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Abstract

In the robot navigation problem, noisy sensor datamust befiltered to ob-
tain the best estimate of the robot position. The discrete Kalman filter, com-
monly used for prediction and detection of signals in communication and
control problems, has become a popular method to reduce the effect of un-
certainty from the sensor data. However, in the domain of robot navigation,
sensor readings are not only uncertain, but can also be relatively infrequent,
compared to traditional signal processing applications. Hence, thereisaneed
for afilter that is capable of converging with many fewer readings than the
Kaman filter. To this end, we propose the use of a Recursive Total Least
Squares Filter. Thisfilter is easily updated to incorporate new sensor data,
andin our experimentsconverged faster and to greater accuracy than the Kalman
filter.

1 Introduction

The discrete Kalman filter, commonly used for prediction and detection of signals
in communication and control problems, has become a popular method of reduc-

*This work was supported jointly by Minnesota Department of Transportation grant 71789-
72996-173 and Nationa Science Foundation grant CCR-9405380.
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ing uncertainty in robot navigation. A brief summary of the Kalman filter can be
foundin[2] and acompletedescriptionin[9]. One of the main advantagesof using
the Kalman filter isthat it is recursive, eliminating the necessity for storing large
amounts of data. It requiresagood initial estimate of the solution. It also assumes
that the noise obeys a weighted white gaussian distribution. The Kaman filter is
guaranteed to be optimal only inthat it isguaranteed to find the best solutioninthe
least squares sense.

Although originally designed as an estimator for dynamical systems, the filter is
used in many applications as a static state estimator [13]. Also, dueto the fact that
functions are frequently non-linear, the extended Kalman filter (EKF) rather than
the Kalman filter itself isoften used [1, 11]. Inthis case, the functionislinearized
by taking afirst order Taylor expansion. Thislinear approximation isthen used as
the Kalman filter equation.

There are two basic problems which can occur when using either the Kalman or
extended Kaman filter in robot navigation applications:

¢ Duetothefact that thefilter was devel oped for applications such asthosein
signal processing, it isassumed that many measurements are taken. Sensing
in robot navigation, often done using camera images, is a time consuming
process. To be useful, amethod must succeed with relatively few readings.

e Anunderlying assumption in any least squares estimation is that the entries
in the data matrix are error-free [7], e.g., the time intervals at which mea-
surements are taken are exact. In many actual applications, the errorsin the
datamatrix can be at |east as great as the measurement errors. In such cases,
the Kalman filter can give poor results.

Two additional problems occur when using the EKF:

e Thelinearization processitself hasthe potential to introducesignificant error
into the problem.

e The EKF is not guaranteed to be optimal or to even converge [14]. It can
easly fall into alocal minimum when an initial estimate of the solution is
poor, often the type of situation faced by robot navigators.

Although limited modifications can be made to the Kalman approach to improve
robustnessto noise[12], our work in outdoor navigation [17], where measurements
are expensiveto obtain and have significant error inherent to the system, motivated
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Figure 1. InanL Ssolution, asshown ontheleft, the sum of the squared vertical distances
to the line of best fit is minimized. In a TL S solution, as shown on the right, the sum of
the squared perpendicul ar distances to the line of best fit is minimized.

us to look for another filtering method, preferably one which would not require
numerous measurementsto converge and did not assume an error-freedatamatrix.
As demonstrated by Mintz et al [8], the criterion of optimality depends critically
on the specific model being used. When error exists in both the measurement and
the data matrix, the best solution in the least squares sense is often not as good
as the best solution in the eigenvector sense, where the sum of the squares of the
perpendicular distances from the points to the lines are minimized (Fig. 1). This
second method is known in the statistical literature as orthogonal regression and
in numerical analysis astotal least squares (TLS) [18].

I nthe next section, wediscussthe Recursive TL Sagorithm, in section 3we present
our experimental results, and in section 4 we offer some concluding remarks.

2 RecursiveTotal Least Squares Algorithm

Given an overdetermined system of equations Ax = b, the TLS problem, in its
simplest form, isto find the smallest perturbation to A and b to make the system of
eguationscompatible. Specifically, we seek amatrix £ and vector f that minimizes
||(£,f)||. suchthat (A4 E)x = b+f for somevector x. The vector x correspond-
ingtotheoptimal (£, f) iscalled the TLSsolution. Recently, somerecursive TLS
filters have been devel oped for applicationsin signal processing [4, 5, 20]. Davila



[4] used aKaman filter to obtain afast updatefor the eigenvector corresponding to
the smallest eigenvalue of the covariance matrix. This eigenvector was then used
to solve a symmetric TLS problem for thefilter. 1t was not explained how the al-
gorithm might be modified for the case where the smallest eigenvalue is multiple
(i.e., corresponding to anoise subspace of dimension higher than one), or variable
(i.e., of unknown multiplicity). In[20], Yu described a method for the fast update
of an approximate eigendecomposition of acovariance matrix. Hereplaced all the
eigenvalues in the noise subspace with their “average”, and did the same for the
eigenvaluesin thesignal subspace, obtainingan approximationwhichwould beac-
curateif the exact eigenval ues could be grouped into two clusters of known dimen-
sions. In[5], DeGroat used this approach combined with the averaging technique
used in [20], again assuming that the singular values could be grouped into two
clusters. Recently, Bose et al.[3] applied Davila s algorithm to reconstruct images
from noisy, undersampled frames after converting complex-valued image datainto
equivalent real data. All of these methods made some assumptions that the singu-
lar values or eigenvalues could be well approximated by two tight clusters, onebig
and onesmall. In thispaper, we present arecursive algorithm that makes very few
assumptions about the distribution of the singular values.

The most common agorithmsto compute the TL S solution are based on the Sin-
gular Value Decomposition (SVD), a non-recursive matrix decomposition which
is computationally expensive to update. The TLS problem can be solved by the
SVD using Algorithm 3.1 of [18]. The main computation cost of that algorithm
occurs in the computation of the SVD. That cost is O(p®) for each update. The
basic solution method is sketched as follows. If v = (vy,...,v,)T isaright sin-
gular vector corresponding to the smallest singular value of (A, b), thenitiswell
known that the TLS solution can be obtained by settingx = —(v1, ..., v,—1)7 /v,
If the smallest singular valueis multiple, then there are multiple TLS solutions, in
which case one usually seeks the solution of smallest norm. If v, istoo small or
zero, then the TLS solution may be too big or nonexistent, in which case an ap-
proximate solution of reasonable size can be obtained by using the next smallest
singular values(s) [18].

In cases such as the applications considered in this paper where the exact TLS so-
lution is till corrupted by external effects such as noise, it suffices to obtain an
approximate TL S solution at much less cost. We seek a method that can obtain a
good approximation to the TLS solution, but which admits rapid updating as new
data samples arrive. One such method is the so-called ULV Decomposition, first
introduced by Stewart [15] asameansto obtain an approximate SV D which can be
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easily updated as new data arrives, without making any apriori assumptions about
the overall distribution of the singular values. The ULV Decomposition of areal
n x p matrix A (wheren > p)isatripleof 3 matricest, L, V plusarank index
r,where A = ULVT, V isp x p and orthogonal, L isp x p and lower triangular,
U has the same shape as A with orthonormal columns, and where L has the form

C 0
1=(% #)
where C' (r x r) encapsulatesthe*large” singular valuesof A, (E, F)) (p—r) X p)
approximately encapsulate the p — r smallest singular values of A, and the last
p — r columns of V' encapsulate the corresponding trailing right singular vectors.
To solve the TLS problem, the U’ matrix is not required, hence we need to carry

only L, V, and the effectiverank . Therefore, a given ULV Decomposition can
be represented just by thetriple [L, V. r].

The feature that makes this decomposition of interest is the fact that, when a new
row of coefficients is appended to the A matrix, the I, V' and r can be updated
inonly O(p*) operations, with  restored to the standard form above, as opposed
to the O(p®) cost for an SVD. In this way, it is possible to track the leading r-
dimensional “signal subspace” or theremaining “noisesubspace” relatively cheaply.
Details on the updating process can be found in [15, 10].

We can adapt the ULV Decompositionto solvetheTotal Least Squares(TLS) prob-
lem Ax ~ b, where new measurements  arecontinually being added, asoriginally
proposed in [2]. The adaptation of the ULV to the TL S problem has also been an-
alyzed independently in great detail in [19], though the recursive updating process
was not discussed at length. For our specific purposes, let A beann x (p—1) matrix
and b be an n-vector, where p isfixed and » is growing as new measurements ar-
rive. Then given aULV Decomposition of the matrix (A, b) and an approximate
TLS solution to Ax ~ b, our task isto find a TLS solution x to the augmented

system Ax = b, where
-~ AA ~ Ab
A= (aT)andb_<ﬂ ),

and )\ is an optional exponential forgetting factor [9].
The RTLS Algorithm:
e Start with [, V, r], the ULV Decomposition of (A, b), and the coefficients
a’’, 3 for the new incoming equation a’x = 3.
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e Compute the updated ULV Decomposition for the system augmented with

the new incoming equation. Denote the new decomposition by [L, V/, 7]

e Partition v
‘7 — ( All A12) 7
Vor Voo

where Vy, is1 x (p — 7).

If | Vao || istoo closeto zero (according to auser supplied tolerance), then we
can adjust the rank boundary » down to obtain a more robust, but approxi-
mate solution [2].

o Find an orthogonal matrix Q) such that V2,Q = (0,...,0,a), and let v be
the last column of V35(). Then compute the new approximate TLS solution
according to theformulax = —v/a.

This RTLS Algorithm makes very few assumptions about the underlying system,
though the user must supply a zero tolerance and a gap tolerance for ||X722||. For
the application here, it sufficed to set the zero tolerance to zero and depend on just
the gap tolerance of 1.5.

3 Experimental Results

To compare the performance of the Kalman filter and RTLS in practice, we ran
three sets of experiments, including one with a physical mobile robot and cam-
era, and two in simulation. In thefirst set of experiments, we ssimulated a ssimple
robot navigation problem typical of that faced by an actual mobilerobot [1, 6, 11].
The robot hasidentified a single landmark in atwo-dimensional environment and
knowsthelandmark location on amap. It doesnot know itsown position. It moves
in astraight line and with aknown uniform velocity. Itsgoal isto estimateitsown
start position relative to the landmark by measuring the visual angle o between its
direction of heading and the landmark. Measurements are taken periodically as it
moves. Figure 2 shows adiagram of the problem. For simplification, it isassumed
that the landmark islocated at (0,0), that the y coordinate of the robot’s start posi-
tion does not change as the robot moves (i.e. the robot heading defines the « axis),
and that the robot knows what side of the landmark it is on. To map this robot-
based coordinate system to the ground coordinate system, it suffices to know only
the robot’s compass heading from, say, an internal compass. Below we discuss a
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simpleway to dynamically incorporate readingsfrom two landmarks, avoiding the
need to know the compass heading independently.

Landmark , ,,.
4
‘.

(x,y) a ‘a
LS ay e O
Py | 3 | |

1 2 3 4

Robot Moves—p»

Figure 2: Diagram of a simulated robot navigation problem. The robot moves along the
horizontal line. Landmark location and velocity are known. Angle «; isthe angle from
robot heading to the landmark at timet;. The godl isto estimate the initial robot |ocation

(x.y).

In our experiments, it was assumed that the y coordinate of the robot path was neg-
ative(i.e., thepath, asshown in Figure 2, was on the side bel ow the landmark), that
robot velocity was 20 per unit of time and that measurements of « were taken at
unit timeintervals. At any time;:

x +t; x velocity
Y

cot(a;) =

where (x, y) is the robot start position and «; is the angle from the robot heading
to thelandmark. Random error with a uniform distribution was added to the angle
measures and anormally distributed random error was added to the time measure-
ment. We formulated the problem so that the data matrix, as well as the measure-
ment vector contained error:

A= [ 1 —cot(w;) ] ;X = l § ] . b; = —t; xvelocity

where, at timet;, A; isthe datamatrix, b, isthe measurement vector, and x; isthe
estimated state vector consisting of the coordinates («, i) of the robot start posi-
tion. The Kalman filter was given an estimated start of (0,0). The RTLS algorithm
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had no estimated start position provided. The leading column of the data matrix
was scaled by n = 100 to reduce the allowed errors. Results are summarized in
Figure 3.
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Figure 3: Comparison of mean deviations from estimated to actual start position. Mea
surements were taken at unit time intervals (horizontal axis). The vertical axis gives the
mean deviation d. The top three graphs have uniformly distributed error in . of +2° and
normally distributed error int with sd = 0, .05 and .1. The bottom three graphs have uni-
formly distributed error in o of +4° and normally distributed error int with sd = 0, .05
and .1. Resultsusing the RTL S algorithm are shown in black. Results using the Kalman
filter are shown in grey.

Errorina | Errorint 0 .05 A

+2° Kaman | 3247 | 20.27 | 24.54
RTLS | 20.24 | 15.90 | 24.81
+4° Kalman | 21.01 | 31.80 | 34.63
RTLS | 10.11 | 2497 | 32.13

Table 1: Mean deviation of estimate from actual location after 15 measurements.

The mean deviations d (of 10 trials) of the estimates from the actual start loca-
tion of (-460, -455) are compared for six different error amounts. The top three
graphs have uniformly distributed error in « of +2° and normally distributed er-
ror in¢ with standard deviation sd = 0, .05, and .1. The bottom three graphs have



uniformly distributed error in « of +4° and normally distributed error in ¢ with sd
=0, .05 and .1. The jump in the RTLS distance at the second measure is due to
the fact that the RTL S filter does not require, and is not given, an initial estimate
of location. The velocity/time interval used, combined with the error distribution
used, produced error on some runs that gave readings of «; < «; (see Figure 2).
Sincetherewereonly two measurementstaken at this point, the system was not yet
overdetermined, and the erroneous measures were given significant weight. This
demonstrates how quickly the RTLS filter can recover from such errors. Table 1
gives the mean deviation from the actual location after 15 measurements. For all
six groups of experiments, the RTLS filter converged more quickly than did the
Kaman filter. After 15 measurements, the RTL S estimate was closer to the actual
location than was the Kalman in five of the six groups.

The second set of experiments consisted of a sequence of indoor robot runs. Asin
the first set of experiments, the robot did not know its own position on the map,
but did know the location of asingle landmark. Itstask wasto take an image, find
the landmark in theimage, and use the result to determineits start positionrelative
to the landmark.

- Movement —>

Labmate

A

Landmark

Figure 4: TRC Labmate with camera mounted at 90°. Angle measure is bound by
+25°22’ for the given field of view.

A Panasonic WV-BL 202 camera was mounted on a TRC Labmate at an angle of
90° to robot bearing. Horizontal field of view was50°44’. “Landmarks’ were mini
Maglitehighintensity flashlight candles. Theangular position of thelandmark was
measured in a sequence of images taken while the robot moved across the room at
aconstant velocity. In addition to the error in angle measure, error aso occurred
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in velocity, robot bearing and in the times at which the images were taken. It is
not possible to predict and model these errors. For example, velocity was set at
20mm/second, but average true velocity across runs ranged from 21.4mm/second
to 22.5mm/second. In addition, the supposed constant velocity was not constant
throughout a single run, varying in an unpredictable manner. It would be unre-
alistic to assume any of these errors or their combined result to have a gaussian
distribution. Figure 4 shows a diagram of how the angles are measured. When the
landmark isin the left of the cameraimage, the angle (3, in the diagram) is nega-
tive. When the landmark isin the right of the cameraimage, the angle (3, in the
diagram) is positive. Angle measure is thus bound by 4-25°22’ for the given field
of view.
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Figure 5: Comparison of filters with actual robot runs: Images were grabbed at time in-
tervalst (horizontal axis) 12 seconds apart. The vertical axis gives the deviation of the
estimated start position from the actual start position in millimeters. The landmark was
placed at adifferent location for each run. Resultsusing the RTL S algorithm are shownin
black. Results using the Kalman filter are shown in grey.

It is again assumed that the landmark is located at (0,0), that the 4 coordinate of
the robot’s position does not change as the robot moves, and that the robot knows
which side of the landmark it ison. At any step ::

x + (to + ¢ *x interval) * velocity

tan(p;) = ;
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where (x, y) isthe robot start position, /; is the measured angle, ¢, is robot start
time, interval istheinterval at whichimagesare grabbed and velocity isthe robot
velocity. The problem was expressed as a linear function so that no accuracy was
lost by linearizing. However, the data matrix as well as the measurement vector
contained error:

i b= —(to+ ¢ * interval) * velocity

Ai = [ 1 —tan(ﬂi) ] 3 X; =

Y

where at any step ¢, A; is the data matrix, b; is the measurement vector and x;
is the estimated state vector consisting of the coordinates («, i) of the robot start
position. Asin the previous set of experiments, the Kalman filter was given an
estimated start position of (0,0) and the leading column of the data matrix was
weighted by » = 100.

Figure 5 shows a comparison of four of the robot runs. The robot velocity was set
to 20mm/sec. Five images were grabbed 12 seconds apart. Robot start position
relativeto thelandmark used for localization was different in each run. The devia-
tions d of the estimate of start location from actual start location at each 12 second
timeinterval ¢ are compared. Asin the smulated runs, the RTL S filter converged
faster and to more accuracy than did the Kalman.

Thethird set of experiments was again run in simulation, but used two landmarks
without assuming any prior knowledge of the robot’s heading. We assume that the
robot has no instrument such as acompass which could be used to register its com-
pass heading. Such instruments can give varying, incorrect readings in outdoor,
unstructured environments[17], so that it isuseful to design and eval uate methods
to obtain heading information from external sources. Such heading information
could be used independently or as corrections to estimates from internal sources.
The robot knows the location of the two landmarks on a map (ground coordinate
system). A coordinate system is arbitrarily centered at one landmark. The god
is to determine the robot start position plus the location of the second landmark.
Knowing which landmark iswhichinthe view will allow the robot to uniquely de-
termine its position, except for certain degenerate configurations, but even if the
robot does not know the order of thetwo landmarksinitsview, it can limit its start
position to only two possible locations in the ground coordinate system, symmet-
rically located on either side of the linejoining the landmarks, without any a priori
knowledge of direction.

The coordinate system is defined by placing landmark 1 at (0, 0) and landmark 2
at coordinates (/, m) to be determined by the filter. The x-axisis defined by the
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direction of the robot heading. The computed coordinates (/, m) permit mapping
this coordinate system to the ground coordinate system. Generalizing figure 2, we
let a;, ay; be the angles from the robot heading to each of the landmarks at time
t;. We have the following relationships:

—sin(aq;) * @ + cos(ay;) *y = t; x velocity * sin(ay;)
—sin(az) * & 4 cos(ag;) * y + sin(az) * | — cos(ay;) *m
= t; * velocity * sin(az;)

where (z,y) is the robot start position. Random error with a uniform distribu-
tion was added to the angle measures and anormally distributed random error was
added to the time measurement. Asin the previous experiments, the problem was
expressed asalinear function with the datamatrix aswell asthe measurement vec-
tor containing error:

—sin(ag;) cos(ag) sin(ag;) —cos(ay)

A= [ —sin(ay;) cos(ay;) 0 0 ] ‘

t; * velocity * sin(aq;) ]

x
Y
- : b, = . ;
X; I ) ¢ [ t; * velocity * sin(ag;)
m

where at any step ¢, A, isthe data matrix, b, is the measurement vector and x; is
the estimated state vector consisting of the coordinates («, i) of the robot start po-
sition and the coordinates (7, m ) of the second landmark. Results are summarized
in Figure 6. The mean deviations d (of 19 trials) of the estimates from the actual
start location of (-460, -455) are compared for six different error amounts. Asin
the first set of smulations, the RTLS algorithm quickly recovers from the jump
duetoitslack of aninitial estimate. Furthermore, in the regions wherethe RTLS
error exceedsthe Kalman filter error, neither filter yields any accuracy at al, since
both errors are larger than the values being estimated.

4 Conclusion

Inthispaper, we have proposed aRecursive Total Least Squares(RTLS) filter. This
filter iseasly updated as new dataarrives, yet makes very few assumptions about
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Figure 6: Comparison of mean deviations from estimated to actual start position. Mea
surements were taken at unit time intervals (horizontal axis). The vertical axis gives the
mean deviationd. Thetop three graphs have uniformly distributed error in both oy and oo
of +2° and normally distributed error int withsd = 0, .05 and .1. The bottom three graphs
have uniformly distributed error in both oy and o, of +4° and normally distributed error
int withsd=0,.05and .1.

the data or the problem being solved. The method was based on the ULV Decom-
position. We suggest its use as an alternative to the Kalman filter in reducing un-
certainty in robot navigation. Inthiscontext RTLS does not requirean initial state
estimate, avoids modeling errorsintroduced by the extended Kaman filter, does
not suffer thetrapsof local minima, and convergesquickly. We haveillustrated the
method with ssimulated as well as actual robot runs. It is demonstrated that in the
domain of robot navigation the RTLS can often provide more accurate estimates
in fewer time steps than the Kalman filter, especialy when errors are present in
both the measurement vector and the data matrix. Future work includes utilizing
thefilter in navigation problemswith actual outdoor terrain dataand combining its
use with the higher level reasoning described in [16].
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