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Abstract

In the robot navigation problem, noisy sensor data must be filtered to ob-
tain the best estimate of the robot position. The discrete Kalman filter, com-
monly used for prediction and detection of signals in communication and
control problems, has become a popular method to reduce the effect of un-
certainty from the sensor data. However, in the domain of robot navigation,
sensor readings are not only uncertain, but can also be relatively infrequent,
compared to traditional signal processing applications. Hence, there is a need
for a filter that is capable of converging with many fewer readings than the
Kalman filter. To this end, we propose the use of a Recursive Total Least
Squares Filter. This filter is easily updated to incorporate new sensor data,
and in our experiments converged faster and to greater accuracy than the Kalman
filter.

1 Introduction

The discrete Kalman filter, commonly used for prediction and detection of signals
in communication and control problems, has become a popular method of reduc-�This work was supported jointly by Minnesota Department of Transportation grant 71789-
72996-173 and National Science Foundation grant CCR-9405380.
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ing uncertainty in robot navigation. A brief summary of the Kalman filter can be
found in [2] and a complete description in [9]. One of the main advantages of using
the Kalman filter is that it is recursive, eliminating the necessity for storing large
amounts of data. It requires a good initial estimate of the solution. It also assumes
that the noise obeys a weighted white gaussian distribution. The Kalman filter is
guaranteed to be optimal only in that it is guaranteed to find the best solution in the
least squares sense.

Although originally designed as an estimator for dynamical systems, the filter is
used in many applications as a static state estimator [13]. Also, due to the fact that
functions are frequently non-linear, the extended Kalman filter (EKF) rather than
the Kalman filter itself is often used [1, 11]. In this case, the function is linearized
by taking a first order Taylor expansion. This linear approximation is then used as
the Kalman filter equation.

There are two basic problems which can occur when using either the Kalman or
extended Kalman filter in robot navigation applications:� Due to the fact that the filter was developed for applications such as those in

signal processing, it is assumed that many measurements are taken. Sensing
in robot navigation, often done using camera images, is a time consuming
process. To be useful, a method must succeed with relatively few readings.� An underlying assumption in any least squares estimation is that the entries
in the data matrix are error-free [7], e.g., the time intervals at which mea-
surements are taken are exact. In many actual applications, the errors in the
data matrix can be at least as great as the measurement errors. In such cases,
the Kalman filter can give poor results.

Two additional problems occur when using the EKF:� The linearization process itself has the potential to introduce significant error
into the problem.� The EKF is not guaranteed to be optimal or to even converge [14]. It can
easily fall into a local minimum when an initial estimate of the solution is
poor, often the type of situation faced by robot navigators.

Although limited modifications can be made to the Kalman approach to improve
robustness to noise [12], our work in outdoor navigation [17], where measurements
are expensive to obtain and have significant error inherent to the system, motivated
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Figure 1: In an LS solution, as shown on the left, the sum of the squared vertical distances
to the line of best fit is minimized. In a TLS solution, as shown on the right, the sum of
the squared perpendicular distances to the line of best fit is minimized.

us to look for another filtering method, preferably one which would not require
numerous measurements to converge and did not assume an error-free data matrix.
As demonstrated by Mintz et al [8], the criterion of optimality depends critically
on the specific model being used. When error exists in both the measurement and
the data matrix, the best solution in the least squares sense is often not as good
as the best solution in the eigenvector sense, where the sum of the squares of the
perpendicular distances from the points to the lines are minimized (Fig. 1). This
second method is known in the statistical literature as orthogonal regression and
in numerical analysis as total least squares (TLS) [18].

In the next section, we discuss the Recursive TLS algorithm, in section 3 we present
our experimental results, and in section 4 we offer some concluding remarks.

2 Recursive Total Least Squares Algorithm

Given an overdetermined system of equations Ax = b, the TLS problem, in its
simplest form, is to find the smallest perturbation to A and b to make the system of
equations compatible. Specifically, we seek a matrixE and vector f that minimizesk(E; f)k2 such that (A+E)x = b+f for some vector x. The vector x correspond-
ing to the optimal (E; f) is called the TLS solution. Recently, some recursive TLS
filters have been developed for applications in signal processing [4, 5, 20]. Davila
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[4] used a Kalman filter to obtain a fast update for the eigenvector corresponding to
the smallest eigenvalue of the covariance matrix. This eigenvector was then used
to solve a symmetric TLS problem for the filter. It was not explained how the al-
gorithm might be modified for the case where the smallest eigenvalue is multiple
(i.e., corresponding to a noise subspace of dimension higher than one), or variable
(i.e., of unknown multiplicity). In [20], Yu described a method for the fast update
of an approximate eigendecomposition of a covariance matrix. He replaced all the
eigenvalues in the noise subspace with their “average”, and did the same for the
eigenvalues in the signal subspace, obtaining an approximation which would be ac-
curate if the exact eigenvalues could be grouped into two clusters of known dimen-
sions. In [5], DeGroat used this approach combined with the averaging technique
used in [20], again assuming that the singular values could be grouped into two
clusters. Recently, Bose et al.[3] applied Davila’s algorithm to reconstruct images
from noisy, undersampled frames after converting complex-valued image data into
equivalent real data. All of these methods made some assumptions that the singu-
lar values or eigenvalues could be well approximated by two tight clusters, one big
and one small. In this paper, we present a recursive algorithm that makes very few
assumptions about the distribution of the singular values.

The most common algorithms to compute the TLS solution are based on the Sin-
gular Value Decomposition (SVD), a non-recursive matrix decomposition which
is computationally expensive to update. The TLS problem can be solved by the
SVD using Algorithm 3.1 of [18]. The main computation cost of that algorithm
occurs in the computation of the SVD. That cost is O(p3) for each update. The
basic solution method is sketched as follows. If v = (v1; : : : ; vp)T is a right sin-
gular vector corresponding to the smallest singular value of (A;b), then it is well
known that the TLS solution can be obtained by setting x = �(v1; : : : ; vp�1)T=vp.
If the smallest singular value is multiple, then there are multiple TLS solutions, in
which case one usually seeks the solution of smallest norm. If vp is too small or
zero, then the TLS solution may be too big or nonexistent, in which case an ap-
proximate solution of reasonable size can be obtained by using the next smallest
singular values(s) [18].

In cases such as the applications considered in this paper where the exact TLS so-
lution is still corrupted by external effects such as noise, it suffices to obtain an
approximate TLS solution at much less cost. We seek a method that can obtain a
good approximation to the TLS solution, but which admits rapid updating as new
data samples arrive. One such method is the so-called ULV Decomposition, first
introduced by Stewart [15] as a means to obtain an approximate SVD which can be
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easily updated as new data arrives, without making any a priori assumptions about
the overall distribution of the singular values. The ULV Decomposition of a realn � p matrix A (where n � p) is a triple of 3 matrices U , L, V plus a rank indexr, where A = ULV T , V is p� p and orthogonal, L is p� p and lower triangular,U has the same shape as A with orthonormal columns, and where L has the formL = �C 0E F �
whereC (r�r) encapsulates the “large” singular values of A, (E;F ) ((p�r)�p)
approximately encapsulate the p � r smallest singular values of A, and the lastp � r columns of V encapsulate the corresponding trailing right singular vectors.
To solve the TLS problem, the U matrix is not required, hence we need to carry
only L, V , and the effective rank r. Therefore, a given ULV Decomposition can
be represented just by the triple [L; V; r].
The feature that makes this decomposition of interest is the fact that, when a new
row of coefficients is appended to the A matrix, the L, V and r can be updated
in only O(p2) operations, with L restored to the standard form above, as opposed
to the O(p3) cost for an SVD. In this way, it is possible to track the leading r-
dimensional “signal subspace” or the remaining “noise subspace” relatively cheaply.
Details on the updating process can be found in [15, 10].

We can adapt the ULV Decomposition to solve the Total Least Squares (TLS) prob-
lemAx � b, where new measurements b are continually being added, as originally
proposed in [2]. The adaptation of the ULV to the TLS problem has also been an-
alyzed independently in great detail in [19], though the recursive updating process
was not discussed at length. For our specific purposes, letA be an n�(p�1) matrix
and b be an n-vector, where p is fixed and n is growing as new measurements ar-
rive. Then given a ULV Decomposition of the matrix (A;b) and an approximate
TLS solution to Ax � b, our task is to find a TLS solution bx to the augmented
system bAbx � bb, where bA = ��AaT �

and bb = ��b� � ;
and � is an optional exponential forgetting factor [9].

The RTLS Algorithm:� Start with [L; V; r], the ULV Decomposition of (A;b), and the coefficientsaT ; � for the new incoming equation aTx = �.
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� Compute the updated ULV Decomposition for the system augmented with
the new incoming equation. Denote the new decomposition by [bL; bV ; br].� Partition bV = � bV11 bV12bV21 bV22 � ;
where bV22 is 1� (p � br).
If k bV22k is too close to zero (according to a user supplied tolerance), then we
can adjust the rank boundary br down to obtain a more robust, but approxi-
mate solution [2].� Find an orthogonal matrix Q such that bV22Q = (0; : : : ; 0; �), and let v be
the last column of bV12Q. Then compute the new approximate TLS solution
according to the formula bx = �v=�.

This RTLS Algorithm makes very few assumptions about the underlying system,
though the user must supply a zero tolerance and a gap tolerance for k bV22k. For
the application here, it sufficed to set the zero tolerance to zero and depend on just
the gap tolerance of 1.5.

3 Experimental Results

To compare the performance of the Kalman filter and RTLS in practice, we ran
three sets of experiments, including one with a physical mobile robot and cam-
era, and two in simulation. In the first set of experiments, we simulated a simple
robot navigation problem typical of that faced by an actual mobile robot [1, 6, 11].
The robot has identified a single landmark in a two-dimensional environment and
knows the landmark location on a map. It does not know its own position. It moves
in a straight line and with a known uniform velocity. Its goal is to estimate its own
start position relative to the landmark by measuring the visual angle � between its
direction of heading and the landmark. Measurements are taken periodically as it
moves. Figure 2 shows a diagram of the problem. For simplification, it is assumed
that the landmark is located at (0,0), that the y coordinate of the robot’s start posi-
tion does not change as the robot moves (i.e. the robot heading defines the x axis),
and that the robot knows what side of the landmark it is on. To map this robot-
based coordinate system to the ground coordinate system, it suffices to know only
the robot’s compass heading from, say, an internal compass. Below we discuss a
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simple way to dynamically incorporate readings from two landmarks, avoiding the
need to know the compass heading independently.

Robot Moves

1 2 3 4

α 1 α 2

Landmark

(x,y)

Figure 2: Diagram of a simulated robot navigation problem. The robot moves along the
horizontal line. Landmark location and velocity are known. Angle �i is the angle from
robot heading to the landmark at time ti. The goal is to estimate the initial robot location
(x,y).

In our experiments, it was assumed that the y coordinate of the robot path was neg-
ative (i.e., the path, as shown in Figure 2, was on the side below the landmark), that
robot velocity was 20 per unit of time and that measurements of � were taken at
unit time intervals. At any time ti:cot(�i) = x+ ti � velocityy
where (x; y) is the robot start position and �i is the angle from the robot heading
to the landmark. Random error with a uniform distribution was added to the angle
measures and a normally distributed random error was added to the time measure-
ment. We formulated the problem so that the data matrix, as well as the measure-
ment vector contained error:Ai = h 1 �cot(�i) i ; xi = " xy # ; bi = �ti � velocity
where, at time ti, Ai is the data matrix, bi is the measurement vector, and xi is the
estimated state vector consisting of the coordinates (x; y) of the robot start posi-
tion. The Kalman filter was given an estimated start of (0,0). The RTLS algorithm
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had no estimated start position provided. The leading column of the data matrix
was scaled by � = 100 to reduce the allowed errors. Results are summarized in
Figure 3.
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Figure 3: Comparison of mean deviations from estimated to actual start position. Mea-
surements were taken at unit time intervals (horizontal axis). The vertical axis gives the
mean deviation d. The top three graphs have uniformly distributed error in � of �2� and
normally distributed error in t with sd = 0, .05 and .1. The bottom three graphs have uni-
formly distributed error in � of �4� and normally distributed error in t with sd = 0, .05
and .1. Results using the RTLS algorithm are shown in black. Results using the Kalman
filter are shown in grey.

Error in � Error in t 0 .05 .1�2� Kalman 32.47 20.27 24.54
RTLS 20.24 15.90 24.81�4� Kalman 21.01 31.80 34.63
RTLS 10.11 24.97 32.13

Table 1: Mean deviation of estimate from actual location after 15 measurements.

The mean deviations d (of 10 trials) of the estimates from the actual start loca-
tion of (-460, -455) are compared for six different error amounts. The top three
graphs have uniformly distributed error in � of �2� and normally distributed er-
ror in t with standard deviation sd = 0, .05, and .1. The bottom three graphs have
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uniformly distributed error in � of�4� and normally distributed error in t with sd
= 0, .05 and .1. The jump in the RTLS distance at the second measure is due to
the fact that the RTLS filter does not require, and is not given, an initial estimate
of location. The velocity/time interval used, combined with the error distribution
used, produced error on some runs that gave readings of �2 < �1 (see Figure 2).
Since there were only two measurements taken at this point, the system was not yet
overdetermined, and the erroneous measures were given significant weight. This
demonstrates how quickly the RTLS filter can recover from such errors. Table 1
gives the mean deviation from the actual location after 15 measurements. For all
six groups of experiments, the RTLS filter converged more quickly than did the
Kalman filter. After 15 measurements, the RTLS estimate was closer to the actual
location than was the Kalman in five of the six groups.

The second set of experiments consisted of a sequence of indoor robot runs. As in
the first set of experiments, the robot did not know its own position on the map,
but did know the location of a single landmark. Its task was to take an image, find
the landmark in the image, and use the result to determine its start position relative
to the landmark.

Landmark

Labmate

Camera

β

Movement

1 2
β

Figure 4: TRC Labmate with camera mounted at 90�. Angle measure is bound by�25�220 for the given field of view.

A Panasonic WV-BL202 camera was mounted on a TRC Labmate at an angle of90� to robot bearing. Horizontal field of view was 50�440. “Landmarks” were mini
Maglite high intensity flashlight candles. The angular position of the landmark was
measured in a sequence of images taken while the robot moved across the room at
a constant velocity. In addition to the error in angle measure, error also occurred
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in velocity, robot bearing and in the times at which the images were taken. It is
not possible to predict and model these errors. For example, velocity was set at
20mm/second, but average true velocity across runs ranged from 21.4mm/second
to 22.5mm/second. In addition, the supposed constant velocity was not constant
throughout a single run, varying in an unpredictable manner. It would be unre-
alistic to assume any of these errors or their combined result to have a gaussian
distribution. Figure 4 shows a diagram of how the angles are measured. When the
landmark is in the left of the camera image, the angle (�1 in the diagram) is nega-
tive. When the landmark is in the right of the camera image, the angle (�2 in the
diagram) is positive. Angle measure is thus bound by �25�220 for the given field
of view.
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Figure 5: Comparison of filters with actual robot runs: Images were grabbed at time in-
tervals t (horizontal axis) 12 seconds apart. The vertical axis gives the deviation of the
estimated start position from the actual start position in millimeters. The landmark was
placed at a different location for each run. Results using the RTLS algorithm are shown in
black. Results using the Kalman filter are shown in grey.

It is again assumed that the landmark is located at (0,0), that the y coordinate of
the robot’s position does not change as the robot moves, and that the robot knows
which side of the landmark it is on. At any step i:tan(�i) = x+ (t0 + i � interval) � velocityy
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where (x; y) is the robot start position, �i is the measured angle, t0 is robot start
time, interval is the interval at which images are grabbed and velocity is the robot
velocity. The problem was expressed as a linear function so that no accuracy was
lost by linearizing. However, the data matrix as well as the measurement vector
contained error:Ai = h 1 �tan(�i) i ; xi = " xy # ; bi = �(t0 + i � interval) � velocity
where at any step i, Ai is the data matrix, bi is the measurement vector and xi
is the estimated state vector consisting of the coordinates (x; y) of the robot start
position. As in the previous set of experiments, the Kalman filter was given an
estimated start position of (0,0) and the leading column of the data matrix was
weighted by � = 100.

Figure 5 shows a comparison of four of the robot runs. The robot velocity was set
to 20mm/sec. Five images were grabbed 12 seconds apart. Robot start position
relative to the landmark used for localization was different in each run. The devia-
tions d of the estimate of start location from actual start location at each 12 second
time interval t are compared. As in the simulated runs, the RTLS filter converged
faster and to more accuracy than did the Kalman.

The third set of experiments was again run in simulation, but used two landmarks
without assuming any prior knowledge of the robot’s heading. We assume that the
robot has no instrument such as a compass which could be used to register its com-
pass heading. Such instruments can give varying, incorrect readings in outdoor,
unstructured environments [17], so that it is useful to design and evaluate methods
to obtain heading information from external sources. Such heading information
could be used independently or as corrections to estimates from internal sources.
The robot knows the location of the two landmarks on a map (ground coordinate
system). A coordinate system is arbitrarily centered at one landmark. The goal
is to determine the robot start position plus the location of the second landmark.
Knowing which landmark is which in the view will allow the robot to uniquely de-
termine its position, except for certain degenerate configurations, but even if the
robot does not know the order of the two landmarks in its view, it can limit its start
position to only two possible locations in the ground coordinate system, symmet-
rically located on either side of the line joining the landmarks, without any a priori
knowledge of direction.

The coordinate system is defined by placing landmark 1 at (0; 0) and landmark 2
at coordinates (l;m) to be determined by the filter. The x-axis is defined by the
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direction of the robot heading. The computed coordinates (l;m) permit mapping
this coordinate system to the ground coordinate system. Generalizing figure 2, we
let �1i, �2i be the angles from the robot heading to each of the landmarks at timeti. We have the following relationships:�sin(�1i) � x+ cos(�1i) � y = ti � velocity � sin(�1i)�sin(�2i) � x+ cos(�2i) � y + sin(�2i) � l � cos(�2i) �m= ti � velocity � sin(�2i)
where (x; y) is the robot start position. Random error with a uniform distribu-
tion was added to the angle measures and a normally distributed random error was
added to the time measurement. As in the previous experiments, the problem was
expressed as a linear function with the data matrix as well as the measurement vec-
tor containing error:Ai = " �sin(�1i) cos(�1i) 0 0�sin(�2i) cos(�2i) sin(�2i) �cos(�2i) # ;xi = 26664 xylm 37775 ; bi = " ti � velocity � sin(�1i)ti � velocity � sin(�2i) #
where at any step i, Ai is the data matrix, bi is the measurement vector and xi is
the estimated state vector consisting of the coordinates (x; y) of the robot start po-
sition and the coordinates (l;m) of the second landmark. Results are summarized
in Figure 6. The mean deviations d (of 19 trials) of the estimates from the actual
start location of (-460, -455) are compared for six different error amounts. As in
the first set of simulations, the RTLS algorithm quickly recovers from the jump
due to its lack of an initial estimate. Furthermore, in the regions where the RTLS
error exceeds the Kalman filter error, neither filter yields any accuracy at all, since
both errors are larger than the values being estimated.

4 Conclusion

In this paper, we have proposed a Recursive Total Least Squares (RTLS) filter. This
filter is easily updated as new data arrives, yet makes very few assumptions about
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Figure 6: Comparison of mean deviations from estimated to actual start position. Mea-
surements were taken at unit time intervals (horizontal axis). The vertical axis gives the
mean deviationd. The top three graphs have uniformly distributed error in both�1 and �2
of�2� and normally distributed error in t with sd = 0, .05 and .1. The bottom three graphs
have uniformly distributed error in both �1 and �2 of �4� and normally distributed error
in t with sd = 0, .05 and .1.

the data or the problem being solved. The method was based on the ULV Decom-
position. We suggest its use as an alternative to the Kalman filter in reducing un-
certainty in robot navigation. In this context RTLS does not require an initial state
estimate, avoids modeling errors introduced by the extended Kalman filter, does
not suffer the traps of local minima, and converges quickly. We have illustrated the
method with simulated as well as actual robot runs. It is demonstrated that in the
domain of robot navigation the RTLS can often provide more accurate estimates
in fewer time steps than the Kalman filter, especially when errors are present in
both the measurement vector and the data matrix. Future work includes utilizing
the filter in navigation problems with actual outdoor terrain data and combining its
use with the higher level reasoning described in [16].
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