
Architectures and Algorithms for Digital Multimedia
On-Demand Servers*

P. Venkat Rangan

Multimedia Laboratory
Department of Computer Science and Engineering

University of California at San Diego
La Jolla, CA 92093-0114

E-mail: venkat@es.ucsd.edu; Phone: (619)534-5419

Abstract . Future advances in networking coupled with the rapid advances in
storage technologies will make it feasible to build multimedia on-demand servers
that provide services similar to those of neighborhood videotape rental stores on a
metropolitan-area network. A critical requirement in building a multimedia server
is the need for guaranteeing continuous playback of media streams. Hence, there
are two important questions that need to be addressed in designing a multime-
dia server: (1) how should media streams be laid.out on disk so as to guarantee
their continuous retrieval, and (2) how can multiple clients be serviced simulta-
neously by a multimedia server? In order to address the first question, we propose
a constrained block placement policy, in which separations between successive
media blocks on disk are bounded so as to guarantee their continuous retrieval at
real-time rates. To enable the multimedia server to support multiple clients, we
study various policies (such as, round robin and quality proportional) for servic-
ing multiple clients, and propose admission control algorithms for detemaining
whether a new client can be admitted without violating the real-time requirements
of any of the clients already being serviced. Finally, we capture the multiplicity of
media streams characterizing multimedia objects by defining a multimedia rope
abstraction, and describe techniques for their efficient storage on disk, as well as
address the problem of servicing multiple rope retrieval requests simultaneously.

1 Introduction

Future advances in networking will make it feasible for computer networks to support
digi tal mul t imedia transmission. Coupled with the rapid advances in storage technolo-
gies, they can be used to bui ld mul t imedia on-demand services over metropoli tan-area

networks (such as B-ISDN) that are expected to permeate residential and commercial

premises in a manner similar to existing cable TV and telephone networks [12]. A
mul t imedia on-demand server, which we will refer to as a Multimedia Server in the
rest o f this paper, provides services similar to those of a neighborhood videotape rental
store. It d igi ta l ly stores media information such as entertainment movies, educational
documentaries, advertisements, etc., on a large array of extremely high-capaci ty storage

* This tutorial is based on work done by the author and his student, Harrick M. Vin, at the UCSD
Multimedia Laboratory

614

devices such as optical or magnetic disks, that are random accessible with a short seek
time and are permanently on-line. The multimedia server is connected to display sites
belonging to clients via a high-speed network subsystem. Clients can make a selection of
a multimedia object through a variety of indices such as the object's name, and request
its retrieval for real-time playback on their display sites. The multimedia server, if it
has the necessary resources (such as service time and buffer space), services the client's
request by connecting to his/her chosen display site(s), and transmitting the chosen
multimedia segment. The retrieval can be interactive, in the sense that clients can stop,
pause, resume, and even record and edit the media information if they have permissions
to do so. Thus, the multimedia server subsumes the functions of VCRs, videotapes, audio
recorders, etc., and can serve varying sizes of clientele: from individual households to
entire neighborhoods, and from commercial organizations and educational institutions
to national services.

A critical requirement in building a multimedia on-demand service is the need for
guaranteeing continuous playback of media streams (since media quanta, such as video
frames or audio samples, convey meaning only when presented continuously in time,
unlike text in which spatial continuity is sufficient). In order to guarantee continuous
playback, (1) the multimedia server must support continuous retrieval from the disk, (2)
the network subsystem must guarantee timely delivery of media quanta to the display
sites, and (3) the display sites must avoid buffer overruns or starvations. Specifically:

- The multimedia server organizes the storage of media streams in terms of blocks on
its disk. In order to guarantee continuous retrieval of a media stream from disk, the
multimedia server must constrain the separations between successive media blocks
of the media stream so as not to exceed the media blocks' playback durations. Fur-
thermore, servicing multiple clients simultaneously may require that the multimedia
server reserve disk access bandwidth for each client prior to rendering the service.

- In order to guarantee timely delivery of media quanta to the display sites, the
network subsystem may have to reserve network resources for each client so as to
ensure bounds on delay jitter.

- In the absence of variations in playback rates at display sites, ensuring continuous
playback at display sites requires that the sites prefetch sufficient number of media
quanta, whose total playback duration equals at least the network delay jitter. In
the presence of non-deterministic playback rate variations, however, additional
mechanisms are essential to enable the multimedia server to detect overruns or
starvations of media units at the display sites, and to preventively readjust the
transmission rate of media units so as to avoid playback discontinuities.

In this paper, we focus on the first item above, i.e., a multimedia server for sup-
porting continuous retrieval of media streams from disk. The second item, namely the
design of a network subsystem for continuous delivery of media quanta has been dealt
with by Ferrari and Verma [3]. The last item, i.e., the problem of avoiding overruns
and starvations at the display sites in the presence of non-deterministic playback rate
variations, has been addressed by Ramanathan and Rangan [7].

Multimedia server designs for guaranteeing continuous retrieval of digital video
and audio have, however, remained relatively unexplored. Most of the past work on

615

Storage disk

. �9

Internal, buffer

Display monitorl." """
Display site

Fig. 1. Configuration of a multimedia on-demand service

~: subsystem

multimedia storage systems is restricted to still images and/or audio [1, 5, 6]. Recently,
Gammell et al. [4] have described file system designs for supporting audio playback, but
they do not address multi-user video on-demand services. A qualitative design for a file
system offering video services is presented by the author in [8]. A quantitative model
for the design of a file system for storing real-time video and audio streams on disks
have been presented by Rangan and Vin [10, 11]. Admission control algorithms for
multi-user video on-demand servers are presented by Vin and Rangan [13]. A review of
these architectures and algorithms for designing a high-performance, multimedia server
capable of servicing a large number of clients is the subject matter of this paper.

First, we address the problem of storing multiple media strands, each of which
denotes a sequence of continuously recorded video frames or audio samples. We propose
a constrained block allocation policy, in which separations between successive media
blocks on disk are bounded so as to guarantee their continuous retrieval at real-time
rates.

Then, we address the question of servicing multiple clients by a multimedia server.
Given the maximum rate of disk data transfer, the multimedia server can only service a
limited number of clients simultaneously. We study various policies (such as, round robin
and quality proportional) for servicing multiple clients, and propose admission control
algorithms for determining whether a new client can be admitted without violating
the real-time requirements of any of the clients already being serviced. In the quality
proportional servicing (QPMS) algorithm proposed in this paper, the number of media

616

blocks of a strand retrieved during each service round is proportional on an average to
the the strand's playback rate, and successive number of media blocks retrieved are fine
tuned individually to achieve the servicing of an optimal number of clients.

We capture multiplicity of media streams constituting a multimedia object by defin-
ing a multimedia rope abstraction, which represents a collection of media strands tied
together by synchronization information. We propose a merging algorithm for efficient
storage and retrieval of media strands constituting a rope, and describe techniques for
servicing multiple rope retrieval requests simultaneously.

The rest of this paper is organized as follows: Constrained placement policies are
developed in Section 2. The admission control algorithm is described in Section 3.
Merged storage and retrieval of ropes are addressed in Section 4. Section 5 presents
performance evaluation, and finally, Section 6 concludes the paper.

2 Managing Storage of Digital Multimedia

Digitization of video yields a sequence of frames, and that of audio yields a sequence of
samples. We refer to a sequence of continuously recorded video frames or audio samples
as a Strand. A multimedia server must divide video and audio strands into blocks while
storing them on a disk. Continuous playback of media strands requires that the time
for retrieving a media block of a strand from disk does not exceed the media block's
playback duration.

Most existing storage server architectures employ unconstrained placement of blocks
on disk. In such storage servers, reserving computational cycles to meet real-time re-
quirements is not sufficient to support continuous retrieval of media strands. This is
because, separations between blocks of a strand may not be constrained enough to
guarantee bounds on seek and rotational latencies incurred while accessing successive
blocks of the strand. Contiguous placement of media blocks, on the other hand, guar-
antees that successive blocks can be retrieved without incurring any seek or rotational
latency. However, contiguous placement of media blocks is fraught with inherent prob-
lems of fragmentation, and can entail enormous copying overheads during insertions
and deletions.

Constrained block placement maintains the access time of media blocks within the
real-time playback requirements of strands by bounding the separation between .succes-
sive media blocks on disk. Even the projected speeds of future fast disk configurations
are not sufficient to ensure that unconstrained separations between blocks lie within the
requirements of high performance video applications. Hence, constrained block place-
ment is not an artifact of today's storage performance, but a fundamental problem that
is not likely to be obviated by the availability of faster storage devices in the near future.

There are two questions that need to be answered in constrained placement of
media blocks on disk: (1) What should the size of the blocks (i.e. the granularity) be?
and (2) What should the separation between successive blocks (i.e. the scattering) of
a strand be? Together, they define the storage pattern of a media strand (see Figure
2). Whereas granularity can be determined using the available buffer space at display
sites, upper and lower bounds on scattering can be derived using the requirements of
continuous playback, and maximizing the data transfer rate, respectively. In this section,

617

we determine these parameters for digital video (which is the most demanding medium
with respect to performance and storage space requirements); the analysis tot audio can
be carried out in a similar manner.

~ _ ~ Gap
Me [m m m

_ . _ T k_

Fig. 2. Storage pattern of a media strand

2.1 Determining Granularity and Scattering

During playback, media blocks are transmitted by a multimedia server to display sites
belonging to clients. Consequently, the sizes of internal buffers available at the display
sites can be used to determine granularity. For instance, if internal buffers available at
display sites can store multiple video frames (say f) , then the buffers can be partitioned
into two sets (each capable of holding f /2 frames): one set to hold the blocks being
transmitted by the multimedia server, and another set to hold the blocks being displayed.
Hence, each media block may contain f/2 frames, yielding ~.s = f/2.

Symbol Explanation
~vp
T'~ dr

I]vs

Sv y

Video playback rate
Disk data transfer rate
Granularity of video storage
Size of a video frame
Lower bound on scattering
Upper bound on scattering

display unit
frames/sec

bits/sec
frames

bits/frame
s e c

s e c

Table 1. Symbols used in this paper

The guiding factor in determining the upper bound on scattering is the requirement of
continuous playback. Whereas playback durations of media blocks of a strand depend on
the playback rate of the strand, the time for retrieving a sequence of blocks is a function of
their placement on disk. Table 1 defines the symbols used for the parameters governing
continuity requirements, using which, it can be seen that the playback duration of a
media block is given by ~ Continuous playback at the media playback rate requires 7-~v p �9

~ be bounded that the time to access each media block from disk (given by l], + ~ , r '
by its playback duration, yielding:

7~d---~ - Tc~--T (1)

618

which we refer to as the continuity equation. Thus, having detelanined the granularity, the
upper bound on scattering l~s can be determined by direct substitution in the continuity
equation.

Even though bounding the separation between successive media blocks so as not to
exceed l~, ensures continuous retrieval of media strands, the value of l~, derived from
the continuity equation may, in general, be significantly larger than the time to read a
media block from disk (namely, ~ ' * " ~ ----~-~-~. Hence, if a placement policy is based solely
on l~,, then only a small fraction of the time required to access a media block may be
spent in reading its contents from disk, thereby yielding low data transfer rates. In order
to maximize the data transfer rate, it is essential that media blocks be placed on disk in a
rotationally optimal manner. The rotationally optimal separation between media blocks
depends on the characteristics of the multimedia server (such as, the delay incurred in
initiating a new disk block access after having completed a previous request). If the
separation between successive media blocks on disk is smaller than rotationaily optimal
separation, then while accessing each pair of successive media blocks, the disk head may
go past the location on disk containing the next media block after having retrieved the
previous media block, before the next read operation read can be initiated. Consequently,
maximum rotational latency may be incurred in accessing the next media block. Thus,
rotationally optimal separation defines a lower bound on scattering between successive
media blocks, and is denoted by l t , .

2.2 Constrained Placement of Media Strands

Consider the problem of placing a media strand on disk. Assume that the storage space
of the disk is divided into tracks, each track is subdivided into ~veral disk blocks, and
accessing a disk block requires positioning the disk head on the track containing the
disk block (thereby incurring seek latency), and then waiting for the block to rotate
under the disk head (thereby incurring rotational latency). The seek time is assumed
to vary linearly with the seek distance (expressed in terms of number of tracks), and
the maximum rotational latency is assumed to be bounded by lr~ '* . The goal of the
constrained placement algorithm is to allocate disk blocks to media blocks such that
the separation between successive media blocks on disk conforms to the bounds on
scattering.

Specifically, given that a media block Bi of a strand S, with bounds on scattering
I u [Ids , las], is placed in disk block d on track t, the algorithm determines disk block dnew

on track t,~,~o for storing media block Bi+l of strand S, such that the seek and rotational
latencies incurred while moving the disk head from media block Bi to Bi+l is within

I u [ld, , ld,]. Once a disk head is positioned on track t,~,w, since any block on that track
m a ~ : can be retrieved within time l~o, , the feasibility of storing media block B~+~ on track

t,~,,o depends on (l~, - l , , ,k) and (l~, - l,**k), where l***k denotes the time to seek
from track t to t,~,~,. We refer to (lta, - l~,,k) and (l%d~ -- l,**k) as the residual lag time
(rtaa) and residual slack time (r,z~,k), respectively. Clearly, if ~',~,k, rs~a > lr'~ ~ or if
r,z~,~, rz,a < 0, then it is not possible to place block Bi+l on track tn~, . In all other
cases, the disk blocks on track t,~,,~ can be partitioned into feasible and infeasible sets
such that allocating any disk block from the feasible set guarantees that the separation
between media blocks Bi and Bi+l is within [lta,, l~,]. None of the blocks from the

619

infeasible set can be allocated to Bi+l, and hence, remain available lot allocation to
future media blocks. Thus, given the disk characteristics (namely, a, b, and lr~o~ ~), as well
as the strand characteristics (namely, l~s and l~,), the constrained placement algorithm
determines a track and a disk block within that track where media block Bi+l can be
stored.

A strict placement algorithm guarantees that the separation between each pair of
successive media blocks is within [lta,, l~] (i.e., rtag < 0 and r~zack > 0). On the
contrary, an adaptive placement algorithm may accommodate occasional violations of
the bounds on scattering (yielding rzag > 0 or r,z~ck < 0), as long as the average
separation between successive media blocks over a finite window of blocks is within
[l~,, l~,]. Whereas strict placement of a media strand on disk permits its playback to be
initiated from an arbitrary block without any read-ahead, an adaptive placement may
require a read-ahead equal to the number of media blocks within an averaging window.
The adaptive placement algorithm, however, is much more flexible since it may succeed
in placing media blocks on disk even when the strict algorithm fails to do so.

3 Servicing Multiple Clients Simultaneously

Till now, we have investigated techniques for placing a media strand on disk so as to
guarantee its continuous retrieval in isolation. However, in practice, a multimedia server
has to process requests from several clients simultaneously. In the best scenario, all the
clients may request the retrieval of the same media strand, in which case, the multimedia
server needs only to retrieve the strand once from the disk and then multicast it to all
the clients. However, more often than not, different clients may request the retrieval of
different strands; and even when the same strand is being requested by multiple clients
(such as a popular movie), there may be phase shifts among their requests (e.g., each
client viewing a different part of the movie at the same time). A simple mechanism
to guarantee that the real-time requirements of none of the clients are violated is to
dedicate a disk head to each client, which, however, limits the total number of clients to
the number of disk heads. On the other hand, if the data transfer rate of the disk is higher
than the requirements of a single client, then the number of clients that can be serviced
simultaneously can be significantly increased by multiplexing a disk head among several
clients. However, given the maximum rate of disk data transfer, the multimedia server
can only service a limited number of clients. Hence, a multimedia server must employ
admission control algorithms to decide whether a new client can be admitted without
violating the continuity requirements of any of the clients already being serviced.

3.1 Formulating the Admission Control Problem

Continuous playback of a media strand involves a sequence of periodic t~ks with
deadlines, where tasks correspond to retrievals of media blocks from disk, and deadlines
correspond to the scheduled playback times of media blocks. Thus, servicing multiple
strand retrieval requests requires the derivation of a real-time schedule, for which the
complexity of the best known algorithms show quadratic dependence on the number of
tasks. Since strands usually consist of a large number of media blocks (e.g., if each media

620

block contains one video frame, then a five minute clip of a HDTV video strand recorded
at 60 frames/s contains 18000 blocks), the number of tasks can be very large. Hence,
direct application of traditional real-time scheduling techniques is out of question.

Consider a multimedia server that is required to concun'ently service requests for
strands $1, $2 S,~. Since each request is periodic, the multimedia server can service
them by proceeding in rounds. Suppose that, during each round, the multimedia server
retrieves a sequence of kl media blocks of strand $1, and k2 media blocks of strand $2,
.... and k,~ media blocks of strand Sn. The total time required to complete the round
should not exceed the minimum of the playback durations of kl, k2 or k,~ blocks.
Whereas the playback duration of a sequence of media blocks of a strand is a function
of the playback rate of that strand, the retrieval rate of media blocks is a function of their
placement on disk. Thus, the policies for servicing multiple clients can be classified into
two main categories: deadline based and placement based. Whereas the former retrieves
media blocks based on the earliest deadline first scheduling policy, the latter retrieves
media blocks from disk so as to minimize the total seek and rotational latencies incun'ed
during retrieval. Servicing policies can be applied either to the media blocks within a
strand (yielding a local schedule) or the global pool of media blocks from all the strands
(yielding a global schedule). Clearly, when servicing policies are applied among media
blocks within a strand, the multimedia server has to employ ordering techniques (such
as, round robin ordering) to switch from one strand to next during each round. We will
now formulate the problem of servicing multiple strand retrieval requests assuming a
deadline based servicing policy for deriving local schedules and round robin ordering
of strands, and describe an admission control algorithm which a multimedia server can
employ to decide whether a new client request can be admitted without violating the
real-time requirements of the clients already being serviced.

Let us suppose that a multimedia server is servicing n client, each retrieving a
different media strand (say, $1, $2 S,~, respectively). Let ~/~, ~ , ..., ~ denote the
granularities of the n strands being retrieved, lls, 12as,..., l'~s denote the upper bounds on
scattering, and R~v , 2 n ~ p , ..., R~p their playback rates. Assuming round-robin ordering
of strands, the multimedia server retrieves a finite number of media blocks k~ of each
strand Si, i E [1, n] in accordance with the earliest deadline first policy, before switching
to the next strand. Whereas the rate of transfer of successive blocks of a strand is governed
by its granularity and scattering, switching from one strand to another may entail an
overhead of up to the maximum seek and rotational latencies (since the layout does not
constrain the relative positions of two different strands). The continuity requirement for
each strand can be satisfied if and only if the service time per round does not exceed the
minimum of the playback durations of kl, k2 or k,, blocks. That is,

n * (isrnea ~ --1- lro t) -b l~ -~- ~--dr < iE[1,n] ~=~ J=~ , _ ~. ,~ / (2)

Clearly, evaluating the validity of Equation (2) for each round, using the precise
values of media block sizes and the separation between successive media blocks for
each strand, is computationally infeasible. Hence, in order to provide deterministic
service guarantees to each of the n clients, the values of 1~ and %ii, in Equation (2),
Vi E [1, hi,must be set to their respective maximum values. However, this may be very

621

pessimistic, since constrained block placement algorithm and variable rate compression
techniques (such as, JPEG and MPEG) may yield las and Sv! significantly smaller
than their respective maximum values. Consequently, the multimedia server can service
a larger number of clients by exploiting the variable reductions in ld, and s,,f, and
providing statistical service guarantees to each of the clients. Specifically, if l~s and
s~/represent random variables characterizing the separation between successive media
blocks, and the bit size distribution of flames yielded by compression techniques such
as JPEG and MPEG, respectively, then the term

l]vs 8vf
i=1 j=l l~s "4- ~'~dr

'~ k in Equation (2) represents the sum of 2 �9 E/_-l(i - 1) independent random, and can
be denoted as a random variable X. Hence, Equation (2) reduces to:

X < min ki �9 - n , (lseek + lro t) (3) iE[1,n] i - 7"r ,/

If F x is the distribution function of X, then guaranteeing continuous playback of n video
strands with a probability greater than r necessitates that:

/?X (rain (]r /]*v' ~ - n * i E [x , n] max"I- max) > 71" TC~pJ (l , , , , t rot) (4)

The multimedia server can service all the n clients simultaneously if and only if
kl, k2, ..., k,~ can be determined such that either Equation (2) (in the case of deterministic
guarantees) or Equation (4) (in the case of statistical guarantees) is satisfied. Since both
of these formulations contain n parameters and only one equation, determination of
the values of k~, k2, ..., kn require additional techniques. The simplest technique for
the choice of kt, k2, ..., kn is to use the same value for all of them, yielding what is
generally referred to as a round robin servicing algorithm with fixed quanta. However,
this certainly may not be the optimal number of clients, because, whereas the strand
with the maximum playback rate will have retrieved exactly the number of media blocks
it needs for the duration of a service round, other strands with smaller playback rates
will have retrieved more media blocks than they need in each service round (thereby,
leading to accumulation of media blocks at display sites). Consequently, by reducing the
number of media blocks retrieved per service round for such strands, it may be possible
to accommodate more number of clients. We now propose a quality proportional multi-
client servicing algorithm that allocates values to ki proportional to the playback rate
of the strand Si, and is guaranteed to yield values of ki so as to satisfy Equation (2)
whenever a solution exists for the given number of clients.

3.2 Quality Proportional Multi-client Servicing

In the Quality Proportional Multi-client Servicing (QPMS) algorithm, the number of
blocks accessed during each round for each strand is proportional to its playback rate.
That is,

ViE[1 , n]: kiocRi.v

622

If k is the proportionality constant, using which, we get, kl = k �9 7~,1,p, k2 = k �9 7~p,
.... k,~ = k �9 ~"p. Under these conditions, Equation (2) reduces to:

n

max max Z i i I& n*(l.~k+l~o ~)+k* T~p*(+ - -
i = 1

n i i

i = 1

Given the granularity and scattering parameters for each strand, Equation (5) can
be used to determine k, from which, the number of blocks retrieved during each service
round can be obtained as: kl = k �9 ~ p , k2 = k �9 7~e k,~ = k . 7~v. It can be shown
that this algorithm always yields values of ki so as to satisfy Equation (2) whenever a
solution exists for the given number of clients [13].

Notice, however, that the values of ki's obtained using the QPMS algorithm may
not be integral. Since the display of media strands proceeds in terms of quanta such as
frames, if ki is not an integer, then retrieval of a fraction of a frame cannot be used for
display, causing the display to starve until the remaining fraction anives, possibly in the
next service round. Such scenarios can be avoided if ki's are all integers, techniques for
deriving which we now elaborate, starting from the real values yielded by the QPMS
algorithm.

Let the values of {kl, k2, ..., kn} yielded by the QPMS algorithm be given by:
Vi E [1, n] : ki = h + Fi, where li and Fi are the integer and the fractional parts of
ki, respectively. If I = ~i~=1 h and F = ~in__l Fi, then (1 + F) denotes the average
number of blocks that need to be retrieved in each service round. In the technique that
we present, the number of blocks of strand Si retrieves during a service round toggles
between [ki] and [kl], so that on an average, the transfer rate for each strand Si is ki
blocks/round. Specifically, for each round r, the multimedia server must determine the
set/C ~ = {k[, k~,. �9 .k,~} of the sequence of number of blocks of the n strands to be
retrieved during round r, where k[can equal either [klJ or [ki]. However, in doing
so, both the service time and buffer space constraints, that would have been met had ki
blocks been retrieved for every round, must continue to be satisfied. Maintenance of the
continuity requirement requires that the cumulative slack time at the multimedia server,
which is the sum of the differences between the RHS and the LHS of Equation (2) for
each round, must be non-negative so as to ensure that none of the clients are starved
during a service round. Similarly, the buffer space constraint requires that the slack
buffer space at the multimedia server, which is the difference between the available
buffer space and the used buffer space, must be non-negative. To ensure that both the
constraints are not violated, the toggling of LkiJ t o [ki] for strands must be dynamically
staggered. The order of toggling can be determined as follows:

Since during every round, kl blocks of strand Si are consumed on an average,
during rounds in which [kiJ blocks are retrieved, there must be sufficient accumulation
of data at display sites belonging to clients to maintain continuity of playback, and the
accumulation is resumed during rounds in which [ki] blocks are retrieved. Furthermore,
an initial prefetching of blocks is also necessary to guarantee continuity during the first
few rounds (since not all strands Si can have [ki] blocks retrieved during the first
few rounds). Thus, the accumulation at the end of round R for client i is the sum of
differences between k[and ki during the R rounds plus the prefetched number of blocks

623

79i, and is given by:
R

~Di(R) = 79i + ~ (k ' ~ - ki) (6)
r = l

During a round R, if ~DI(R) < Fi, a shortage of blocks would occur during the next
round; hence, round R is the deadline for accessing [ki] blocks of strand Si. During
each round, if there is sufficient slack time available to transfer extra blocks, strands
are ordered with earliest deadline round first, and [kl] blocks are retrieved for each
such strand Si until the exhaustion of the slack time. During each service round, if for
all the strands, k~ is set to Ii, then the multimedia server can retrieve the extra blocks

'~ k of at least [~ i=1(i - Ii)J = [FJ strands in the order of earliest occurring deadline
first, and whenever sufficient slack time accumulates, retrieve the extra blocks of IF]
strands. Such a policy allows the deadline requirements of the maximum number of
strands to be satisfied as much in advance as possible, while at the s~ne time limiting
the maximum extra buffering needed during each round to IF].

4 From Media Strands to Multimedia Ropes

A multimedia object consists of several media components (such as, audio and video).
We refer to a collection of media strands tied together by synchronization information
as a multimedia rope. Synchronization information among media su'ands constituting
a rope can be expressed by relating the playback intervals of media strands in one of
thirteen possible ways [2]: before, meets, overlaps, during, starts, ends, equals, plus
the inverse relations - except equals. In this section, we first describe techniques for
efficient storage and retrieval of multimedia ropes on disk, and then address the problem
of servicing multiple rope retrieval requests.

4.1 Efficient Storage of Multimedia Ropes

Consider a multimedia rope M consisting of strands $1, $2 and S,,. A straightforward
approach for storing these strands is to permit each disk block to contain media samples
from various strands (i.e., heterogeneous blocks). For instance, if 5:a and $2 denote a
video and an audio strand, respectively, then a video frame and corresponding audio
samples can be stored in the same disk block. Whereas such a storage scheme affords
the advantage that it provides implicit inter-media synchronization, it entails additional
processing for combining these media during storage, and for separating them during
retrieval.

A better approach is to restrict each disk block to contain exactly one medium
(i.e., homogeneous blocks). Such a scheme permits the multimedia server to exploit
the properties of each medium to independently optimize the storage of each media
strand. However, the multimedia server must maintain explicit relationships among the
playback intervals of strands so as to ensure their synchronous retrieval.

Using homogeneous blocks, a simple scheme for storing a multimedia rope is to
independently layout blocks of each of its constituent strands. However, playback of such
a rope may incur significant seek and rotational latencies while concurrently accessing

624

media blocks of its constituent strands. Since media blocks of ,all the strands constituting
a rope may be concurrently available at the time of storage, the multimedia server can
minimize the overhead due to seek and the rotational latencies incurred during retrieval,
due to switching between strands, by filling up the gaps between media blocks of one
strand with media blocks of other strands. We refer to the process of storing media
blocks of a strand in the gaps between successive blocks of other strands as merging.

Intuitively, the storage of n strands S], $2 S,~ can be merged together if the sum
of the fractions of space occupied by their media blocks does not exceed 1. Thus, if

n] 2 n ~/~s, ~/~,, ..., ~m, denote the granularities, and ld,, lds, ..., Id, denote the upper bounds
on scattering, for strands S1, $2 Sn, respectively, then the condition for merging
their storage can be formally stated as:

i=1 rlis * 8v"~TJ ~ g * "T~dr' ~ 1 (7)

where 71o . G!i and (~,i . s~/i + la . Tear) denote the sizes (in terms of bits) of media
blocks and storage pattern of strand Si, respectively.

Suppose that media strands are placed on disk such that chunks of kl blocks of &,
k2 blocks of $2 and k,~ blocks of Sn follow each other, and the sequence repeats (see
Figure 3). Consequently, guaranteeing retrieval of each strand & at its playback rate
requires that the space occupied by blocks of all the other strands Sj (3' 7~ i), between
two successive chunks of blocks of Si, does not exceed the total gap space permitted
for ki blocks (present in each chunk) of &. That is,

V s t r a n d s S i , i e [1 , n] : Z k j . r ~ . . s . ! _
jE[1,n],jr

k 1 = 2 k 2 = 4 k 3 . 3 k 4 - 6 k S - 9

t~:t!l ! I I Ig~t-!M i l:t ~;i; f~ I t t l~]'~t i"-;;:;7".~
; i

Fig. 3. Merged storage of media strands

The values of kl, k2, ..., kn satisfying the above system of n equations define a merge
cycle. As a solution to the above system of equations, we now propose a scaled placement
policy, in which the number of consecutive blocks k, i of a strand & placed in a merge
cycle is inversely scaled by the length of its storage pattern (i.e., 7/ , �9 s i j + l~, �9 7-r
That is, Vi E [1, n]:

k
ki = . (9)

(~livs * sivl + l*as * Tgar)

where, k is a constant. Substituting the values of ki 's obtained from Equation (9), and
rearranging the terms of Equation (8), it can be shown that the scaled placement policy
is guaranteed to yield a merge cycle whenever the merge condition (Equation (7)) is
satisfied [9].

625

When kl, k2,..., kn in a merge cycle satisfy Equation (8), for each strand Si, fetching
its ki blocks within each merge cycle is sufficient to guarantee continuous retrieval for
the duration of the merge cycle. Hence, at a display site, up to 2 �9 kl buffers may be
required for strand Si: one set of ki buffers to hold the blocks being transferred, and
another set to hold the blocks being displayed. In turn, given the bounds on buffering
available at display devices (which is in fact the case in most hardware environments),
bounds on the values of kl can be fixed, from which, bounds on the values of k can be
determined by Equation (9). Among all such bounds of k, the lowest is chosen ,'ts the
value of k, from which the tightest values of k i are recomputed, again by using Equation
(9).

Notice, however, that the values of ki's so obtained may not be integral (unless k is
chosen to be an integral multiple of the LCM of the storage pattern lengths, which, of
course, can be very large). In order to ensure continuous retrieval of media strands, the
values of ki 'S must be integral. By using a technique similar to one presented in Section
3.2 for the QPMS algorithm, the integral number of media blocks required to be stored
in each merge cycle can be derived by toggling between [kiJ and [ki] for each strand in
a staggered manner between successive merge cycles, so that on an average, the number
of blocks of strand Si stored in a merge cycle equals ki.

4.2 Admission Control Algorithm for Multimedia Ropes

Playback of a multimedia rope may require simultaneous or sequential display of its
constituent media strands. Hence, the data transfer requirement of a rope may vary
during its playback. The admission control algorithms described in Section 3 have
assumed a fixed data transfer requirement for each strand throughout the duration of its
playback. In this section, we present a technique for partitioning the playback duration
of a rope into intervals, each with fixed data transfer requirements, thereby reducing the
problem of servicing a rope retrieval request to a set of problems for servicing multiple
strand retrieval requests.

Given the relationship between the playback intervals of media strands, the data
transfer requirement of a multimedia rope can be completely characterized by maintain-
ing: (1) the time instants at which the playback of its constituent media strands begin
and end during the playback of the rope, and (2) the extent of increase or decrease in
the data transfer requirement. Formally, for a multimedia rope Mr, we define alteration
points (denoted by a~) as the time instants at which the playback of its constituent suands
either begin or end. We refer to an ordered set (sorted in the increasing order of time) of
alteration points as an alteration set, and denote it by .At. We refer to the time interval
between successive pairs of alteration points (namely, Vi E [1, nt] �9 [a~, a~ +1] where
nt = [.At 1) as an alteration interval. Since each alteration interval may involve simul-
taneous playback of multiple strands, the data transfer requirement lor each alteration
interval can be represented as a set of the data transfer requirements of strands (defined
by the 4-tuple {~ , , s~i, la,, R~p }), and is referred to as the playback set (denoted by
~b~). Thus, the data transfer requirement of a rope Mt can be uniquely represented as a
pair {.At, ~t }, where.At denotes the alteration set and ~t denotes a sequence of playback
sets.

626

Consider the process of initiating simultaneous playback of multimedia ropes M1
and M2. Let the data transfer requirements of ropes M1 and M2 be characterized by
{`41, gq} and {`42, if'2}, respectively. Let 1`4,1 = n , a n d 1 .4 :1 = -2, m a d let

.4, = {.I , ,,1 ~, --., .71}

.42 = { 4 , 4 , ..., a ? }

Similarly, let
k~ 1 _-- {~0, ~ , ..., ~1-1 , ~1}

~2 : {r ,,,n2-,
�9 . . , ~2 , C P }

where ~b ~ = ~b~ 1 = ~b ~ = ~b~ 2 = ~. If the playback of ropes M, and M2 are ini-
tiated simultaneously, then the data transfer requirement will change at each of the
alteration points of M1 and M2. Consequently, the cumulative alteration set .4 =
{a ' , a 2, ..., a '~t+"2 } can be obtained by performing a nwrge sort operation oll .41 and
.42. Furthermore, simultaneous playback of ropes M1 and M2 yields at most (n 1 + 7~2 + 1)
alteration intervals, the playback set ~b i for each interval can be determined using an
iterative algorithm:

- I f3 j t E [1, n,] such that a ~ = a~ ~, then

- If 3j2 E [1, n2] such that a i = a~ 2, then

= - r) u r

Thus, playback of ropes MI and M2 can be initiated simultaneously if and only if the
multimedia server can satisfy the data transfer requirements of each of the cumulative
alteration intervals. If, however, the multimedia server is unable to meet the data transfer
requirement of any one of the intervals, the earliest time instant at which the playback
of 3//2 can be initiated, given that the playback of M, has ,already been scheduled, can
be determined by delaying the initiation of M2 by an alteration interval of M1, and
repeating the analysis.

5 Experience and Performance Evaluation

A prototype multimedia server is being implemented at tile UCSD Multimedia Labo-
ratory in an environment consisting of multimedia stations connected to a multimedia
server through Ethernet and FDDI networks. Each multimedia station consists of a
computing workstation, a PC-AT, a video camera, and a TV monitor. The PC-ATs m'e
equipped with digital video processing hardware that can digitize and compress motion
video at real-time rates, and audio hardware that can digitize voice at 8 KBytes/sec.
The multimedia server is implemented on a 486-PC equipped with multiple gigabytes
of storage.

The software architecture of the prototype multimedia server consists of two func-
tional layers: the Storage Manager and the Rope Server (see Figure 4). The storage

627

manager is responsible for physical storage of strands on disk, and handles determina-
tion of granularity and scattering parameters for strands, constrained placement of media
blocks on disk, and merged storage of strands constituting a rope. The rope server, on
the other hand, handles maintenance of synchronization relationships between strands,
and admission control. The rope server also provides facilities for users to create, edit,
and retrieve multimedia ropes.

Rope server

Storage manager

- Maintenance of synchronization relationship between strands
- Admission control

~- Operations for creating editing and retrieving multimedia ropes t '. '_ . .

. ' : : : : : : : : : i_i---- .
J . .

- Determination of granularity and scattering
- Constrained placement of media blocks

[- Merging the storage of media strands .

Fig. 4. Software architecture of the prototype multimedia server

We have carded out simulations to evaluate the performance of various media
block placement policies. Our simulations have shown that the data transfer bandwidths
yielded by both unconstrained and constrained placement policies improve with increase
in disk block size. This is because, increasing the disk block size results in a reduction in
the number of disk blocks required to store a media strand, thereby reducing the total seek
and rotational latency overhead. However, even at large disk block sizes, unconstrained
placement policy can achieve only about 3% of the maximum data transfer bandwidth.
The performance of the constrained placement policy, on the other hand, depends on
the average separation between successive media blocks. As the average separation
approaches l~, (derived using the rotationally optimal separation), the data transfer
bandwidth yielded by the constrained placement policy approaches the maximum data
transfer bandwidth of the disk.

We have also evaluated the relative performance various deterministic and statistical
admission control algorithms. Our analysis demonstrates that providing statistical ser-
vice guarantees to video strands encoded using JPEG or MPEG compression techniques
yields smaller values of ki's (and hence, imposes smaller buffer space requirement), and
can service a larger number of clients simultaneously, as compared to its deterministic
counterpart (see Figure 5). These experiments also illustrated the gain in the maximum
number of simultaneous clients in the QPMS as compared to the round-robin algo-
rithm. Higher the asymmetry among the playback rates of the client requests, greater is
the advantage of employing the QPMS algorithm. When the playback rates of all the
clients are the same, the performance of the QPMS algorithm degenerates to that of the
round-robin algorithm.

6 C o n c l u d i n g R e m a r k s

Constrained placement of media blocks on disk does not entail the disadvantages of
contiguous and unconstrained placement policies, and ensures that the access time of

628

70

i
:~ 4 0
[=

,~ 30,

20,

10

1
-I-'-'1" Stalis~cal ~tvkn'ng (MI~G)]
Y r - X S t a t i C a l ~rviain 9 (dPEa 1

Delwrministic s~cv~mg

f
. . ~ 4 - - t "

O,00 500.00 1000.00 1500.110 2000.00 2500.00 30(30.00

Fig. 5. Relative variations in the number of clients (n) that can be serviced with the length of a
service round (in number of media blocks k) for deterministic servicing and statistical servicing
(JPEG and MPEG) of video requests.

media blocks within the real-time playback requirements of sUands. Howevel, mul-
timedia servers employing constrained placement policy may be required to fill gaps
between media blocks of one strand with media blocks of other strands, so as to utilize
the storage space efficiently.

Whereas constrained placement of a media strand can only gu~antee its continuous
retrieval in isolation, a multimedia server, in practice, has to service multiple clients
simultaneously. Given the maximum rate of disk data transfer, the multimedia server can
only service a limited clients without violating the continuity requirements of any one
of them. The admission control algorithm depends on: (1) the real-time requirements
imposed by each client, (2) the type of service rendered by the multimedia server (i.e.,
deterministic or statistical), (3) the servicing policy (namely, deadline based or placement
based), and (4) whether the servicing policy is applied to media blocks within a request
(yielding a local schedule) or to the global pool of media blocks from all the requests
(yielding a global schedule).

We have studied several policies for (such as, round robin and quality proportional)
for servicing multiple clients, and have proposed algorithms by which a multimedia
server can enforce these policies without violating the real-time retrieval rates of any
of the clients. The quality proportional servicing algorithm retrieves media blocks at
a rate proportional on an average to the media playback rates of requests, but uses a
staggered toggling technique by which successive numbers of retrieved media blocks
are fine tuned individually to achieve the servicing of an optimal number of clients.
Our performance analysis illustrates that the constrained placement policy achieves

629

significantly higher effective data transfer bandwidth as compared to unconstrained
placement o f media strands, and the QPMS algorithm for servicing multiple clients is
an order of magnitude scalable compared to straightforward multiplexing techniques
such as servicing one client per disk head and round robin servicing of clients.

References

1. C. Abbott. Efficient Editing of Digital Sound on Disk. Journal of Audio Engineering,
32(6):394-402, June 1984.

2. J.F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM,
26(11):832-843, November 1983.

3. D. Ferrari and D. C. Verma. A Scheme for Real-Time Channel Establishlnent in Wide-Area
Networks. IEEE Journal on Selected Areas in Communications, 8(3):368-379, April 1990.

4. J. Gemmell and S. Christodoulakis. Principles of Delay Sensitive Multhnedia Data Storage
and Retrieval. A CM Transactions on Information Systems, 10(1):51-90, 1992.

5. S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas, and Y. Yeorgaroudakis. Muse: A Multi-
Media Filing System. IEEE Software, 4(2):4-15, March 1987.

6. B.C. Ooi, A.D. Narasimhalu, K.Y. Wang, and I.F. Chang. Design of a Multi-Media File Server
using Optical Disks for Office Applications. IEEE Computer Society Office Automation
Symposium, Gaithersburg, MD, pages 157-163, April 1987.

7. Srinivas Ramanathan and P. Venkat Rangan. Adaptive Feedback Techniques for Synchro-
nized Multimedia Retrieval over Integrated Networks. IEEE/ACMTransactionsonNetwork-
ing, 1(2):246-260, April 1993.

8. P. Venkat Rangan. Video Conferencing, File Storage, and Management in Multhnedia Com-
puter Systems. Computer Networks andlSDN Systems, 25:901-919, March 1993.

9. P. Venkat Rangan, Thomas Kaeppner, and Harrick M. Vin. Techniques for Efficient Storage
of Digital Video and Audio. In Proceedings of 1992 Workshop on Multimedia lnfol'mation
Systems (MMIS'92), Tempe, Arizona, pages 68-85, February 1992.

10. P. Venkat Rangan and Harrick M. Vin. Designing File Systems for Digital Video and Au-
dio. In Proceedings of the 13th Symposium on Operating Systems Principles (SOSP'91),
Operating Systems Review, Vol. 25, No. 5, pages 81-94, October 1991.

11. P. Venkat Rangan and Harrick M. Vin. Efficient Storage Techniques for Digital Continuous
Multimedia. To appear in the IEEE Transactions on Knowledge and Data Engineering,
August 1993.

12. P. Venkat Rangan, Harrick M. Vin, and Srinivas Ramanathan. Designing an On-Demand
Multimedia Service. IEEE Communications Magazine, 30(7):56-65, July 1992.

13. Harrick M. Vin and P. Venkat Rangan. Designing a Multi-User HDTV Storage Server. IEEE
Journal on Selected Areas in Communications, 11(1):153-164, January 1993.

