
Modeling and Analysis of Transaction Processing Systems

Philip S. Yu

IBM Research Division, T. J. Watson Research Center
Yorktown Heights, NY 10598

Abstract. In recent years, the demand for on-line transaction processing systems has
grown rapidly with ever stringent performance requirements. In this paper, we examine
several issues encountered in designing transaction processing systems and report some
of the recent advancements in analytical performance modelling methodology on analyz-
ing alternative design trade-offs. First of all, the Concurrency Control (CC) scheme em-
ployed can profoundly affect the performance of transaction processing systems. A
general analytic modelling approach is presented that can be applied to analyze the vari-
ous CC schemes under a unified framework, including locking, various optimistic
schemes, and hybrid schemes. The analysis can capture the effect of skewed data access,
different lock modes, variable length transactions and the buffer retention effect on rerun
transactions. Next we consider the analysis of buffer hit probability. In a multi-node
environment, whether in a cluster or client server environment, buffer coherency needs
to be addressed. The cross invalidation phenomenon can have an adverse effect on the
buffer hit probability. A general methodology to analyze various coherency control
schemes is examined to predict the buffer hit probability. A hierarchical approach is used
to decompose the modelling of transaction processing systems into three components:
hardware resource, concurrency control and buffer models. The interaction among the
components is then captured through a fixed point iteration.

1. Introduction

In recent years, the demand for on-line transaction processing systems has grown rapidly with
ever stringent performance requirement. With the advent of VLSI technology, coupling multiple
micro-processors to support high transaction rates has been pursued by various vendors

[KRON86, YU92B,C]. Furthermore, client-server architectures have increasingly become a
common approach to support transaction processing [KIM90, DEUX90, HORN87]. There has
also been considerable interest in geographically distributed transaction processing systems, in
which the databases may be distributed among regional systems [GRAY86]. In this paper, we
examine several issues encountered in designing transaction processing systems to accommodate
these requirements and report some of the recent advancement in analytical modelling method-
ology on analyzing performance trade-offs of alternative designs to address these issues.

First of all, the Concurrency Control (CC) scheme employed can profoundly affect the per-
formance of transaction processing systems. This is particularly so as the demand for transaction
throughput increases leading to greater data contention. There have been numerous analytical
studies of the performance of CC schemes. A survey of the analysis of locking in centralized
databases can be found in [TAY84,TAY90], while [SEVC83] examines early analytical work
on the performance of different CC schemes in distributed databases. More recent work includes
[CHES83, MORR85, TAY85A, B, THOM85, YU85, RYU87, YU87, CELL88, SING88, HSU88,

652

DAN88, HART89, CICI90A,B, SING91, THOM91, YU91, CIC192, HSU92, YU92A,93].
While there have been numerous simulation studies of concurrency control performance, we do
not mention them here since the focus of this paper is on analytical methodology. Here a general
analytic modelling framework is presented which can be applied to analyze the performance
trade-offs of various CC schemes under a unified methodology, including locking, various op-
timistic schemes, and hybrid schemes. This is based on the methodology developed in [YU93]
which is derived and extended from a number of specific studies we have done, e.g. [YU85,
CORN86, YU87, CICI92,90A,B, YU90,91,92A]. The analysis can capture the effect of skewed
data access, different lock modes, and variable length transactions.

Next we consider the analysis of buffer hit probability. In a multi-node environment, whether
in a cluster or client-server environment, buffer coherency control needs to be addressed. The
cross invalidation phenomenon can have an adverse effect on the buffer hit probability. In the
literature, there have been few studies based on analytic models for this. Recently, a general
methodology has been developed in [DAN90,91,92A,93A, B] to model the effects of various
coherency control schemes on buffer hit probability. Here we present the buffer modeling
methodology based on these works. We note that coherency control can be provided by gen-
eralizing the CC manager function to track the buffer contents [DIAS89]. Various lock retention
schemes have also been proposed to support coherency control [RAHM86, RAHM88, MOHA91,
DAN92A,93A, WlLK90, FRAN92, CARE91], although most of the performance studies are
based on simulations.

The execution time of a transaction depends on three main factors: 1) the concurrency
control protocol used for resolving conflict in accessing data pages (waiting, abort etc.), 2) the
buffer hit probability that determines the number of I/O operations to be performed by the
transaction, and 3) the processing time and the queueing delay in accessing system resources
such as CPU, etc.. We model the concurrency control, buffer hit probability and system resource
access times separately and capture their interactions via a higher level model. This higher level
model relates quantifies from the lower level models through a set of non-linear equations. The
solution of the higher level model corresponds to the solution of a fixed point problem which
we solve through an iterative process. The transaction execution time depends on the buffer hit
probability estimated by the buffer model, and by the queueing and services estimated by the
CPU model. The CC model estimates the data conflict probability based on the transaction ex-
ecution time, and this in turn affects both the buffer and resource models.

In Section 2 we discuss the workload model. In Section 3 we discuss the general method-
ology for analyzing concurrency control schemes. We apply this methodology in Section 4 to
analyze various CC schemes. For optimistic schemes the effect of changed buffer hit probability
when a transaction is rerun is handled in the analysis. For locking we provide a simple ap-
proximate expression for the mean lock waiting time. In Section 5 we present the methodology
to analyze the buffer hit probability under various coherency control schemes. In Section 6,
generalization of the methodology in Section 5 is considered. Concluding remarks appear in
Section 7.

653

2. Workload Model

In this section, we briefly discuss the issue on how to provide characterization of database

workload. There are two entities involved. One is the transaction and the other is the database.

The transactions can generally be characterized by the number of granules accessed, the mode
of each access (i.e. share vs exclusive), the instructions executed between granule accesses, etc.

The database is characterized by its size, i.e. the number of granules in the database. If the

system studied is in operation, all these parameters can often be measured from some tracing

facilities.

To model the progression of a transaction, our transaction model can be described as follows.
Assume that NL is the number of granules accessed by a transaction. The transaction model

would consist of NL + 2 states or stages, (We use the term granule to refer to the unit of data to

which concurrency control is applied.) The transaction has an initial setup phase (including
program fetch, and message processing), state 0. Following the initial setup, a transaction

progresses to states 1, 2 NL, in that order. This is the execution phase. At the start of each
state, i, the transaction begins to access a new granule and moves to state i + 1 when the next

new granule access begins. At the end of state NL, if successful, the transaction enters into the
commit phase at state NL + 1.

We still need to specify the granule accessed at each State. This is where the complexity of
the workload characterization lies. We make the following assumption which is used in ob-
taining all the analytical results:

�9 All granule access requests are independent. While it is reasonable to assume that granule
access requests from different transactions are independent, independence cannot hold

within a transaction if a transaction's granule accesses are distinct. However, we use this
assumption as an approximation for the granule accesses from the same transaction. If the

probability of accessing any particular granule is small, e.g. when the number of granules

in the database is large and the the number of granules accessed by each transaction is small,
this approximation should be very accurate. A similar approximation is also made in

[TAY84,85A,B].

(Note that this assumption is certainly not appropriate for query scanning through a large portion
of the databases sequentially.) The frequencies that granules accessed by transactions are gen-
erally skewed as observed in real workload analysis [DAN93C]. An example of a skewed access

pattern often used in the literature is the 80-20 access rule where 80% of the references access
20% of the granules (i.e., the hot set), while the remaining 20% of the references access the rest
of of the granules (i.e., the cold set).

Here we use a generalized skewed access model which covers the 80-20 access pattern as a
special case. In this model, based on the frequency of data access, the data granules are log-

ically grouped into M partitions, 1 such that the probability of accessing any granule within a
partition is uniform. Let 13~ denote the fractional size of partition i. Let ~ denote the probability
that any data access lies in partition i. An example of this type of logical grouping is the 80-20

t This logical grouping is done for computation purpose only, since granules with the same frequency of access has
the same buffer hit probability under the LRU replacement policy.

654

access pattern where K = 2 , (r162 0.2), and (13,.1~2)=(0.2,0.8). The uniform access
model is another special case with M = 1, c~ = 1 and 131 = 1. Even if each transaction application

follows the 80-20 access pattern on some relations, multiple transaction applications may have

different hot sets and cold sets, and different access rates. Overall this can result in a larger
number of logical partitions with different access frequencies and partition sizes. In

[DAN93C], real workload traces are analyzed to fit this kind of skewed access model. It was
found that with a small number of partitions, the matching of the buffer hit prediction based on

this model with the trace driven simulation can be very close.

We note that skewed access pattern has different effects on data contention and buffer hit

probability [DAN90B]. The presence of skew increases the data contention probability. This
would have a negative effect on the the transaction response time. On the other hand, the

skewed accesses improve the buffer hit probability. This would have a positive effect on the
response time. However, in a multi-node environment, the skewed accesses also makes the

buffer invalidation effect more severe, and thus negatively affects the buffer hit probability. The

analytic modelling methodology would need to capture all these effects.

3. Concurrency Control: General Methodology

In an environment with no data contention, the transaction response time is determined by the
queueing and processing delay in accessing hardware resources such as CPU, I/O, etc.. In the

presence of data contention, the transaction response time further depends upon the occurrence
of data conflict in accessing the database. The probability of data conflict for any transaction

depends not only on the CC scheme itself but also on the transaction response time which in turn
depends on the conflict probability. For example, when locking is used, if the lock contention

probability increases, the transaction response time increases due to additional lock waits. In

turn, longer transaction response time leads to a longer lock holding time, and hence to a higher
lock contention probability. Similarly, when an optimistic CC scheme is used if the transaction

abort rate increases, there is a concomitant increase in the CPU utilization causing longer re-
sponse and data holding times, and therefore a higher probability of abort. We model hardware

resource access times and the effect of CC separately and then we solve the models simultane-

ously using an iteration to estimate the mean transaction response time. We assume here an open
model with Poisson transaction arrivals, but the analysis can be extended to a closed model as
shown in [YU93]. The hardware resource contention can be modeled by conventional queueing
models with CPU servers and disk servers. Since this is rather straightforward, we will only

briefly outline it for the case of analyzing optimistic CC (Section 4.1.2).

In this and the next section, we will concentrate on how to estimate the data conflict proba-
bility and mean lock waiting time. A model for predicting buffer hit probability can also be
incorporated to provide a more accurate estimate of the number of I t ' s and will be discussed

in Section 5.

3.1 Conflict Analysis
A conflict is defined to be an event in which a transaction accesses a data granule that is cur-
rently accessed or in use by another transaction in an incompatible mode. The result of a conflict
is either a transaction wait or transaction abort. We assume that there is only one transaction
type. (Generalization to multiple transaction types is straightforward and can be found in

655

[YU93].) We also make the following additional assumptions and then show how they can be

relaxed at the end of this section:

�9 The granule access distribution is uniform over the set of granules.

�9 All accesses to granules are exclusive or update.

Let 7~ be the transaction arrival rate, NL be the mean number of granule accesses by each
transaction, and L be the number of granules in the database. Let Tn denote the mean holding

time of a granule, that is the period of time from when the granule is first accessed until the end

of the transaction.

Consider a generic locking scheme. We assume that the probability of deadlock is negligible

compared to lock contention as shown in [GRAY81, TAY85B, YU93]. Before a granule can
be accessed, a transaction needs to acquire a lock on that granule. A lock request can be made
right before each granule is accessed as in dynamic locking, or all lock requests can be made
at the beginning of a transaction as in static locking. Each time a lock request is made the
corresponding entry in the lock table is examined. If no other transactions hold an incompatible
lock on that entry, the granule is locked and the access is granted. The granule is locked until
it is released by the transaction. If the granule has already been locked in an incompatible mode,

lock contention occurs. (Note that for now we are considering only exclusive granule access
so that all accesses to the same granule are incompatible.) Due to the assumption that deadlocks

do not occur and the assumption of uniform granule access distribution, the arrival rate of lock
requests for a particular granule is ~OVdL. We have

Conflict probability under Locking: Assume that the lock request times form a Poisson
process and that lock contention events for a transaction are independent. Then the probability
of contention on any lock request, Pw, is given by

~N L T H
P w - L ' (3.1)

and the probability, Pco~, that a transaction encounters lock contention is upper bounded as
follows:

PCOIVT< I_ (1 LNLTH lqL - - - - - T - -) (3 .2)

The derivation is straightforward for the case of fixed length transactions. As shown in

[YU93], this is also true for the case of variable length transactions.

We will use the upper bound in Equation (3.2) as an approximation to Pco~r, i.e.

Pco~,rr~l_(1 ~LrH ~L - ~) . (3.3)

An O(llL) approximation to Equation (3.3) is given by

~L2r.
Pc~ L (3.4)

656

We next consider a generic Optimistic CC (OCC) scheme. Transactions access granules as
they progress. At the end of execution, if all granules accessed are the up-to-date versions, the

transaction will commit and reflect the updated values into the database. 2 In this generic OCC

scheme, the commit is assumed to be instantaneous. The effect of non-zero commit time is

addressed in the next section when specific certification schemes are considered. At the end

of the commit phase, for each granule updated, any transaction accessing the granule is notified

that the granule is invalid. Transactions accessing invalid granules are aborted at commit time

(referred to as pure OCC). (Later we will consider the case where transactions accessing invalid

granules are aborted immediately, referred to as broadcast OCC.) The rate of invalidation to a

particular granule is equal to the transaction throughput multiplied by the mean number of

granules updated per transaction and divided by the database size, i.e. it is given by LNdL.
From [YU93], we have

Conflict Probability under OCC: Assume that the invalidation times for a given granule form

a Poisson process and that all such processes (to different granules) are independent. Then the

probability, PA, that a transaction is aborted when it first tries to commit is upper bounded as

follows:

PA < 1 - exp (- - - - - f f - - -) (3.5)

where in Equation (3.5) Tn is the mean granule holding time for transactions during their first

run only.

Note that Equation (3.5) need not hold for rerun transactions since the mean length of rerun
transactions need not equal that of first run transactions except if all transactions have the same

fixed length. We will use the upper bound in Equation (3.5) as an approximation to Pa, i.e.

PA =' 1 - exp (- L) . (3.6)

An O(IlL) approximation to Equation (2.10) is

PA= L (3.7)

We next consider the case of non-uniform accesses to the database. Assume that the database

consists of multiple (M) sets or partitions of granules with ~ fraction of the references go to
[~ fraction of the granules. Let Tn. be the mean granule holding time for partition i. The lock

utilization for partition i is ~.~NLTn][31L. Assume Poisson arrivals of lock requests and that lock

contention events for a transaction are independent, a similar expression can be obtained as in

(3.3). In the same way that the approximation in Equation (3.4) was shown to follow from the

expression, it follows that

2 We assume that during the course of a transaction any updates are kept in a private buffer, and are only made
visible to other transactions after a successful commiL as in [BERN87, KONG81].

657

Pco~W 2 ~i L (3.8)
i=1

As we assume that each lock request independently references partition i with probability ~ , the
mean lock holding times are the same for each partition i, i.e. Tn, = T., 1 _< i < M. Under OCC

in this environment, a similar development to that for a single partition of granules gives,

PA=Z ~i L (3.9/
i=1

Finally we illustrate how the case of different access modes can be handled by considering

the case of exclusive and shared modes. Assume that each data access has probability p" of

being ia exclusive mode and that the mode of each access is independent. Again we consider
the case of uniform accesses to the database. First consider the generic locking case, similar to

Equation (3.3), we can get,

PCONT < 1 -- (1 LNLT H NLp" LNtpUTH NL(I-P")
_ - ~) (1 L)

An approximation similar to that in Equation (3.4) is,

~jV L2 TItpU (2 _ pU)
PCONT= L (3.10)

Under the OCC environment, a similar development leads to

kN2TnpU (3.11)
PA= L

3.2 Conservation Property o f Conflict

The approximate expressions for the transaction abort/invalidation probability when using the
genetic OCC scheme given in Equation (3.7) and for the transaction contention probability when
using the generic locking CC scheme given in Equation (3.4) are the same for the case of a single
transaction type with exclusive access mode. (These approximations contain only the dominant

term, which is O(1/L) in the approximations in Equations (3.6) and (3.3) respectively. However,
we believe that the O(llL) expressions provide insight into the effects of data conflicts for the
various CC schemes we consider, and thus we discuss them in this section.) This is true even

if the database consists of multiple partitions of granules with different access probabilities as

shown in Equations (3.8) and (3.9). This is referred to as the conservation property of conflict
in [YU93]. Note, however, that the mean granule holding times, T,, will in general not be equal
for the two schemes, as discussed later in this section, so that the conflict probabilities will differ.

In the optimistic case, the abort probability affects the number of reruns and hence the CPU
utilization which affects TH. In the dynamic locking case, the contention probability increases

the transaction response time, and consequently, the mean granule holding time, Tn. If the CPU
resource is unlimited, the optimistic approach provides lower conflict since Tu is close to the
processing time. If the CPU resource is very limited, static locking tends to provide lower

658

conflict. (In static locking, a transaction tries to acquire all locks at once at the beginning. If
it cannot get all of them, it does not hold on to any locks, but tries later or waits until they all
become available.) In this case, the wait time to get the locks does not enlarge the granule

holding time. In [YU90], a CC scheme using a combination of locking and OCC is proposed,
and is shown to improve the performance over both OCC and locking schemes by striking a

balance between the effect of transaction aborts and lock waits as discussed in Section 4.3.1.

Finally, a word of caution. If we allow for different access modes like shared and exclusive,

the conservation property may no longer hold. This is clear by comparing Equations (3.10) and

(3.11). This is due to the fact that the concept of access modes is a further optimization to re-

duce conflicts between transactions and different CC schemes like locking and OCC, depending
upon the specific implementation, can have different capabilities to exploit it. Another case
where the conservation property is violated is when transactions which may not be successfully
committed abort conflicting transactions, or when transactions wait for subsequently aborted

transactions, as in wound wait [ROSE78], locking with no-waiting [TAY85A], various running

priority schemes in [FRA85], and wait depth limited concurrency conlrol in [FRA92]. These
schemes produce unnecessary aborts or waits. On the other hand, these schemes may result in

smaller values for T, compared to locking.

4. Analysis of Various CC schemes

In this section, we demonstrate how to apply the methodology just presented to approximate the

mean response time for optimistic and locking CC schemes. Unless stated otherwise, for sim-

plicity we will assume that there is only one transaction type, the granule access distribution is

uniform and all accesses are exclusive. Relaxing these constraints can be similarly addressed

as in Section 3. Furthermore, only the case of fixed length transactions is considered and a

centralized lock manager is assumed. Generalization of the methodology to handle variable

length transactions and distributed environments with database replications can be found in

[YU93].

4.1 Optimistic Protocols

In this subsection, we consider the OCC schemes. Various OCC schemes have been proposed

in the literatures. Two commonly considered variations are the pure OCC scheme where a

transaction is aborted only at certification time, and the broadcast OCC scheme where a

transaction is aborted as soon as any granule it has accessed is made obsolete by a committing

transaction. Most previous analyses on OCC schemes ignored the fact that due to buffering in

main memory rerun transactions may not need to re-access from disk all the granules brought

in during previous runs and therefore came out in favor of broadcast OCC. In [YU93], the

analysis specifically captures this buffer retention effect and is able to show that pure OCC can

in fact outperform broadcast OCC. A combination of the pure OCC and broadcast OCC, referred

to as OCC with broadcast during rerun is proposed and analyzed in [YU92A]. In this

scheme, a transaction uses pure OCC for its first run, and employs the early abort of broadcast

OCC for any subsequent reruns. Compared with pure OCC, the immediate abort during rerun

659

reduces wasted CPU instruction, hence improves the performance. In the following, we present

the analysis for the OCC with broadcast during rerun to illustrate the methodology. The analysis

of the pure OCC follows directly from that of the first run of this scheme. The analysis of the

broadcast OCC can be generalized from that of the rerun transactions, albeit using a more

complex set of difference equations [YU93].

4.1.10CC with Broadcast During Rerun

In Section 3 when we analyzed the pure OCC scheme we assumed that commit processing was

instantaneous. We now approximate the abort probability in a more realistic setting. We assume

that each transaction at the beginning of each state of its execution phase informs the CC man-

ager of its request to access to a new granule. The CC manager keeps a list of transactions

accessing each granule, and also maintains locks for granules held by transactions in commit.

During the first run, if a transaction requests access to a granule for which an incompatible lock

is held by a transaction in commit, it is marked for abort. At commit time, the CC manager

checks if a transaction has been marked for abort. If so, the CC manager removes the transaction

from the list of granules accessed, and the transaction restarts after a backoff interval with mean

duration TB~oe. Otherwise, the transaction enters commit processing, and the CC manager grants

locks for the granules accessed by the transaction and marks for abort any transactions that have

conflicting access. The transaction then writes commit records to the log and propagates the

updates to the disk, modeled as taking a mean time of Tco,~,, following which locks are released.

Let NL denote the (fixed) number of granules accessed by a transaction. The initial setup phase

of the transaction consists of execution of a mean of Pe~eL instructions and a mean of I~pL I/O's.

In the first run of a transaction, the mean time in each state i, 1 <_ i < NL, is assumed to be the

same and is denoted by/~. /~ corresponds to execution of a mean of/3 instructions, and a mean

of (1 - H) I/Os, where H denotes the (buffer hit) probability that the accessed granule is found

in a main memory buffer.

Assuming instantaneous commit processing, Equation (3.6) approximates the invalidation

probability on the first run PA as 1 - exp (- ~U~TxIL), where TH is the mean granule holding time
^

and is equal to (NL + 1)R/2. This corresponds to the probability that a transaction is marked for

abort by a transaction that enters commit processing after the invalidated transaction accessed a

conflicting data granule. Recall that transactions are also aborted when the new granule accessed

at any stage is already locked by a transaction in commit; the probability that this occurs is ap-

proximated by Equation (3.3) with Tco,~, replacing Tx. Transactions (in the process of commit)

that hold a lock on the new granule requested and transactions that initiate commit during the

i-th state of the transaction being considered are different sets of transactions. We assume that

invalidations due to these two cases are independent events since they arise from conflicts from

different sources. Thus, the probability of transaction abort is approximated as,

660

)~IL TCo,.,.it)lvL Pa= 1 - exp (- LN2TH/L) (1 L

This can be further approximated as,

(4.1)

~dV2(TH + Tcommit)
PA= L (4.2)

While we can derive Equation (4.2) from Equation (4.1), what is interesting to note is that

we can directly write down the expression by adding together the conflict terms from the two

different sources, i.e. conflicting with transactions already in commit, and aborting by trans-

actions initiating commit. This is referred to as the additive approximation property in

[YU93]. In doing this, it is important to identify the sources of abort. In this case there are two:

one is from invalidation and the other is from lock contention. Taking advantage of the additive

approximation, we can estimate each term separately based on Equations (3.4) and (3.7) and sum

them.

We next consider the rerun transactions. After state NL + 1, i f the transaction is aborted, it

returns to state 1. During reruns, upon entering state i, the transaction not only informs the

concurrency control manager of its access to the i-th granules, but also checks to see if it has

already been marked for abort. If already marked for abort, the transaction is immediately

aborted and returns to state 1.

To analyze the abort probability of rerun Iransactions, recall that all read I/Os are assumed

to be done in the first run; hence, there is no FO during rerun. The mean time at each state

i, 1 < i < NL, is assumed to be the same and is denoted by R' corresponding to execution of P"

instructions. The probability of abort A(i) in the i-th state of a rerun is estimated as,

lVL~.TCommi,
A(i) = 1 - exp (- iNLLI(IL) (1 - L)" (4.3)

The remaining response time at the start of a rerun (if any) is estimated as,

NL i - 1

Z { ~ (1 -a(k))}a(i){B + TBackoff+ (i -- 1)R'}
B = i=l k=l

IVt

+ { I - - I (1 -- A (k)) }NLR ' .
k = l

(4.4)

i - !

In the first summation term of Equation (4.4), { I-[(1-A(k))}A(O corresponds to the abort
k=l

probability after advancing to state i in a rerun and {B + T~,~o~r+ (i - 1)R'} i s the expected re-

sponse time measured at the start of this rerun. In the second term of (4.4), l-I(1 -A(k)) is the
t = l

661

probability that a rerun completes and commits, while No~" is the corresponding response time.

The expected remaining instructions executed by a rerun transaction is estimated as,

NL i - I

E t H (1 -A (k)) }A(i) {O + TBackoff+ (i - 1)P'}
D = i = l k=l

lVL

+ { H (1 -A(k)) }NLI / �9

k=l

(4.5)

This equation is similar to (4.4) with B replaced by D, and R' by P'.

4.1.2 Hardware Resource Model

We now describe the hardware resource model and show how it can be coupled with the data

contention model through an iteration. We assume that the system consists of a single CPU and

a database that is spread over multiple disks. Assuming Poisson arrivals of transactions, we

model the processors as an M/M/1 queue with FCFS discipline and the disks as an infinite

server. Other open queueing network models could be used; we chose this one for simplicity.

The processor utilization is given by

^

~X{PAD+PINPL + NLP}
P = MIPS (4.6)

where MIPS is the processor speed. Then the mean times in different states are given by as,

RINPL =

PINPL
MIPS(1 - p) ~" IINPL • IOTIME

^

+ I • IOTIME
MIPS(1 - p)

1 ~ - P"
MIPS(I - p)

(4.7)

where I = 1 - H is the average number of I/Os per state in the first run (respectively any sub-

sequent run). We will discuss how to estimate H in Section 6. The overall mean transaction

response time is given by

A

R = Rtl~p L + NLR + Tcommit + eA(TBackoff+ B). (4.8)

From Section 4.1.1, we know Pa and A(i) depend upon R and R', respectively, whereas R and

R' depend upon the CPU utilization p which in turn depends upon PA and A(i). There clearly

is an interdependency. We can first pick some arbilrarily small abort probabilities, Pa and

A(i), and calculate the mean response times, k and R'. The mean response times are then used

to calculate a new set of abort probabilities. The process continues and typically converges in

a few iterations.

662

4.2 S tandard L o c k i n g

We now show how the methodology can be applied to analyze the standard two-phase locking

(2PL) scheme. Let NL be the (fixed) number of granules accessed by a transaction. In our

transaction model, transactions make lock requests at the beginning of states 1 NL. If the

granule has already been locked in an incompatible mode, the transaction is enqueued at the

CC manager and waits till the lock becomes available. As before for locking, we neglect the

probability of deadlock. For locking each state i, 1 < i < NL, is divided into two substates i and

i. In substate i the transaction holds i - 1 locks and is waiting for its i-th lock request to be

satisfied. In substate t it holds i locks and is executing. Let a denote the mean time in substate
^

i which is assumed to be independent of i and is obtained from the hardware resource model

as discussed later in this section. The probability that substate i is entered upon leaving substate

- 1 is the lock contention probability for a lock request, Pw, which is given in Equation (3.1)

and assumed to be independent of i. The time spent in substate i, given it is entered, is the lock

waiting time whose mean we denote by R~ which is also assumed to be independent of i. The

unconditional mean time in substate i is therefore b = PwRw. Rw can be approximated as follows.

The mean number of transactions in substate i (respectively t) is 229 (respectively ~a). Since a

transaction in substate i (respectively i) holds i - 1 locks and is waiting for its i-th lock (re-

spectively holds i locks) and the granule access distribution is uniform, the probability that a lock

request contends with a transaction in substate i (respectively i) is (i-1)~b/L (respectively

i~/L), 1 < i < NL. Similarly, the probability that a lock request contends with a transaction in

state NL + 1 is LNLr where c = Tc~,. Let

G = { E (i a + (i - 1)b)} +NLC (4.9)
i = l

(Note that since i locks (respectively i - 1 locks) are held in substate i (respectively substate

) with a mean sojourn time of a (respectively b), G is the sum of the (mean) lock holding time

for each granule over all NL granules and GINL is the mean lock holding time averaged over all

NL granules.) Then,

Rw ~_1((i.~G1)b { Rvc+a+si} ia) NLC , C = ~ +--~- { ~ + Si} +--G-- i -~-3 }. (4.1o)
_ A

In the above expression (i - 1)biG (respectively ialG) is the conditional probability that a lock
- ^

request contends with a transaction in substate i (respectively i) given that lock contention oc-

curs, 1 < i < NL, and NLclG is the similar expression for state NL + 1. The quantity s~ is the mean
^

time from leaving state i until the end of commit and is given by

s i = (NL- i) (a+b)+c . (4.11)

663

The quantity Rw/j~ (respectively a/A) is the mean remaining time in substate i (respectively i)

given that the transaction contended with was in that state, 1 < i < NL, and similarly for clf3. Note

that in obtaining Equation (4.10) we have assumed that when a transaction Tl encounters con-

tention for a lock held by another transaction T2, then no other transaction T3 can be waiting

for this same lock, i.e. the queue length for any lock never exceeds two. Thus, when T2 com-

mits and releases the lock T~ acquires it without further waiting. Note, however, that T2 can

be waiting for a lock held by yet another transaction T4, and T4 can also be waiting, etc. Thus,

wait chains can build up due to waits for different locks, and this is captured by the analysis.

Since transactions typically hold several locks, wait chains of this type (rather than for the same

granule) predominate. The factors jS, J~ and J~ depend on the distributions of the times in sub-

states i, i and NL + 1 respectively. Substate i corresponds to the CPU execution time and the

I/O time if the granule accessed in the state is not found in memory (recall that H denotes the

probability that a granule accessed in any state is found in a main memory buffer). Assuming

that H is not very close to one and that I/O time is constant and much larger than the processing

time (this is true for typical parameter values), then it is easy to show that j~=2(1 - H) . In our

studies we will assume that j~ = 2 corresponding to a constant time in the the commit state and

that j~ = 1 corresponding to exponential lock waiting times. Comparison with simulations

[YU92A] indicated that 3~ = 1 yields good results. At low contention levels, the estimates from

j~ = 1 are a little pessimistic. Equation (4.10) can be simplified to yield,

2
(a + b) 2 (N L + I) (N L _ I) (NL+l)(-~x + a b + a c + b c) 2

+ 2 t- ~ - ab - bc 6 J3 Rye = (4.12)
NL+ I - 1

a(~) + c + b(- ~ - -)(1 - -f~l)

For large NL, small c, and small b compared to a, the right side of Equation (4.12) is approxi-

mately equal to ((a + b)(NL - 1) + c)13. This is the approximation used in [YU87]. Furthermore,

it follows from using Equation (3.1) and computing the mean lock holding time Tn from

Equation (4.9) that

LG
Pw = L (4.13)

The mean response time can be estimated as

R = Rt, vp L + R E + NLPwR w + Tco,,,,ni t (4.14)

where RE = NL x a is the mean duration of the execution phase, which can be approximated using

a hardware resource model similar to that in Section 4.1.2. Since both Rw and Pw in Equations

(4.12) and (4.13), respectively, depend upon b =PwRw, we need to solve for them through an

iteration. Starting with b = 0, we can get initial values for Rw and Pw, and thus a new b value.

The process continues and typically converges in a few iterations.

664

4.3 Extensions to Other CC Schemes

4.3.1 Hybrid CC Schemes

Locking tends to suffer form cascade blocking while OCC may suffer from wasting resources

due to transaction aborts. Various combinations of locking and OCC schemes have been con-

sidered in the literature. One type of hybrid CC schemes is to use pure OCC for the first run

and locking for the second run. As the second run will be shorter due to the buffer retention

effect, the blocking effect would be minimized. This would also greatly reduce the number of

reruns. If static locking is used for the second run, there can be at most one rerun. These types

of schemes are analyzed in [YU92A] based on a similar analytic approach presented here.

Another type of hybrid scheme, referred to as locking with deferred blocking, is to divide

transaction execution into a non-blocking phase and a blocking phase. At the start of the exe-

cution, a transaction is in the non-blocking phase similar to OCC. After a transaction has ac-

cessed a predefined number of granules, it tries to enter the blocking phase by obtaining locks

on the granules already accessed and if successful, it will request locks for all subsequent

granule accesses. This would avoid costly abort at the later states of a transaction execution and

avoid long waits as transactions only hold locks at the later states. This scheme is analyzed in

[YU90] using similar approach presented here. These hybrid schemes have been shown to lead

to better performance than the conventional locking and OCC schemes and are especially at-

tractive for real-time CC [YU94].

4.3.2 Dynamic Timestamp Certification

The OCC schemes considered in Section 4.1 attempt to serialize transactions using certification

times as the timestamps [BERN87]. Other OCC certification schemes using dynamically de-

rived timestamps or interval of timestamps have been proposed [BAYE82, BOKS87, YU91].

This type of schemes is effective in reducing the read write conflict. Consider the following

scenario. Assume that transaction X reads granule A and transaction Y subsequently updates

granule A and commits before transaction X completes. If OCC (pure or broadcast) is used,

transaction X will be aborted. This type of conflict is referred to as rw-conflict. However,

transaction X can in fact be committed with a back-shifted timestamp earlier than that of trans-

action Y. This is what the dynamic timestamp certification scheme offers. Note that shifting

timestamp backward would not be allowed if it would cause conflict with other committed

transactions. For example, if transaction X further updates granule C and some other transaction

Z already read the old value of C and committed after transaction Y, giving transaction X a

back-shifted timestamp before transaction Y would cause a conflict, referred to as a wr-conflict,

with transaction Z and hence violate the serializability constraint.

The methodology presented here has been extended in [YU91] to analyze the dynamic

timestamp certification scheme based on timestamp history. In [YU91], a discrete time approach

665

is adopted to simplify the analysis. A transaction goes through discrete stages (or states) as

explained before. We use the mean sojourn time at each state as the basic time unit. The

timestamp assigned dynamically at certification time to each transaction can get back-shifted

several stages. That is, the back-shift is approximated as a multiple of stages in the analysis.

We therefore introduce, pb~ (i = 0,1) as the probability that a committed transaction is

back-shifted i stages, i.e., the timestamp given to a committing transaction is i stages prior to

the actual commit time of the transaction. No back-shift occurs if the transaction has incurred

no conflict. (This happens with probability pbo.) Let Pa be the transaction abort probability,

1 = PA+pbo+~Pbi (4.15)
i=1

The pbl for an arbitrary transaction X satisfies the following equation

min{i,L}

pb i = ~ P { rw-confiict exactly at stage L - j + 1 with a committing transaction}
j = l

x P {conflicting (committing) transaction back-shifted i - j stages }
x P { no wr-conflict preventing this transaction backshifting i stages } .

Assuming transaction Y is the conflicting transaction, the first term in the product represents the

probability that a transaction Y committing during stage L - j + 1 of transaction X has updated

a data granule read by transaction X. The second term is the conditional probability that trans-

action Y needs to be back-shifted i - j stages assuming it can be committed. All rw-conflicts

summed up in this equation will lead to the conflicting transaction Y getting a timestamp during

the interval of stage L - i + 1 and thus cause the running transaction X to get a timestamp

back-shifted i stages. The first term in the right hand side can be obtained based on the conflict

analysis in Section 3. Similarly, the third term can be derived with the back-shift probability

taken into account.

For the back-shift distribution of committed transactions, we estimate

P { conflicting (committing) transaction back-shifted i - j stages } = -
pbi-j
1 - P a

Note that the back-shift probabilities have to be normalized by 1 - PA because we consider only

the case of successful completion in the conditional probabilities.

5. Buffer Coherency Control and Buffer Hit Modelling

We next consider the issue of buffer hit analysis. The problem becomes more complex in

a multi-node environment where buffer invalidation can occur. (Here a multi-node environment

can mean either a cluster-like environment, or a client-server like environment. The modelling

666

methodology described below is applicable to both environments, albeit the parameter values in

the two environments can be different.) Various buffer coherency control schemes have been

proposed in the literature [DIAS89, RAMA89, WlLK90, CARE91, DAN93B]. In [DAN93B],

these are classified into three approaches: detection of invalidated granules, notification of

invalidated granules, and propagation of updated granules. These schemes show different

trade-offs on the buffer hit probability and CPU overhead. A general modeling methodology

is developed in [DAN93B] to analyze six different coherency schemes under the three ap-

proaches.

The buffer hit analysis under the LRU replacement policy can be analyzed based on two

simple principles: (1) conservation of flow on LRU substack composition and (2) Ideation

conten.t probability proportional to relative push down rate, as explained later. These have

been applied to analyze the single node environment in [DAN90A] and the multi-node envi-

ronment in [DAN93B, DAN92A,B]. We will use the multi-node environment to illustrate the

ideas as the single node case can be considered to be a degenerate case of N = 1 in the multi-

node environment. Two commonly used coherency control schemes are examined: the check-

on-access (CA) and the broadcast or selective invalidation notification (IN) schemes, where CA

follows a detection oriented approach and IN uses a notification oriented approach. (Note that

the buffer hit probability under the propagation oriented approach is not affected by the the

invalidation effect as the invalidated granules are immediately replaced.)

Under the IN approach, an invalidation message containing a list of granules modified by the

committing transaction is broadcast to all other nodes during transaction commit [STRI82,

DAN90B]. Each node upon receiving the invalidation message will check for the updated

granules and mark them invalid if present in its local buffer. This immediately frees up the buffer

space occupied by the obsolete granules which are brought to the bottom of the LRU stack. A

variation of the scheme is to selectively notified only the nodes with a copy of the invalidated

granules

Under the CA approach, the obsolete granules are detected at the granule access time by a

transaction. We assume that the coherency control function is integrated with the CC

manager/controller [DIAS89] which not only provides the traditional concurrency control ser-

vice, but also tracks which node has a valid copy of a granule. The lock table entry can contain

an additional valid bit for each node to indicate whether it has a valid copy. Before accessing

any granule, the processing node of the transaction makes a lock request to the integrated CC

manager. In response, the integrated CC manager returns not only the requested lock, but also

the result of the associated buffer validation check based on the valid bit. Note that if the valid

bit is off, it will be turned on after the status of the valid bit is returned as invalidation has now

been accomplished. At the lock release time, if the granule has been updated, the valid bits of

all other nodes except the updating node (which is the only node with an up-to-date version

667

of that granule) will be turned off. The CA scheme certainly saves the overhead of sending

immediate notification of invalidated granules, but it also reduces the buffer hit probability as

the obsolete granules continue to reside in the local buffer.

We consider the case of a homogeneous multi-node environment where the access pattem

to the database is the same from all nodes. Generalization to the case where each node has its

own affinity data set which is accessed less often by others can be found in [DAN92B,

DAN93A,B].

Since the multi-node is assumed to be homogeneous, we focus our attention to a single

buffer. We first look at the buffer hit probability under the detection oriented approach (CA),

which is more difficult to analyze as both valid and invalid granules are mixed together in the

buffer, based on the approach in [DAN93B]. To estimate the steady state probability of buffer

hit, we first derive the average number of valid granules of each partition in the local buffer of

any node. Let E(j) denote the average number of valid granules of partition i in the top j lo-

cations of the LRU stack. Therefore, the buffer hit probability of the i-th partition is

I~ = V~(B)I(~,L), and the overall buffer hit probability for a granule requested by a transaction is

estimated as

M

W" = Y_~A
i = 1

(5.1)

Let p~(j) be the probability that the j-th buffer location from the top of the LRU stack contains

a granule of partition i. Let pr(j) be the probability that the granule is valid given that the granule

belongs to the i-th partition. Then,

)

v,q) = ~ p , (t)p~ (t).
1=1

(5.2)

Also, let Y~(j) denote the average number of (both valid and invalid) granules of partition i in the

top j locations of the LRU stack. Then,

J
ritj) = ~p, (/) .

1=!

(5.3)

We will set up a recursive formulation to determine p, f j+ 1) and p?(j+ 1) for j > 1 given

p~(l) and pr(l) for l = 1,...d. Consider a smaller buffer consisting of the top j locations only. The

buffer location (j+ 1) receives the granule that is pushed down from location j. Let r~(j)be the

rate at which granules of partition i are pushed down from location j. Similarly, let rr(j) be the

668

rate at which valid granules of partition i are pushed down from location j. Our estimation of

P~Q) and pt'~) are based on the following two observations.

�9 Conservation of flow: Under steady state conditions, the long term rate at which granules

of the i-th partition get pushed down from the top j locations of the buffer equals the rate

at which they are brought into the top j locations. Note that if the new access is a hit on

an invalid granule present in the top j buffer locations, the granule simply will be refreshed

with a valid copy and will not cause a replacement from the top j locations. Hence, the

push down rate, r,0) is given by

. ~ q)
rio) = LNLai(1 - ~). (5.4)

Using a similar conservation of flow argument for the valid granules, we equate the long

term rate at which valid granules of the i-th partition get pushed down from the top j lo-

cations of the buffer, ~(j), to the difference of the rate at which they are brought into the

top j locations, and the rate they become invalid. Hence, r,~0) is given by

v~q), E(i)
r~(j) = XNL~(I - ~) - (N - 1)L,VLa/p ~ -

I: i/-,
(5.5)

Relative push down rate: The expected value of finding a granule of the i-th partition in

the 0 + 1)-st buffer location over all time, P,0 + 1), is approximately the same as the prob-

ability of finding a granule of the i-th partition in the 0 + 1)-st buffer location in the event

that a granule is pushed down from location j to location 0 + 1).

riO) piO+ 1)-- u (5.6)

l = l

Note that instantaneous value of r,0) is dependent on the content of the top j buffer lo-

cations, and the more accurate estimation of P,O) requires the precise distribution of the

content o f j buffer locations. Similarly,

. rio)
p i ~ + U = r- . -~ , j = I . . . B - 1 . (5.7)

Equations (5.2)-(5.7) can be solved iteratively, with the base condition of p,(1)= o~ and

p~(1) = 1. Note that, although n(j) is a function of the transaction rate (k), P,0), PrO) and

therefore, h~ and H co are independent of ~., because ~, cancels out in Equations (5.6) and (5.7).

669

Let H ~ be the buffer hit probabilities under IN. H b' can be estimated in a similar way as

H c" by setting the push down rate, ~(]), in Equation (5.4) as the difference of miss rate and in-

validation rate (buffer purge rate).

Yz{]). "N 1)~Laip u Yi(])
r,{]) =/~/L~(1 -- ~) -- t -- [3iL (5.8)

(Note that there are no invalid granules under IN.) Together with Equations (5.6) and (5.3), it

can be solved iteratively with the initial condition of p,(1) = ~ . Hence,

M

t f i= ~ ~Yi(B)/(~iL).
i = 1

(5.9)

It was found in [DAN93B] that the difference in buffer hit probabilities between CA and IN

to be very sensitive to the data access pattern. For skewed data accesses, the difference tends

to be small, as under IN the immediate identification of invalidated granules for buffer reuse

results mainly in more cold granules being buffered. In the presence of invalidation effect, as

the buffer increases, a saturation point on buffer hit probability will be reached even under IN.

This occurs at the point where the replacement rate is zero, i.e., at a buffer size of

L/(1 + (N - 1)p ~) as can be derived from (5.8). Furthermore, from (5.8), it can be shown that

the buffer hit probability at this point is roughly 1/(1 + (N - 1)p ~) for each partition, cold or hot.

This upper limit on buffer hit probability is independent of the access pattern, uniform or skew.

This is in contrast to the single node case where with sufficient buffer, the buffer hit probability

can go to one.

6. Extensions on Buffer Modeling

6.1 Lock Retention, Deferred Writes, and Remote Caching

The buffer modelling methodology can be extended to study various other buffer related issues.

In a single node environment, deferred write policy, where the dirty granules are not forced to

disk at commit time, is often used to save write IO's as in IBM DB2. The number of write IO's

is reduced if a granule can get multiple updates from different transactions before it is flushed

out from the buffer and written to disks. The write IO rate under the deferred write policy can

be determined by the rate that dirty granules are flushed out from the buffer, i.e. the dirty fraction
M

of Y r~v(B). The write I/O reduction can be analyzed by extending the above methodology to
/=1

distinguish between clean and dirty granules [DAN93A].

The two principles on conservation of flow and relative push down rate still hold for the

dirty (respectively, the clean) granules of each partition. However, there is an additional com-

plexity. Consider the CA (similarly for the IN) scheme. In the previous section, Equations

(5.2)-(5.7) form a set of forward recurrence relations. This is due to the fact that in Equation

670

(5.5) for the conservation of flow, only the content in the top stack j positions matters. This

is referred to as the substack decomposable property in [DAN92B]. However, if we apply the

conservation of flow to the dirty pages of partition i, the first term on the right hand side of

Equation (5.5) is no longer the miss probability at the top j stack positions. Instead, it is now

the probability that the remaining stack positions (from location j + 1 to B) containing the dirty

granule requested. (In the previous section, we only need to know that the requested granule

is missing from the top substack. Now the fact that the requested granule is missing from the

top substack does not imply that a dirty granule would be brought to the top of the stack. This

can only occur if the requested granule is already present in the bottom portion of the buffer and

is dirty.) We thus lose the substack decomposable property. This makes the recurrence relations

more complex to solve.

In a multi-node environment, the delaying propagation of dirty granules to disks or server

nodes can cause coherency problem for other nodes trying to access these dirty granules. This

problem can be solved via lock retention on dirty granules where locks are continued to be held

after commit by the buffering node as long as the granules are in the buffer. The lock manager

can thus identify the node owning the most up-to-date version of a granule and properly direct

a requesting node where to obtain the up-to-date version of a granule. With the ever increasing

gap between memory and disk access times, the concept of remote caching has been pursued

by various researchers [LEFF91, LI89, FRAN92, MOHA91]. Under remote caching, granules

can be directly transferred between buffers. (In essence, the buffers of all the other nodes be-

come another level of the storage hierarchy between local buffer and disks.) Note that although

delaying propagation of dirty granules to disks can improve normal performance, it can prolong

the recovery time upon system failure as all dirty granules need to be derived from the database

log and applied to the database. For the multi-node environment, the recovery process can be

further complicated as log entries from all nodes need to be merged and applied in order, if dirty

granules can be transferred to multiple nodes via the remote caching mechanism before writing

to disks [MOHA91].

Generalizations of the buffer coherency schemes to support lock retention, remote caching

and delayed dirty page propagations have been proposed in [MOHA91, DAN92A,93A] for a

data-sharing like environment and for a client-server like environment in [FRAN92]. The buffer

analysis presented here can be extended to study the performance improvement of these schemes

[DAN92A, DAN93A] and their recovery time trade-offs [DAN93B]. The extension needs to

track the buffer composition in terms of the lock mode held in each buffer location, in addition

to the partition type of a granule. The two principles on conservation of flow and relative push

down rate still hold for granules of each lock mode held, but again we lose the substack de-

composable property.

671

6.2 Shared Buffer

As pointed out in the previous section, in a multi-node environment, the cross invalidation effect

puts a upper limit on the attainable buffer hit probability and the usable amount of local buffer.

Furthermore, granule replications among the local buffers also reduce the effectiveness of buffer

usage as compared to a single node environment. Shared buffer has been considered as a means

of providing more effective buffering, e.g. [DAN9[, YU92B,C, FRAN92]. In [DAN91], a

unified analytical modelling methodology is developed to study various shared buffer placement

polices. These polices differ on the types of granules selected to place in the shared buffer, such

as updated granules, missed granules, replaced granules from the local buffer, and any combi-

nations of these three types of granules. Note that in the shared buffer, only the granules that

are not already duplicated in the local buffer can help improve the overall buffer hit probability.

The analysis in [DAN91] captures the dependency between local and shared buffer contents

under each policy.

7. Summary and Conclusion

In transaction processing, the complexity of the system makes it difficult to understand the

trade-offs between the various design alternatives without detailed analysis. Simulation models

of transaction processing systems can often be very time consuming to run. Therefore, for ex-

ploring a wide variety of design alternatives it would be useful to have a unified analytical

methodology. Furthermore, from simulation studies, it is generally hard to pinpoint the causality

of the results, extrapolate the findings from the environment studied to other environments, and

reconcile the differences among other related studies, as the large number of parameters can

interact in very complex ways. On the other hand, an analytic expression can provide far more

insight into the causality effect of the various parameters, and be used by other practitioners to

study different environments under another sets of parameter values.

In this paper we reported some recent advancement in analytical modelling methodology for

transaction processing systems. A unified approximate analytical methodology is reported to

study various aspects of the transaction processing systems, including the effects of different

CC schemes and coherency control schemes over a spectrum of environments including single

node, to multi-node cluster or client-server environment. The methodology presented decom-

poses the model into submodels for hardware resource contention, for data contention and for

buffer hit. We focus on the data contention model and buffer model. The data contention model

is applicable to various CC schemes, including locking, different OCC and hybrid schemes.

The buffer model can be applied to various buffer coherency schemes, including check on access

scheme, broadcast or selective notification scheme, and other extensions with lock retention to

support remote caching and delayed dirty page propagations.

672

References

[BERN87] Bernstein, P.A., Hadzilacos, V., and Goodman, N., "Concurrency Control and Re-
covery in Database Systems", Addison Wesley, 1987.

[BAYE82] Bayer, R., et al., "Dynamic Timestamp Allocation for Transactions in Database
Systems", In H.-J. Schneider, editor, Proc. of 2nd Intl. Symp. on Distributed Data
Bases, pp. 9-21, North Holland, 1982.

[BOKS87] Boksenbaum, C., et al., "Concurrent Certifications by Intervals of Timestamps in
Distributed Database Systems", IEEE Transactions on Software Engineering, Vol.
SE-13, No. 4, April 1987, pp. 409-419.

[CAREgl] Carey, M.J., et al., "Data Caching Tradeoffs in Client-Server DBMS Architectures",
ACM SIGMOD, Denver, CO, May 1991, pp. 357-366.

[CELL88] Cellary, W., Gelenbe, E., and Tadeusz, M., "Concurrency Control in Distributed
Database Systems", North-Holland, 1988.

[CHES83] Chesnais, A., Gelenbe, E., and Mitrani, I., "On the Modeling of Parallel Access to
Shared Data", Comm. ACM, Vol. 26, No. 3., Mar. 1983, pp. 196-202.

[CICI9tIA] Cieiani, B., Dias, D.M., and Yu, P.S. "Analysis of Replication in Distributed Da-
tabase Systems", IEEE Transactions on Knowledge and Data Engineering, Vol. 2,
No. 2, June 1990, pp. 247-261.

[CICI90B] Ciciani, B., Dias, D.M., Iyer, B.R., and Yu, P.S., "A Hybrid Distributed Centralized
System Slructure for Transaction Processing", IEEE Transactions on Software Engi-
neering, Vol. 16, No. 8, Aug. 1990, pp. 791-806.

[CICI92] Ciciani, B., Dias, D.M., and Yu, P.S. "Analysis of Concurrency-Coherency Control
Protocols for Distributed Transaction Processing with Regional Locality", IEEE
Transactions on Software Engineering, Vol. 18, No. 10, Oct. 1992, pp. 899-914.

[CORN86] Cornell, D.W., Dias, D.M. and Yu, P.S., "On Multisystem Coupling Through
Function Request Shipping", IEEE Transactions on Software Engineering, Vol.
SE-12, No.10, October 1986, pp. 1006-1017.

[DATE83] Date, C.J., "An Introduction to Database Systems", Vol. 2, Addison Wesley, Read-
ing, MA, 1983.

[DAN88] Dan, A., Towsley, D.F., and Kohler, W.H., "Modeling the Effects of Data and Re-
source Contention on the Performance of Optimistic Concurrency Control Protocols",
Proc. 4th Intl. Conf. on Data Engineering, Los Angeles, CA, Feb. 1988, pp. 418-425.

[DAN90A] Dan, A., and Towsley, D., "An Approximate Analysis of the LRU and FIFO Buffer
Replacement Schemes", ACM SIGMETRICS, Denver, CO, (Performance Evaluation
Review, Vol. 18, No. 1), May 1990, pp. 143-152.

[DANg0B] Dan, A., Dias, D. M. and Yu, P. S., "The Effect of Skewed Data Access on Buffer
Hits and Data Contention in a Data Sharing Environment", Proc. 16th Intl. Conf. on
Very Large Databases, Brisbane, Australia, Aug. 1990, pp. 419-431.

[DAN91] Dan, A., Dias, D.M., and Yu, P.S., "Analytic Modelling of a Hierarchical Buffer for
a Data Sharing Environment", Proc. 1991 ACM SIGMETRICS Conference, San
Diego, CA, May 1991, pp. 156-167.

[DAN92A] Dan, A., and Yu, P.S., "Performance analysis of coherency control policies through
lock retention", Proc. of the ACM SIGMOD Intl. Conf. on Management of Data, San
Diego, CA, June 1992, pp. 114-123.

[DAN92B] Dan, A., Yu, P.S. and Jhingran, A. "Recovery Analysis of Data Sharing Systems
under Deferred Dirty Page Propagation Policies", IBM research Report RC 18553,
Yorktown Heights, 1992.

[DAN93A] Dan, A. and Yu, P.S., "Analytic Modeling and Comparison of Buffer Coherency
Policies based on Lock Retention", IBM research Report RC 18664, Yorktown
Heights, 1993.

[DAN93B] Dan, A., and Yu, P.S., "Performance Analysis of Buffer Coherency Policies in a
Multi-System Data Sharing Environment," IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 4, No. 3, March 1993.

673

[DAN93C] Dan, A., Yu, P.S., and Chung, J-Y., "Database Access Characterization for Buffer
Hit Prediction", Proc. 9th Intl. Conf. on Data Engineering, Vienna, Austria, April
1993.

[DIAS88] Dias, D. M., Iyer, B. R. and Yu, P. S., "Trade-offs Between Coupling Small and
Large Processors for Transaction Processing", IEEE Transactions on Computers, Vol.
37, No. 3, March 1988, pp. 310-320.

[DEUX90] Deux, O., et al, "The Story of O2", IEEE Transactions on Knowledge and Data En-
gineering, Vol. 2, No. 1, March, 1990, pp. 91-108.

[FRA85] Franaszek, P.A. and Robinson, J.T., "Limitations of Concurrency in Transaction
Processing", ACM Transactions on Database Systems, Vol. 10, No. 1, March 1985,
pp. 1-28.

[FRA92] Franaszek, P.A., Robinson, J.T. and Thomasian, A., "Concurrency Control for High
Contention Environments", ACM Transactions on Database Systems, Vol. 17, No.
2, June 1992, pp. 304-345.

[FRAN92] Franklin, M.J., and Carey, M.J. and Livny, M., "Global Memory Management in
Client Server DBMS Architectures", Proc. 18th Intl. Conf. on Very Large Databases,
Vancouver, Canada, Aug. 1992, pp. 596-609.

[GRAY81] Gray, J., Homan, P., Obermarck, R. and Korth, H., "A Straw Man Analysis of
Probability of Waiting and Deadlock", IBM Research Report RJ 3066, San Jose, CA,
1981.

[GRAY86] Gray, J.N., "An Approach to Decentralized Computer Systems", IEEE Transactions
on Software Engineering, Vol SE-12, No. 6, June 1986, pp. 684-692.

[HART89] Hartzman, C. S., "The Delay Due to Dynamic Two-Phase Locking", IEEE Trans-
actions on Software Engineering, Vol. 15, No. 1, Jan. 1989, pp. 72-82.

[I-IORN87] Hornick, M., and Zdonik, S., "A Shared, Segmented Memory System for an
Object-Oriented Database", ACM Transactions on Information Systems, Vol. 5, No.
1, Jan, 1987.

[HSU88] Hsu, M., and Shang, B., "Modeling Performance Impact of Hotspots", Technical
Report TR-08-88, Aiken Computation Lab., Harvard University, April 1988.

[HSU92] Hsu, M., and Zhang, B., "Performance Evaluation of Cautious Waiting", ACM
Transactions on Database Systems, Vol. 17, No. 3, Sept. 1992. pp. 477-512.

[KIMg0] Kim, W., et ai, "The Architecture of the ORION Next Generation Database System",
IEEE Transactions on Knowledge and Data Engineering, Vol. 2, No. I, March 1990,
pp. 109-124.

[KRON86] Kronenberg, N., Levy, H., and Strecker, W.D., "VAXcluster: a Closely-Coupled
Distributed System", ACM Transactions on Computer Systems, Vol. 4, No. 2, May
1986, pp. 130-146.

[KUNG81] Kung, H.T. and Robinson, J.T., "On Optimistic Methods for Concurrency Control",
ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, pp. 213-226.

[LAVE83] Lavenberg, S.S. (Ed.), "Computer Performance Modeling Handbook", Academic
Press, 1983.

[LEFF91] Left, A., Yu, P.S., and Wolf, J.L, "Policies for Efficient Memory Utilization in a
Remote Caching Architecture", Proc. 1st Intl. Conf. on Parallel and Distributed In-
formation Systems, Miami Beach, Florida, Dec. 1992, pp. 198-205.

[LI89] Li, K., .and Hudak, P., "Memory Coherence in Shared Virtual Memory Systems,"
ACM Transactions on Computer System, Vol. 7, Nov. 1989, pp. 321-359.

[MOHAgl] Mohan, C., and Narang, I., "Recovery and Coherency Control Protocols for Fast
Intersystem Page Transfer and Fine Granularity Locking in a Shared Disks Trans-
action Environment", Proc. 17th Intl. Conf. on Very Large Databases, Barcelona,
Spain, Sept. 1991, pp. 193-207.

[MORR85] Morris, R.J.T., Wong, W.S., "Performance Analysis of Locking and Optimistic
Concurrency Control Algorithms", Performance Evaluation, Vol. 5, 1985, pp.
105-118.

[RAHM86] Rahm, E., "Primary Copy Synchronization for DB-Sharing", Information Systems,
Vol. 11, No. 4, 1986, pp. 275-286.

674

[RAHM88] Rahm, E., "Emprical Performance Evaluation of Concurrency and Coherency Con-
trol Protocols for Data Sharing", IBM Research Report RC 14325, 1988.

[RAMA89] Ramachandran, U., Ahamad, M. and Khalidi, M.Y.A., "Coherence of Distributed
Shared Memory: Unifying Synchronization and Data Transfer", Proc. 18th Intl. Conf.
on Parallel Processing, St. Charles, I11, Aug. 1989, pp. II-160--11-169.

[RYU87] Ryu, I. K. and Thomasian, A., "Performance Analysis of Centralized Databases with
Optimistic Concurrency Control", Performance Evaluation, Vol. 7, 1987, pp.
195-211.

[ROSE78] Rosenkrantz, D.J., Stearns, R.E., and Lewis, P.M., II. "System Level Concurrency
Control for Distributed Database Systems", ACM Transactions on Database Systems,
Vol. 3, No. 2, June 1978, pp. 178-198.

[SEVC83] Sevcik, K. C., "Comparison of Concurrency Control Methods Using Analytic Mod-
els", Information Processing 83, R.E.A. Mason (ed.), North Holland, 1983, pp.
847-858.

[SING88] Singhal, M. and Yesha, Y., "A Polynomial Algorithm for Computation of the Prob-
ability of Conflicts in a Database under Arbitrary Data Access Distribution", Infor-
mation Processing Letters, Vol. 27, No., 2, Feb. 1988, pp. 69-74.

[SING91] Singhal, M., "Analysis of the Probability of Transaction Abort and Throughput of
Two Timestamp Ordering Algorithms for Database Systems", IEEE Transaction on
Knowledge and Data Engineering, Vo. 3, No. 2, June 1991, pp. 261-266.

[TAY84] Tay, Y.C., "A Mean Value Performance Model for Locking in Databases", Ph.D.
Dissertation, Harvard University, Cambridge, MA, Feb. 1984.

[TAY85A] Tay, Y.C., Suri, R. and Goodman, N., "A Mean Value Performance Model for
Locking in Databases: The No-Waiting Case", Journal of the ACM, Vol. 32, No.
3, July 1985, pp. 618-651.

[TAY85B] Tay, Y.C., Goodman, N., and Suri, R., "Locking Performance in Centralized Data-
bases", ACM Transactions on Database Systems, Vol. 10, No. 4, Dec. 1985, pp.
415-462.

[TAYg0] Tay, Y.C., "Issues in Modelling Locking Performance", in "Stochastic Analysis of
Computer and Communication Systems, H. Takagi (Ed.), North-Holland, 1990, pp.
631-655.

[THOM85] Thomasian, A. and Ryu, I.K., "Analysis of Some Optimistic Concurrency Control
Schemes Based on Certification", Performance Eval. Review, 13, 2 (Proc. of 1985
ACM SIGMETRICS), pp. 1.92-203.

[THOM91] Thomasian, A. and Ryu, I.K., "Performance Analysis of Two-Phase Locking", IEEE
Transactions on Software Engineering, Vol. 17, No. 5, May 1991, pp. 386-401.

[WILKg0] Wilkinson, K., and Neimat, M.A., "Maintaining Consistency of Client-Cached Data"
Proc. 16th Very Large Database Conf., Brisbane, Australia, August 1990, pp.
122-133.

[YU85] Yu, P.S., Dias, D.M., Robinson, J.T., Iyer, B.R. and Cornell, D.W., "Modelling of
Centralized Concurrency Control in Multi-System Environment", Performance Eval.
Review, 13, 2 (Proc. of 1985 ACM SIGMETRICS), pp.183-191.

[YU87] Yu, P.S., et al., "On Coupling Multi-Systems Through Data Sharing", Proceedings
of the IEEE, Vol. 75, No. 5, May 1987, pp. 573-587.

[YU90] Yu, P.S. and Dias, D.M., "Concurrency Control Using Locking with Deferred
Blocking", Proc. 6th Intl. Conf. on Data Engineering, Los Angeles, CA, 1990,
pp.30-36.

[YU91] Yn, P.S., Heiss, H. and Dias, D.M., "Modelling and Analysis of a Time-Stamp His-
tory Based Certification Protocol for Concurrency Control", IEEE Transactions on
Knowledge and Data Engineering, Vo. 3, No. 4, Dec. 1991, pp. 525-537.

[YU92A] Yu, P.S. and Dias, D.M., "Analysis of Hybrid Concurrency Control Schemes for a
High Data Contention Environment", IEEE Transactions on Software Engineering,
Vol. 18, No. 2, Feb. 1992, pp. 118-129.

675

[YU92B]

[YU92C]

[YU931

[YU94]

Yu, P.S. and Dan, A., "Effect of System Dynamics on Coupling Architectures for
Transaction Processing", Proc. 8th Intl. Conf. on Data Engineering, Tempe, AZ, Feb.
1992, pp. 458-469.
Yu, P.S., and Dan, A., "Impact of Workload Partitionability on the Performance of
Coupling Architectures for Transaction Processing", Proc. 4th IEEE Symposium on
Parallel and Distributed Processing, Dec. 1992, pp. 40-49.
Yu, P.S., Dias, D., and Lavenberg, S.S., "On the Analytical Modeling of Database
Concurrency Control", Journal of the ACM, Sept. 1993.
Yu, P.S., K.L. Wu, K.J. Lin, and S.H. Son, "On Real-time Databases: Concurrency
Conlrol and Scheduling", (to appear) Proceedings of the IEEE, Jan. 1994.

