A critical requirement in building a multimedia server 
is the need for guaranteeing continuous playback of media streams. Hence, there 
are two important questions that need to be addressed in designing a multime- 
dia server: (1) how should media streams be laid.out on disk so as to guarantee 
their continuous retrieval, and (2) how can multiple clients be serviced simulta- 
neously by a multimedia server? In order to address the first question, we propose 
a constrained block placement policy, in which separations between successive 
media blocks on disk are bounded so as to guarantee their continuous retrieval at 
real-time rates. To enable the multimedia server to support multiple clients, we 
study various policies (such as, round robin and quality proportional) for servic- 
ing multiple clients, and propose admission control algorithms for detemaining 
whether a new client can be admitted without violating the real-time requirements 
of any of the clients already being serviced. Finally, we capture the multiplicity of 
media streams characterizing multimedia objects by defining a multimedia rope 
abstraction, and describe techniques for their efficient storage on disk, as well as 
address the problem of servicing multiple rope retrieval requests simultaneously. 

1 Introduction 

Future advances in networking will  make it feasible for computer  networks to support  
digi tal  mul t imedia  transmission. Coupled with the rapid advances in storage technolo- 
gies, they can be used to bui ld  mul t imedia  on-demand services over metropoli tan-area 

networks (such as B-ISDN) that are expected to permeate residential  and commercial  

premises in a manner similar to existing cable TV and telephone networks [12]. A 
mul t imedia  on-demand server, which we will  refer to as a Multimedia Server in the 
rest o f  this paper, provides services similar to those of  a neighborhood videotape rental 
store. It d igi ta l ly  stores media  information such as entertainment movies, educational 
documentaries,  advertisements, etc., on a large array of  extremely high-capaci ty storage 

* This tutorial is based on work done by the author and his student, Harrick M. Vin, at the UCSD 
Multimedia Laboratory 
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devices such as optical or magnetic disks, that are random accessible with a short seek 
time and are permanently on-line. The multimedia server is connected to display sites 
belonging to clients via a high-speed network subsystem. Clients can make a selection of 
a multimedia object through a variety of indices such as the object's name, and request 
its retrieval for real-time playback on their display sites. The multimedia server, if it 
has the necessary resources (such as service time and buffer space), services the client's 
request by connecting to his/her chosen display site(s), and transmitting the chosen 
multimedia segment. The retrieval can be interactive, in the sense that clients can stop, 
pause, resume, and even record and edit the media information if they have permissions 
to do so. Thus, the multimedia server subsumes the functions of VCRs, videotapes, audio 
recorders, etc., and can serve varying sizes of clientele: from individual households to 
entire neighborhoods, and from commercial organizations and educational institutions 
to national services. 

A critical requirement in building a multimedia on-demand service is the need for 
guaranteeing continuous playback of media streams (since media quanta, such as video 
frames or audio samples, convey meaning only when presented continuously in time, 
unlike text in which spatial continuity is sufficient). In order to guarantee continuous 
playback, (1) the multimedia server must support continuous retrieval from the disk, (2) 
the network subsystem must guarantee timely delivery of media quanta to the display 
sites, and (3) the display sites must avoid buffer overruns or starvations. Specifically: 

- The multimedia server organizes the storage of media streams in terms of blocks on 
its disk. In order to guarantee continuous retrieval of a media stream from disk, the 
multimedia server must constrain the separations between successive media blocks 
of the media stream so as not to exceed the media blocks' playback durations. Fur- 
thermore, servicing multiple clients simultaneously may require that the multimedia 
server reserve disk access bandwidth for each client prior to rendering the service. 

- In order to guarantee timely delivery of media quanta to the display sites, the 
network subsystem may have to reserve network resources for each client so as to 
ensure bounds on delay jitter. 

- In the absence of variations in playback rates at display sites, ensuring continuous 
playback at display sites requires that the sites prefetch sufficient number of media 
quanta, whose total playback duration equals at least the network delay jitter. In 
the presence of non-deterministic playback rate variations, however, additional 
mechanisms are essential to enable the multimedia server to detect overruns or 
starvations of media units at the display sites, and to preventively readjust the 
transmission rate of media units so as to avoid playback discontinuities. 

In this paper, we focus on the first item above, i.e., a multimedia server for sup- 
porting continuous retrieval of media streams from disk. The second item, namely the 
design of a network subsystem for continuous delivery of media quanta has been dealt 
with by Ferrari and Verma [3]. The last item, i.e., the problem of avoiding overruns 
and starvations at the display sites in the presence of non-deterministic playback rate 
variations, has been addressed by Ramanathan and Rangan [7]. 

Multimedia server designs for guaranteeing continuous retrieval of digital video 
and audio have, however, remained relatively unexplored. Most of the past work on 
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Fig. 1. Configuration of a multimedia on-demand service 

~: subsystem 

multimedia storage systems is restricted to still images and/or audio [1, 5, 6]. Recently, 
Gammell et al. [4] have described file system designs for supporting audio playback, but 
they do not address multi-user video on-demand services. A qualitative design for a file 
system offering video services is presented by the author in [8]. A quantitative model 
for the design of a file system for storing real-time video and audio streams on disks 
have been presented by Rangan and Vin [10, 11]. Admission control algorithms for 
multi-user video on-demand servers are presented by Vin and Rangan [13]. A review of 
these architectures and algorithms for designing a high-performance, multimedia server 
capable of servicing a large number of clients is the subject matter of this paper. 

First, we address the problem of storing multiple media strands, each of which 
denotes a sequence of continuously recorded video frames or audio samples. We propose 
a constrained block allocation policy, in which separations between successive media 
blocks on disk are bounded so as to guarantee their continuous retrieval at real-time 
rates. 

Then, we address the question of servicing multiple clients by a multimedia server. 
Given the maximum rate of disk data transfer, the multimedia server can only service a 
limited number of clients simultaneously. We study various policies (such as, round robin 
and quality proportional) for servicing multiple clients, and propose admission control 
algorithms for determining whether a new client can be admitted without violating 
the real-time requirements of any of the clients already being serviced. In the quality 
proportional servicing (QPMS) algorithm proposed in this paper, the number of media 
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blocks of a strand retrieved during each service round is proportional on an average to 
the the strand's playback rate, and successive number of media blocks retrieved are fine 
tuned individually to achieve the servicing of an optimal number of clients. 

We capture multiplicity of media streams constituting a multimedia object by defin- 
ing a multimedia rope abstraction, which represents a collection of media strands tied 
together by synchronization information. We propose a merging algorithm for efficient 
storage and retrieval of media strands constituting a rope, and describe techniques for 
servicing multiple rope retrieval requests simultaneously. 

The rest of this paper is organized as follows: Constrained placement policies are 
developed in Section 2. The admission control algorithm is described in Section 3. 
Merged storage and retrieval of ropes are addressed in Section 4. Section 5 presents 
performance evaluation, and finally, Section 6 concludes the paper. 

2 Managing Storage of Digital Multimedia 

Digitization of video yields a sequence of frames, and that of audio yields a sequence of 
samples. We refer to a sequence of continuously recorded video frames or audio samples 
as a Strand. A multimedia server must divide video and audio strands into blocks while 
storing them on a disk. Continuous playback of media strands requires that the time 
for retrieving a media block of a strand from disk does not exceed the media block's 
playback duration. 

Most existing storage server architectures employ unconstrained placement of blocks 
on disk. In such storage servers, reserving computational cycles to meet real-time re- 
quirements is not sufficient to support continuous retrieval of media strands. This is 
because, separations between blocks of a strand may not be constrained enough to 
guarantee bounds on seek and rotational latencies incurred while accessing successive 
blocks of the strand. Contiguous placement of media blocks, on the other hand, guar- 
antees that successive blocks can be retrieved without incurring any seek or rotational 
latency. However, contiguous placement of media blocks is fraught with inherent prob- 
lems of fragmentation, and can entail enormous copying overheads during insertions 
and deletions. 

Constrained block placement maintains the access time of media blocks within the 
real-time playback requirements of strands by bounding the separation between .succes- 
sive media blocks on disk. Even the projected speeds of future fast disk configurations 
are not sufficient to ensure that unconstrained separations between blocks lie within the 
requirements of high performance video applications. Hence, constrained block place- 
ment is not an artifact of today's storage performance, but a fundamental problem that 
is not likely to be obviated by the availability of faster storage devices in the near future. 

There are two questions that need to be answered in constrained placement of 
media blocks on disk: (1) What should the size of the blocks (i.e. the granularity) be? 
and (2) What should the separation between successive blocks (i.e. the scattering) of 
a strand be? Together, they define the storage pattern of a media strand (see Figure 
2). Whereas granularity can be determined using the available buffer space at display 
sites, upper and lower bounds on scattering can be derived using the requirements of 
continuous playback, and maximizing the data transfer rate, respectively. In this section, 
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we determine these parameters for digital video (which is the most demanding medium 
with respect to performance and storage space requirements); the analysis tot audio can 
be carried out in a similar manner. 

~ _ ~  Gap 
Me [ m m m 

_ . _ T  k_ ...... 

Fig. 2. Storage pattern of a media strand 

2.1 Determining Granularity and Scattering 

During playback, media blocks are transmitted by a multimedia server to display sites 
belonging to clients. Consequently, the sizes of internal buffers available at the display 
sites can be used to determine granularity. For instance, if internal buffers available at 
display sites can store multiple video frames (say f) ,  then the buffers can be partitioned 
into two sets (each capable of holding f /2 frames): one set to hold the blocks being 
transmitted by the multimedia server, and another set to hold the blocks being displayed. 
Hence, each media block may contain f/2 frames, yielding ~.s = f/2. 

Symbol Explanation 
~vp 
T'~ dr 

I]vs 

Sv y 

Video playback rate 
Disk data transfer rate 
Granularity of video storage 
Size of a video frame 
Lower bound on scattering 
Upper bound on scattering 

display unit 
frames/sec 

bits/sec 
frames 

bits/frame 
s e c  

s e c  

Table 1. Symbols used in this paper 

The guiding factor in determining the upper bound on scattering is the requirement of 
continuous playback. Whereas playback durations of media blocks of a strand depend on 
the playback rate of the strand, the time for retrieving a sequence of blocks is a function of 
their placement on disk. Table 1 defines the symbols used for the parameters governing 
continuity requirements, using which, it can be seen that the playback duration of a 
media block is given by ~ Continuous playback at the media playback rate requires 7-~v p �9 

~ be bounded that the time to access each media block from disk (given by l], + ~ , r  ' 
by its playback duration, yielding: 

7~d---~ - Tc~--T (1) 
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which we refer to as the continuity equation. Thus, having detelanined the granularity, the 
upper bound on scattering l~s can be determined by direct substitution in the continuity 
equation. 

Even though bounding the separation between successive media blocks so as not to 
exceed l~, ensures continuous retrieval of media strands, the value of l~, derived from 
the continuity equation may, in general, be significantly larger than the time to read a 
media block from disk (namely, ~ ' * " ~  ----~-~-~. Hence, if a placement policy is based solely 
on l~,, then only a small fraction of the time required to access a media block may be 
spent in reading its contents from disk, thereby yielding low data transfer rates. In order 
to maximize the data transfer rate, it is essential that media blocks be placed on disk in a 
rotationally optimal manner. The rotationally optimal separation between media blocks 
depends on the characteristics of the multimedia server (such as, the delay incurred in 
initiating a new disk block access after having completed a previous request). If the 
separation between successive media blocks on disk is smaller than rotationaily optimal 
separation, then while accessing each pair of successive media blocks, the disk head may 
go past the location on disk containing the next media block after having retrieved the 
previous media block, before the next read operation read can be initiated. Consequently, 
maximum rotational latency may be incurred in accessing the next media block. Thus, 
rotationally optimal separation defines a lower bound on scattering between successive 
media blocks, and is denoted by l t , .  

2.2 Constrained Placement of Media Strands 

Consider the problem of placing a media strand on disk. Assume that the storage space 
of the disk is divided into tracks, each track is subdivided into ~veral disk blocks, and 
accessing a disk block requires positioning the disk head on the track containing the 
disk block (thereby incurring seek latency), and then waiting for the block to rotate 
under the disk head (thereby incurring rotational latency). The seek time is assumed 
to vary linearly with the seek distance (expressed in terms of number of tracks), and 
the maximum rotational latency is assumed to be bounded by lr~ '* . The goal of the 
constrained placement algorithm is to allocate disk blocks to media blocks such that 
the separation between successive media blocks on disk conforms to the bounds on 
scattering. 

Specifically, given that a media block Bi of a strand S, with bounds on scattering 
I u [Ids , las], is placed in disk block d on track t, the algorithm determines disk block dnew 

on track t,~,~o for storing media block Bi+l of strand S, such that the seek and rotational 
latencies incurred while moving the disk head from media block Bi to Bi+l is within 

I u [ld, , ld, ]. Once a disk head is positioned on track t,~,w, since any block on that track 
m a ~ :  can be retrieved within time l~o, , the feasibility of storing media block B~+~ on track 

t,~,,o depends on (l~, - l , , ,k) and (l~, - l,**k), where l***k denotes the time to seek 
from track t to t,~,~,. We refer to (lta, - l~,,k ) and (l%d~ -- l,**k ) as the residual lag time 
(rtaa) and residual slack time (r,z~,k), respectively. Clearly, if ~',~,k, rs~a > lr'~ ~ or if 
r,z~,~, rz,a < 0, then it is not possible to place block Bi+l on track tn~, .  In all other 
cases, the disk blocks on track t,~,,~ can be partitioned into feasible and infeasible sets 
such that allocating any disk block from the feasible set guarantees that the separation 
between media blocks Bi and Bi+l is within [lta,, l~,]. None of the blocks from the 



619 

infeasible set can be allocated to Bi+l, and hence, remain available lot allocation to 
future media blocks. Thus, given the disk characteristics (namely, a, b, and lr~o~ ~), as well 
as the strand characteristics (namely, l~s and l~,), the constrained placement algorithm 
determines a track and a disk block within that track where media block Bi+l can be 
stored. 

A strict placement algorithm guarantees that the separation between each pair of 
successive media blocks is within [lta,, l~] (i.e., rtag < 0 and r~zack > 0). On the 
contrary, an adaptive placement algorithm may accommodate occasional violations of 
the bounds on scattering (yielding rzag > 0 or r,z~ck < 0), as long as the average 
separation between successive media blocks over a finite window of blocks is within 
[l~,, l~,]. Whereas strict placement of a media strand on disk permits its playback to be 
initiated from an arbitrary block without any read-ahead, an adaptive placement may 
require a read-ahead equal to the number of media blocks within an averaging window. 
The adaptive placement algorithm, however, is much more flexible since it may succeed 
in placing media blocks on disk even when the strict algorithm fails to do so. 

3 Servicing Multiple Clients Simultaneously 

Till now, we have investigated techniques for placing a media strand on disk so as to 
guarantee its continuous retrieval in isolation. However, in practice, a multimedia server 
has to process requests from several clients simultaneously. In the best scenario, all the 
clients may request the retrieval of the same media strand, in which case, the multimedia 
server needs only to retrieve the strand once from the disk and then multicast it to all 
the clients. However, more often than not, different clients may request the retrieval of 
different strands; and even when the same strand is being requested by multiple clients 
(such as a popular movie), there may be phase shifts among their requests (e.g., each 
client viewing a different part of the movie at the same time). A simple mechanism 
to guarantee that the real-time requirements of none of the clients are violated is to 
dedicate a disk head to each client, which, however, limits the total number of clients to 
the number of disk heads. On the other hand, if the data transfer rate of the disk is higher 
than the requirements of a single client, then the number of clients that can be serviced 
simultaneously can be significantly increased by multiplexing a disk head among several 
clients. However, given the maximum rate of disk data transfer, the multimedia server 
can only service a limited number of clients. Hence, a multimedia server must employ 
admission control algorithms to decide whether a new client can be admitted without 
violating the continuity requirements of any of the clients already being serviced. 

3.1 Formulating the Admission Control Problem 

Continuous playback of a media strand involves a sequence of periodic t~ks  with 
deadlines, where tasks correspond to retrievals of media blocks from disk, and deadlines 
correspond to the scheduled playback times of media blocks. Thus, servicing multiple 
strand retrieval requests requires the derivation of a real-time schedule, for which the 
complexity of the best known algorithms show quadratic dependence on the number of 
tasks. Since strands usually consist of a large number of media blocks (e.g., if each media 
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block contains one video frame, then a five minute clip of a HDTV video strand recorded 
at 60 frames/s contains 18000 blocks), the number of tasks can be very large. Hence, 
direct application of traditional real-time scheduling techniques is out of question. 

Consider a multimedia server that is required to concun'ently service requests for 
strands $1, $2 ..... S,~. Since each request is periodic, the multimedia server can service 
them by proceeding in rounds. Suppose that, during each round, the multimedia server 
retrieves a sequence of kl media blocks of strand $1, and k2 media blocks of strand $2, 
.... and k,~ media blocks of strand Sn. The total time required to complete the round 
should not exceed the minimum of the playback durations of kl,  k2 . . . . .  or k,~ blocks. 
Whereas the playback duration of a sequence of media blocks of a strand is a function 
of the playback rate of that strand, the retrieval rate of media blocks is a function of their 
placement on disk. Thus, the policies for servicing multiple clients can be classified into 
two main categories: deadline based and placement based. Whereas the former retrieves 
media blocks based on the earliest deadline first scheduling policy, the latter retrieves 
media blocks from disk so as to minimize the total seek and rotational latencies incun'ed 
during retrieval. Servicing policies can be applied either to the media blocks within a 
strand (yielding a local schedule) or the global pool of media blocks from all the strands 
(yielding a global schedule). Clearly, when servicing policies are applied among media 
blocks within a strand, the multimedia server has to employ ordering techniques (such 
as, round robin ordering) to switch from one strand to next during each round. We will 
now formulate the problem of servicing multiple strand retrieval requests assuming a 
deadline based servicing policy for deriving local schedules and round robin ordering 
of strands, and describe an admission control algorithm which a multimedia server can 
employ to decide whether a new client request can be admitted without violating the 
real-time requirements of the clients already being serviced. 

Let us suppose that a multimedia server is servicing n client, each retrieving a 
different media strand (say, $1, $2 ..... S,~, respectively). Let ~/~, ~ ,  ..., ~ denote the 
granularities of the n strands being retrieved, lls, 12as,..., l'~s denote the upper bounds on 
scattering, and R~v , 2 n ~ p ,  ..., R~p their playback rates. Assuming round-robin ordering 
of strands, the multimedia server retrieves a finite number of media blocks k~ of each 
strand Si, i E [1, n] in accordance with the earliest deadline first policy, before switching 
to the next strand. Whereas the rate of transfer of successive blocks of a strand is governed 
by its granularity and scattering, switching from one strand to another may entail an 
overhead of up to the maximum seek and rotational latencies (since the layout does not 
constrain the relative positions of two different strands). The continuity requirement for 
each strand can be satisfied if and only if the service time per round does not exceed the 
minimum of the playback durations of kl, k2 ..... or k,, blocks. That is, 

n * (isrnea ~ --1- lro t ) -b l~ -~- ~--dr < iE[1,n] ~=~ J=~ , _ ~. ,~  / (2) 

Clearly, evaluating the validity of Equation (2) for each round, using the precise 
values of media block sizes and the separation between successive media blocks for 
each strand, is computationally infeasible. Hence, in order to provide deterministic 
service guarantees to each of the n clients, the values of 1~ and %ii, in Equation (2), 
Vi E [1, hi,must be set to their respective maximum values. However, this may be very 
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pessimistic, since constrained block placement algorithm and variable rate compression 
techniques (such as, JPEG and MPEG) may yield las and Sv! significantly smaller 
than their respective maximum values. Consequently, the multimedia server can service 
a larger number of clients by exploiting the variable reductions in ld, and s,,f, and 
providing statistical service guarantees to each of the clients. Specifically, if l~s and 
s~/represent random variables characterizing the separation between successive media 
blocks, and the bit size distribution of flames yielded by compression techniques such 
as JPEG and MPEG, respectively, then the term 

l]vs 8vf 
i=1 j=l l~s "4- ~'~dr 

'~ k in Equation (2) represents the sum of 2 �9 E/_-l( i - 1) independent random, and can 
be denoted as a random variable X. Hence, Equation (2) reduces to: 

X < min ki �9 - n ,  (lseek + lro t ) (3) iE[1,n] i - 7"r ,/ 

If F x is the distribution function of X, then guaranteeing continuous playback of n video 
strands with a probability greater than r necessitates that: 

/?X (rain ( ]r /]*v' ~ - n * i E [ x , n ]  max"I- max ) > 71" TC~pJ ( l , , , ,  t rot )  (4) 

The multimedia server can service all the n clients simultaneously if and only if 
kl, k2, ..., k,~ can be determined such that either Equation (2) (in the case of deterministic 
guarantees) or Equation (4) (in the case of statistical guarantees) is satisfied. Since both 
of these formulations contain n parameters and only one equation, determination of 
the values of k~, k2, ..., kn require additional techniques. The simplest technique for 
the choice of kt, k2, ..., kn is to use the same value for all of them, yielding what is 
generally referred to as a round robin servicing algorithm with fixed quanta. However, 
this certainly may not be the optimal number of clients, because, whereas the strand 
with the maximum playback rate will have retrieved exactly the number of media blocks 
it needs for the duration of a service round, other strands with smaller playback rates 
will have retrieved more media blocks than they need in each service round (thereby, 
leading to accumulation of media blocks at display sites). Consequently, by reducing the 
number of media blocks retrieved per service round for such strands, it may be possible 
to accommodate more number of clients. We now propose a quality proportional multi- 
client servicing algorithm that allocates values to ki proportional to the playback rate 
of the strand Si, and is guaranteed to yield values of ki so as to satisfy Equation (2) 
whenever a solution exists for the given number of clients. 

3.2 Quality Proportional Multi-client Servicing 

In the Quality Proportional Multi-client Servicing (QPMS) algorithm, the number of 
blocks accessed during each round for each strand is proportional to its playback rate. 
That is, 

ViE[1 ,  n]: kiocRi.v 
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If k is the proportionality constant, using which, we get, kl = k �9 7~,1,p, k2 = k �9 7~p, 
.... k,~ = k �9 ~"p.  Under these conditions, Equation (2) reduces to: 

n 

max max Z i i I& n*(l.~k+l~o ~ )+k* T~p*( + - -  
i = 1  

n i i 

i = 1  

Given the granularity and scattering parameters for each strand, Equation (5) can 
be used to determine k, from which, the number of blocks retrieved during each service 
round can be obtained as: kl = k �9 ~ p ,  k2 = k �9 7~e ..... k,~ = k .  7~v. It can be shown 
that this algorithm always yields values of ki so as to satisfy Equation (2) whenever a 
solution exists for the given number of clients [13]. 

Notice, however, that the values of ki's obtained using the QPMS algorithm may 
not be integral. Since the display of media strands proceeds in terms of quanta such as 
frames, if ki is not an integer, then retrieval of a fraction of a frame cannot be used for 
display, causing the display to starve until the remaining fraction anives, possibly in the 
next service round. Such scenarios can be avoided if ki's are all integers, techniques for 
deriving which we now elaborate, starting from the real values yielded by the QPMS 
algorithm. 

Let the values of {kl, k2, ..., kn} yielded by the QPMS algorithm be given by: 
Vi E [1, n] : ki = h + Fi, where li and Fi are the integer and the fractional parts of 
ki, respectively. If I = ~i~=1 h and F = ~in__l Fi, then (1 + F)  denotes the average 
number of blocks that need to be retrieved in each service round. In the technique that 
we present, the number of blocks of strand Si retrieves during a service round toggles 
between [ki] and [kl], so that on an average, the transfer rate for each strand Si is ki 
blocks/round. Specifically, for each round r, the multimedia server must determine the 
set/C ~ = {k[, k~,. �9 .k,~} of the sequence of number of blocks of the n strands to be 
retrieved during round r, where k[ can equal either [klJ or [ki]. However, in doing 
so, both the service time and buffer space constraints, that would have been met had ki 
blocks been retrieved for every round, must continue to be satisfied. Maintenance of the 
continuity requirement requires that the cumulative slack time at the multimedia server, 
which is the sum of the differences between the RHS and the LHS of Equation (2) for 
each round, must be non-negative so as to ensure that none of the clients are starved 
during a service round. Similarly, the buffer space constraint requires that the slack 
buffer space at the multimedia server, which is the difference between the available 
buffer space and the used buffer space, must be non-negative. To ensure that both the 
constraints are not violated, the toggling of LkiJ t o  [ki] for strands must be dynamically 
staggered. The order of toggling can be determined as follows: 

Since during every round, kl blocks of strand Si are consumed on an average, 
during rounds in which [kiJ blocks are retrieved, there must be sufficient accumulation 
of data at display sites belonging to clients to maintain continuity of playback, and the 
accumulation is resumed during rounds in which [ki] blocks are retrieved. Furthermore, 
an initial prefetching of blocks is also necessary to guarantee continuity during the first 
few rounds (since not all strands Si can have [ki] blocks retrieved during the first 
few rounds). Thus, the accumulation at the end of round R for client i is the sum of 
differences between k[ and ki during the R rounds plus the prefetched number of blocks 
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79i, and is given by: 
R 

~Di(R) = 79i + ~ ( k ' ~  - ki) (6) 
r = l  

During a round R, if ~DI(R) < Fi, a shortage of blocks would occur during the next 
round; hence, round R is the deadline for accessing [ki] blocks of strand Si. During 
each round, if there is sufficient slack time available to transfer extra blocks, strands 
are ordered with earliest deadline round first, and [kl] blocks are retrieved for each 
such strand Si until the exhaustion of the slack time. During each service round, if for 
all the strands, k~ is set to Ii, then the multimedia server can retrieve the extra blocks 

'~ k of at least [~ i=1(  i - Ii)J = [FJ strands in the order of earliest occurring deadline 
first, and whenever sufficient slack time accumulates, retrieve the extra blocks of IF] 
strands. Such a policy allows the deadline requirements of the maximum number of 
strands to be satisfied as much in advance as possible, while at the s~ne time limiting 
the maximum extra buffering needed during each round to IF].  

4 From Media Strands to Multimedia Ropes 

A multimedia object consists of several media components (such as, audio and video). 
We refer to a collection of media strands tied together by synchronization information 
as a multimedia rope. Synchronization information among media su'ands constituting 
a rope can be expressed by relating the playback intervals of media strands in one of 
thirteen possible ways [2]: before, meets, overlaps, during, starts, ends, equals, plus 
the inverse relations - except equals. In this section, we first describe techniques for 
efficient storage and retrieval of multimedia ropes on disk, and then address the problem 
of servicing multiple rope retrieval requests. 

4.1 Efficient Storage of Multimedia Ropes 

Consider a multimedia rope M consisting of strands $1, $2 ..... and S,,. A straightforward 
approach for storing these strands is to permit each disk block to contain media samples 
from various strands (i.e., heterogeneous blocks). For instance, if 5:a and $2 denote a 
video and an audio strand, respectively, then a video frame and corresponding audio 
samples can be stored in the same disk block. Whereas such a storage scheme affords 
the advantage that it provides implicit inter-media synchronization, it entails additional 
processing for combining these media during storage, and for separating them during 
retrieval. 

A better approach is to restrict each disk block to contain exactly one medium 
(i.e., homogeneous blocks). Such a scheme permits the multimedia server to exploit 
the properties of each medium to independently optimize the storage of each media 
strand. However, the multimedia server must maintain explicit relationships among the 
playback intervals of strands so as to ensure their synchronous retrieval. 

Using homogeneous blocks, a simple scheme for storing a multimedia rope is to 
independently layout blocks of each of its constituent strands. However, playback of such 
a rope may incur significant seek and rotational latencies while concurrently accessing 
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media blocks of its constituent strands. Since media blocks of ,all the strands constituting 
a rope may be concurrently available at the time of storage, the multimedia server can 
minimize the overhead due to seek and the rotational latencies incurred during retrieval, 
due to switching between strands, by filling up the gaps between media blocks of one 
strand with media blocks of other strands. We refer to the process of storing media 
blocks of a strand in the gaps between successive blocks of other strands as merging. 

Intuitively, the storage of n strands S], $2 ..... S,~ can be merged together if the sum 
of the fractions of space occupied by their media blocks does not exceed 1. Thus, if 

n ] 2 n ~/~s, ~/~,, ..., ~m, denote the granularities, and ld,, lds, ..., Id, denote the upper bounds 
on scattering, for strands S1, $2 ..... Sn, respectively, then the condition for merging 
their storage can be formally stated as: 

i=1 rlis * 8v"~TJ ~ g  * "T~dr' ~ 1 (7) 

where 71o . G!i and (~,i . s~/i + la . Tear) denote the sizes (in terms of bits) of media 
blocks and storage pattern of strand Si, respectively. 

Suppose that media strands are placed on disk such that chunks of kl blocks of &,  
k2 blocks of $2 ..... and k,~ blocks of Sn follow each other, and the sequence repeats (see 
Figure 3). Consequently, guaranteeing retrieval of each strand & at its playback rate 
requires that the space occupied by blocks of all the other strands Sj (3' 7~ i), between 
two successive chunks of blocks of Si, does not exceed the total gap space permitted 
for ki blocks (present in each chunk) of &. That is, 

V s t r a n d s S i , i e [ 1 , n ] :  Z k j .  r ~ . . s . !  _ 
jE[1,n],jr 

k 1 = 2  k 2 = 4  k 3 . 3  k 4 - 6  k S - 9  

t~:t!l ! I I Ig~t-!M i l:t ~;i; f~ I t t l~]'~t i"-;;:;7".~ 
; i 

Fig. 3. Merged storage of media strands 

The values of kl, k2, ..., kn satisfying the above system of n equations define a merge 
cycle. As a solution to the above system of equations, we now propose a scaled placement 
policy, in which the number of consecutive blocks k, i of a strand & placed in a merge 
cycle is inversely scaled by the length of its storage pattern (i.e., 7/ ,  �9 s i j  + l~, �9 7-r 
That is, Vi E [1, n]: 

k 
ki = . (9) 

(~livs * sivl + l*as * Tgar) 

where, k is a constant. Substituting the values of ki 's  obtained from Equation (9), and 
rearranging the terms of Equation (8), it can be shown that the scaled placement policy 
is guaranteed to yield a merge cycle whenever the merge condition (Equation (7)) is 
satisfied [9]. 
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When kl, k2,..., kn in a merge cycle satisfy Equation (8), for each strand Si, fetching 
its ki blocks within each merge cycle is sufficient to guarantee continuous retrieval for 
the duration of the merge cycle. Hence, at a display site, up to 2 �9 kl buffers may be 
required for strand Si: one set of ki buffers to hold the blocks being transferred, and 
another set to hold the blocks being displayed. In turn, given the bounds on buffering 
available at display devices (which is in fact the case in most hardware environments), 
bounds on the values of kl can be fixed, from which, bounds on the values of k can be 
determined by Equation (9). Among all such bounds of k, the lowest is chosen ,'ts the 
value of k, from which the tightest values of k i are recomputed, again by using Equation 
(9). 

Notice, however, that the values of ki's so obtained may not be integral (unless k is 
chosen to be an integral multiple of the LCM of the storage pattern lengths, which, of 
course, can be very large). In order to ensure continuous retrieval of media strands, the 
values of ki 'S must be integral. By using a technique similar to one presented in Section 
3.2 for the QPMS algorithm, the integral number of media blocks required to be stored 
in each merge cycle can be derived by toggling between [kiJ and [ki] for each strand in 
a staggered manner between successive merge cycles, so that on an average, the number 
of blocks of strand Si stored in a merge cycle equals ki. 

4.2 Admission Control Algorithm for Multimedia Ropes 

Playback of a multimedia rope may require simultaneous or sequential display of its 
constituent media strands. Hence, the data transfer requirement of a rope may vary 
during its playback. The admission control algorithms described in Section 3 have 
assumed a fixed data transfer requirement for each strand throughout the duration of its 
playback. In this section, we present a technique for partitioning the playback duration 
of a rope into intervals, each with fixed data transfer requirements, thereby reducing the 
problem of servicing a rope retrieval request to a set of problems for servicing multiple 
strand retrieval requests. 

Given the relationship between the playback intervals of media strands, the data 
transfer requirement of a multimedia rope can be completely characterized by maintain- 
ing: (1) the time instants at which the playback of its constituent media strands begin 
and end during the playback of the rope, and (2) the extent of increase or decrease in 
the data transfer requirement. Formally, for a multimedia rope Mr, we define alteration 
points (denoted by a~) as the time instants at which the playback of its constituent suands 
either begin or end. We refer to an ordered set (sorted in the increasing order of time) of 
alteration points as an alteration set, and denote it by .At. We refer to the time interval 
between successive pairs of alteration points (namely, Vi E [1, nt] �9 [a~, a~ +1] where 
nt = [.At 1) as an alteration interval. Since each alteration interval may involve simul- 
taneous playback of multiple strands, the data transfer requirement lor each alteration 
interval can be represented as a set of the data transfer requirements of strands (defined 
by the 4-tuple {~ , ,  s~i, la,, R~p }), and is referred to as the playback set (denoted by 
~b~). Thus, the data transfer requirement of a rope Mt can be uniquely represented as a 
pair {.At, ~t }, where.At denotes the alteration set and ~t denotes a sequence of playback 
sets. 
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Consider the process of initiating simultaneous playback of multimedia ropes M1 
and M2. Let the data transfer requirements of ropes M1 and M2 be characterized by 
{`41, gq} and {`42, if'2}, respectively. Let 1`4,1 = n ,  a n d  1 .4 :1  = -2, m a d  let 

.4,  = {.I ,  ,,1 ~, --., .71} 

.42 = { 4 , 4 ,  ..., a ? }  

Similarly, let 
k~ 1 _-- {~0, ~ ,  ..., ~1-1 ,  ~1}  

~2 : {r  ,,,n2-, 
�9 . . ,  ~2 , C P }  

where ~b ~ = ~b~ 1 = ~b ~ = ~b~ 2 = ~. If the playback of ropes M, and M2 are ini- 
tiated simultaneously, then the data transfer requirement will change at each of the 
alteration points of M1 and M2. Consequently, the cumulative alteration set .4 = 
{a ' ,  a 2, ..., a '~t+"2 } can be obtained by performing a nwrge sort operation oll .41 and 
.42. Furthermore, simultaneous playback of ropes M1 and M2 yields at most (n 1 + 7~2 + 1) 
alteration intervals, the playback set ~b i for each interval can be determined using an 
iterative algorithm: 

- I f3 j t  E [1, n,] such that a ~ = a~ ~, then 

- If 3j2 E [1, n2] such that a i = a~ 2, then 

= - r ) u r 

Thus, playback of ropes MI and M2 can be initiated simultaneously if and only if the 
multimedia server can satisfy the data transfer requirements of each of the cumulative 
alteration intervals. If, however, the multimedia server is unable to meet the data transfer 
requirement of any one of the intervals, the earliest time instant at which the playback 
of 3//2 can be initiated, given that the playback of M, has ,already been scheduled, can 
be determined by delaying the initiation of M2 by an alteration interval of M1, and 
repeating the analysis. 

5 Experience and Performance Evaluation 

A prototype multimedia server is being implemented at tile UCSD Multimedia Labo- 
ratory in an environment consisting of multimedia stations connected to a multimedia 
server through Ethernet and FDDI networks. Each multimedia station consists of a 
computing workstation, a PC-AT, a video camera, and a TV monitor. The PC-ATs m'e 
equipped with digital video processing hardware that can digitize and compress motion 
video at real-time rates, and audio hardware that can digitize voice at 8 KBytes/sec. 
The multimedia server is implemented on a 486-PC equipped with multiple gigabytes 
of storage. 

The software architecture of the prototype multimedia server consists of two func- 
tional layers: the Storage Manager and the Rope Server (see Figure 4). The storage 
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manager is responsible for physical storage of strands on disk, and handles determina- 
tion of granularity and scattering parameters for strands, constrained placement of media 
blocks on disk, and merged storage of strands constituting a rope. The rope server, on 
the other hand, handles maintenance of synchronization relationships between strands, 
and admission control. The rope server also provides facilities for users to create, edit, 
and retrieve multimedia ropes. 

Rope server 

Storage manager 

- Maintenance of synchronization relationship between strands 
- Admission control 

~- Operations for creating editing and retrieving multimedia ropes t . . . . . . . . . . . . . . .  '. . . . . .  '_ . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

. ' : : : : : : : : : i_i----  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
J . . 

- Determination of granularity and scattering 
- Constrained placement of media blocks 

[- Merging the storage of media strands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 4. Software architecture of the prototype multimedia server 

We have carded out simulations to evaluate the performance of various media 
block placement policies. Our simulations have shown that the data transfer bandwidths 
yielded by both unconstrained and constrained placement policies improve with increase 
in disk block size. This is because, increasing the disk block size results in a reduction in 
the number of disk blocks required to store a media strand, thereby reducing the total seek 
and rotational latency overhead. However, even at large disk block sizes, unconstrained 
placement policy can achieve only about 3% of the maximum data transfer bandwidth. 
The performance of the constrained placement policy, on the other hand, depends on 
the average separation between successive media blocks. As the average separation 
approaches l~, (derived using the rotationally optimal separation), the data transfer 
bandwidth yielded by the constrained placement policy approaches the maximum data 
transfer bandwidth of the disk. 

We have also evaluated the relative performance various deterministic and statistical 
admission control algorithms. Our analysis demonstrates that providing statistical ser- 
vice guarantees to video strands encoded using JPEG or MPEG compression techniques 
yields smaller values of ki's (and hence, imposes smaller buffer space requirement), and 
can service a larger number of clients simultaneously, as compared to its deterministic 
counterpart (see Figure 5). These experiments also illustrated the gain in the maximum 
number of simultaneous clients in the QPMS as compared to the round-robin algo- 
rithm. Higher the asymmetry among the playback rates of the client requests, greater is 
the advantage of employing the QPMS algorithm. When the playback rates of all the 
clients are the same, the performance of the QPMS algorithm degenerates to that of the 
round-robin algorithm. 

6 C o n c l u d i n g  R e m a r k s  

Constrained placement of media blocks on disk does not entail the disadvantages of 
contiguous and unconstrained placement policies, and ensures that the access time of 
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Fig. 5. Relative variations in the number of clients (n) that can be serviced with the length of a 
service round (in number of media blocks k) for deterministic servicing and statistical servicing 
(JPEG and MPEG) of video requests. 

media blocks within the real-time playback requirements of sUands. Howevel, mul- 
timedia servers employing constrained placement policy may be required to fill gaps 
between media blocks of one strand with media blocks of other strands, so as to utilize 
the storage space efficiently. 

Whereas constrained placement of a media strand can only gu~antee its continuous 
retrieval in isolation, a multimedia server, in practice, has to service multiple clients 
simultaneously. Given the maximum rate of disk data transfer, the multimedia server can 
only service a limited clients without violating the continuity requirements of any one 
of them. The admission control algorithm depends on: (1) the real-time requirements 
imposed by each client, (2) the type of service rendered by the multimedia server (i.e., 
deterministic or statistical), (3) the servicing policy (namely, deadline based or placement 
based), and (4) whether the servicing policy is applied to media blocks within a request 
(yielding a local schedule) or to the global pool of media blocks from all the requests 
(yielding a global schedule). 

We have studied several policies for (such as, round robin and quality proportional) 
for servicing multiple clients, and have proposed algorithms by which a multimedia 
server can enforce these policies without violating the real-time retrieval rates of any 
of the clients. The quality proportional servicing algorithm retrieves media blocks at 
a rate proportional on an average to the media playback rates of requests, but uses a 
staggered toggling technique by which successive numbers of retrieved media blocks 
are fine tuned individually to achieve the servicing of an optimal number of clients. 
Our performance analysis illustrates that the constrained placement policy achieves 
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significantly higher effective data transfer bandwidth as compared to unconstrained 
placement o f  media strands, and the QPMS algorithm for servicing multiple clients is 
an order of  magnitude scalable compared to straightforward multiplexing techniques 
such as servicing one client per disk head and round robin servicing of  clients. 
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