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Abstract: In this report, we extend A-calculi of explicit substitutions by an Fta rule. We do this in the
framework of Av, a A-calculus of explicit substitutions introduced by Lescanne (1994) and thoroughly studied
by Lescanne and Rouyer-Degli (1994). The main feature of such a calculus is that the classical f-contraction
is expressed by a first-order term rewriting system. Our main result is the explicitation of the 7-contraction by
means of an unconditional, generic F'ta rewrite rule and of an extension of the substitution calculus, v. Previous
definitions of Eta are due to Hardin (1992) and Rios (1993) in the framework of Ac-calculi. The principal
difference between Av and Ao-calculi concerns confluence and strong normalization: Av is ground confluent and
its simply typed version is terminating, whenever Aog-calculus is confluent on open terms but non terminating
on typed terms. In their work, Hardin and Rios present Eta rule as an extension of n-contraction. Their
extension is a conditional rewrite rule and does not stick fully to the philosophy of explicit substitutions. In our
approach, the Eta-rule is a first order rewrite rule which uses an explicit substitution calculus. For that, one
needs to introduce a new constant 1 that denotes an unspecified term. Its behaviour is described by a rewrite
rule. This report shows, in the one hand, how the Eta-rule associated with Av and the rule for L provides a
correct implementation of the n-reduction and studies other properties of the Avn-calculus namely confluence
on ground terms and strong normalisation on typed terms. On the other hand, this explicit Fta leads to i’ a
very general alternative to the classical . Indeed, we prove that n’ allows confluent contractions which are not
captured by classical 7.
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Une regle de réécriture Eta explicite

Résumé : Dans ce rapport, nous étendons les A-calculs & subsitutions explicites avec une régle Eta. Nous
Peffectuons dans le cadre de Av, un A-calcul & substitution explicite introduit par Lescanne (1994) et étudié
en détail par Lescanne et Rouyer-Degli (1994). La caractéristique essentielle d’un tel calcul est I’expression
de la [-contraction classique & ’aide d’un systéme de réécriture de termes du premier ordre. Notre résultat
principal consiste en ’explicitation de la n-contraction au moyen d’une régle de réécriture Eta non-conditionnelle,
générigue et d’une extension du calcul de substitution v. Les précédentes définitions de Eta sont dies & Hardin
(1992) et Rios (1993) dans le cadre des Ao-calculs. La principale différence entre les calculs Av et Ao concerne la
confluence et la forte normalisation : Av est confluent sur les termes clos et sa version simplement typée termine,
alors que Aogest confluent sur les termes ouverts mais ne termine pas sur les termes typés. Dans leurs travaux,
Hardin et Rios définissent la régle Eta comme une extension de la n-contraction. Leur extension est une regle
conditionnelle et ne respecte pas totalement la philosophie des substitutions explicites. Dans notre approche,
la régle Eta est une régle de réécriture du premier ordre qui emploie un calcul de subsitutions explicites. Pour
cela, on introduit une nouvelle constante L qui dénote un terme non-spécifié. Son comportement est décrit par
une regle de réécriture. Ce rapport montre, d’une part, comment Eta associée Av et a la régle de L fournit une
implémentation correcte de la n-réduction, puis étudie des propriétés du Avn-calcul, c’est-a-dire, la confluence
sur les termes clos et la forte normalisation des termes typés. D’autre part, cette Fta explicite conduit & 7/, une
alternative & 1 qui se révéle plus générale. En effet, nous prouvons que 1’ autorise des contractions confluentes
qui ne sont pas capturées par la 7 classique.

Mots-clé : A-calcul, substitutions explicites, n-réduction
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Introduction

The main feature of a A-calculus of explicit substitutions is that the classical F-contraction is expressed by a
first-order term rewriting system. In this way, such A-calculi concur to achieve Curry’s program (Cf appen-
dix A). Indeed, one aim was to find a fully formalized prelogic, constituted of a theory of substitution (not a
metatheory) and a theory of types. Upon Curry, there are two forms of such a prelogic : Combinatory Logic
which is ultimate and A-conversion which is intermediate. We think A-calculus of explicit substitutions is as
ultimate as Combinatory Logic, but more intuitive. Historically, explicit substitutions were first designed by De
Bruijn [dB78] but with a crude terminology. They have been made popular more recently by Abadi, Cardelli,
Curien and Lévy [ACCL9I].

These authors present Ao, a A-calculus of explicit substitutions which is a result of an almost decade research
work. The starting point is CCL, categorical combinator logic [Cur83, Cur86b, Cur86a], a combinatory logic
more intuitive than the classical one. Indeed, it is based on A-calculus with cartesian products and keeps its
structure. Hardin [Har87, Har89] studied confluence on open terms of this calculus. An important contribution
toward explicit substitutions is the Ap-calculus, [Cur86b] suited for weak reduction. It has been extended to
Ao [ACCLY1]. Hardin and Levy designed Aoy [HL89], thus achieving an important goal: confluence on open
terms. Guided by implementation grounds, this family of calculi rests from the beginning on the concept of
composition of substitutions.

In this paper, we will work in Av, a recent A-calculus of explicit substitutions introduced in [Les94] and tho-
roughly studied in [LRD94a]. What characterizes this calculus is that the substitution calculus v is an orthogonal
rewriting system which does not manage composition of substitutions. Like most A-calculi of explicit substi-
tutions, Av uses De Bruijn indices for terms [dB72], beginning at 1. We recall the syntax of A-terms with De
Bruijn indexes :

Definition 1 (A) The set A is the set generated by :

Terms a == nlaalla
Naturals n = n+1]L

Terms of A are called pure terms.

How does Av break the (-contraction ? First, the rule Beta creates a substitution stored in a closure denoted
by []:
Beta (Aa)b — a[b/]

Then, rules of v (Cf figure 1) distribute this substitution and apply it to indexes. The rules {Beta} U v are
defined on the following set of terms Awv:

Terms a = n|aalda]als]
Substitutions s == a/| ft(s)| T
Naturals n == n+1]|L

For example, (Az.Ay.zy)z, denoted (A(A2 1))1 in De Bruijn notation, is contracted by v as follows:

RR n-°2417



4 Daniel BRIAUD

(Beta) (Aa)b —  alb/]
(App) (ab)[s] —  a[s]b[s]
(Lambda) (Aa)[s] = Aa[f(s)])
(FVar) 1la/] — a

(RVar) n+l1fa/] - n
(FVarLift) 1Ms)] — 1
(RVarLift) n+1[f(s)] — n[s][t]
(VarShift) nft] - n+1

Figure 1: The rewrite system Av

— MDA rule Lambda

—  AMANILM@ /)Y  rule App

S MUIL/IHD L) rules RVarLift, FVarLift
—  AML[D 1)  rule FVar

—  A21) rule VarShift

Its v-normal form, namely A(2 1), is equivalent to Ay.z y. We may n-reduce it to z. Indeed, the practical reason
for defining n-reduction comes from the natural equality (Az.fz)a =g fa if z has no free occurences in f. It
comes from the wish to make equal two functions which behave the same, that is which return the same result
when applied to the same parameter (extensional equality). This is the role of n-contraction :

(Ax.fx) —n—>f if  has no free occurences in f.

Accordingly, we would like to n-reduce A(2 1) to 1 . We observe that in De Bruijn notation, n-contraction is not
as trivial as in the classical formalism: there is some work to do to compute the n-reduct. Our aim is now to find
a first order rewrite rule which explicits the substitution process involved in the n-contraction and hidden at the
meta-level in all the other approaches [Har92, Rio93]. In the following, we explicit the n-reduction by means of
an unconditional Eta rewrite rule and of an extension of the substitution calculus, v. We show that the rewriting
system obtained, denoted by Avn, provides a correct implementation of the 5-contraction. Moreover, Eta leads
to a new definition of the classical 7-contraction. We especially study consequences of this new definition w.r.t.
ground confluence. Next, we prove some properties of the Avn-calculus namely confluence on ground terms!
and strong normalisation on typed terms. Finally, we compare our Eta rule to previous approaches.

1 Definition of n and FE'ta

We now work in De Bruijn notation. Rios [Rio93] gives an operational definition of 7 on the set A of pure terms.
Indeed, he proves:

Aa 1) — a3 if ay is defined,
with the partial function a,,, defined at the meta-level :

m—1 ifm>n
=< undefined ifm=mn
m ifm<n

(ab)n, = anby
(Aa)n = Aant1 my,

Lemma 1 (Rios) n is the rewrite extension on A of A(a 1) — a1 if ay is defined.
n

1In the following, we write confluent instead of ground confluent

INRIA



An explicit £ta rewrtte rule b}

Starting from this and unlike Rios, we try to define a primitive Fta rule. Our reasoning is based on two facts.
First, a, is an effective partial function and should be computed by a rewrite system. Second, the function a,
should look like a / substitution according to the following similarities.

an4+1 leaves unchanged the indezes from 1 to n, decreases the indezes after n + 2 and rules out n 4 1.

a[t™(b/)] leaves unchanged the indexzes from 1 to n, decreases the indexes after n+ 2 and replaces n+1 by
b[1"].

We see that apy1 and a[ff”(b/)] have the same effect if the term a does not contain the index n+ 1. If a
contains n + 1, its presence is remembered by a special term, namely L.

Let us define the set of terms Avj .

Definition 2 The set Av,y is the sel generated by :

Terms a == n|aa|Aa|a[s]|L
Subst s = af/| fN(s)] T
Naturals n == n+1] L

Now, we are able to define a rule on Avy which we call Eta:

Definition 3 Let a,b € Av, . Eta is the rewrite extension on Av, of :

Ma 1) —, a[L/]

Eta

As | is a constant, we add the rule:
Definition 4 v, is: vU{Ll[s] — L}.

In appendix B, we extend the properties of Av proved in [LRD944a] to a Av-calculus with a finite set of constants.
Lemmas 16 and 17 prove that a[f”(L/)] has the expected behaviour :

Lemma 2 Let m > 1 and n > 0.
Lm{(L)] S mifl<m<n
2t 1" (L/)] < L["] 5 L
9. mH (L)) <> m—1ifm>n+2.

We show that Eta is correct on pure terms w.r.t. 5, that is to say, an Eta-rewrite followed by v-normalisation
is equivalent to an n-contraction. We introduce another relation 5’ defined on A and we prove this relation is
actually n:

Definition 5 Let a € A. A(a 1) bl Ma l) _, a[Ll/] and v(a[L/]) = b € A. We extend 1’ by rewrite
extension on A. o

Lemma 3 Let a € A, any1 is defined if and only if v(a[f*(L/)]) € A and in that case
any1 = v(a[f" (L/)])-
Proof:
1. Let @ € A and suppose that a,41 is defined. We proceed by structural induction on a:
(a) a=m
By hypothesis, a,4+1 exists, soa=m #n+ 1.
Lm>n+1,m, ;,=m-1
By lemma 2, v(m [f*(L/)]) =m—-1€ A, =m,

i.m<n+lm,  =m
By lemma 2, o(m [f*(L/)]) = m € A, = m, ,

RR n-°2417



6 Daniel BRIAUD

(b) a=Xb
As apy1 is defined and apy1 = (Ab)nt1 = Abpy2, by is defined. Then, by induction
hypothesis, v(b[{{**1(L/)]) € A and equals b, 4.

alt*(LN] = (8)[N"(L/)]
= AL

= Albnt2)
e A

= (Ab)nt1
= Ap41

(¢) a=be
Immediate by application of the induction hypothesis to b and c.

2. Let a € A and suppose v(a[("(L/)]) € A. an41 is defined. Indeed, by structural induction on a:

(a) a=m
Suppose a,41 is not defined. Therefore a = n+ 1 and by lemma 2, v(n + 1 [f}*(L/)]) =
L[1"] € A. This contradicts the hypothesis, so a,41 is defined.

(b) a=Xb
v((AD)[ (L)) = Av(b[t (L)) € A. So v(b[fy "T1(L/)]) € A, and by induction
hypothesis, b, 42 is defined. As ap41 = (Ab)py1 = Abpy2, any1 is defined.

(¢) a=be
Immediate by application of the induction hypothesis to b and c.

O
We now prove equivalence of n and 5’ contractions for redexes located at the head of terms:
Lemma 4 Let a € A, A(a 1) — a if and only if A(a 1) 7 v(alL/]) = a1.

Proof:

1. Suppose A(a 1) — a1 By previous lemma, as a; is defined, we know: v(a[L/]) = a1 € A. So
AMa 1) _, a[L/] =5 a;. That is to say, A(a 1) = v(a[L/]) = a1 € A.
Eta v K

2. Suppose A(al) o v(a[L/]) € A. By previous lemma, a; is defined and equals v(a[L/]). So,
Ma 1) — vfa[L]).
O

More generally, by rewrite extension on A, we get the following proposition : Eta followed by the v-normalisation?
correctly implements the classical n-reduction.

Proposition 1 (Correction) Let a,b € A, a — b if and only if a — b.
n n

So we achieve our aim: we compute the 7-reduct by a first order term rewriting system, as this computation is
expressed through explicit substitutions.

Beta 1s now extended to Avj :

Definition 6 Let a,b € Avy. Beta is the rewrite extension on Avy of: (Aa)b _, a[b/]

Beta

The definition of 8’ w.r.t. [LRD94a] is unchanged :

Definition 7 Let a,b € A. 3 is the rewrite extension on A of : (Aa)b i v(alb/])

B is correct w.r.t. 8, as already proved in [LRD94a].

2We do not need the constant rule L[s] — L

INRIA



An explicit £ta rewrtte rule 7

2 Confluence of 37/

The Fta rule leads us to a new view of the classical p-contraction, i.e. n expressed in classical formalism (without
De Bruijn notation). Indeed, we define a new 7n-contraction in the classical A-calculus, denoted by 1’ as:

Az.(a z) = a{l/z}

Notice that 7’ is unconditional. As shown by correction, this rule coincides with classical 5 in the case = is
not a free variable of a. In the other case, classical 5 is not allowed, but 7’ is. In some cases, it makes sense to
forget the precondition on the application of classical . The following examples show that some 7/-contractions,
classically forbidden, can in fact be allowed and keep the whole calculus confluent.

1. (Aeyx)Az.x)(Az.z z) —7 (Aey.e)Az.a)l _;_> (Az.z)
(Azy.z)dz.x)Az.z x) *_> (Az.z)

My.2)e 2) 7 (wez)L

2. Az.(( -z
Ao ((M.2)e )~ ez ) o 2
3. (Au.(Ae. uxx))(/\y.z) 7 (Auul)(Ay.z) — (Ay.z) L >z
(Au.(Az.uzz))(Ay.z) — (Az.(Ay.z)zx) - (Az.zz) e

The rest of this section is devoted to the study of this unconditional 5. To be consistent with our older defi-
nitions, we go back to De Bruijn notation, but the following statements hold in classical A-calculus. First, we
extend A to Ay, the set of pure terms that may contain L constant occurences. We define unconditional ' on
this set. Next, we look for a set Am on which the relation @7’ is confluent. To prove this confluence, we first
show the postponement of 7'-steps w.r.t. 3-steps.

We define 8’ and 1’ on the set A :
Definition 8 (A ) The set Ay is the sel generated by :

Terms a nlaa|da| L
Naturals n == n+1]1.

Definition 9 Let a,bc A, .
1. B is the rewrite extension on A; of: (Aa)b > vy (a[b/])
2. 1 is the rewrite extension on Ay of: A(a 1) UL (a[L/])

In appendix B, we show that 3 and classical 3 coincide on the set A, as L is a constant. So we will write 3

for both.

B’ is clearly not confluent on A, , i.e. on the set of terms containing 1 occurences, as shown by the criti-
cal pair between 8 and 7’ :

ab > (Ma 1)b = a[L/]b
In A, we have the counter-example :
1l (A@)l-Ll
But by restricting i’ to a reasonably large subset of A;, we can make 8’ confluent. This set is Am :

Definition 10
Am={ac A |FbEA :a 5 b}
Bn’

This set is larger than A and than the set used by Hardin and Rios in the sense that 7’ contains more reductions
and Am contains terms with occurences of L (See fig. 2). For example, the terms (A(1 1)) 1 and 1 1 belong to
Am, but L 1 does not.

As already noticed, an 7/-contraction does not necessarily coincide with a classical n-contraction. We qua-
lify such an n’-contraction as biased. In the following, we show that on the set Am, we can either postpone a

RR n-°2417



8 Daniel BRIAUD

Figure 2: Relations between Am and A

biased 7/-contraction and so transform it in a classical 5 one, or eliminate it. This way, confluence of 85’ follows
immediately. Consider the reduction :

a7 b—c
n B

We successively prove:

1. the below case: when the 7/-redex is strictly contained in the S-redex, it can be postponed and may be
duplicated (or eliminated).

2. the upon case : when the 7’-redex strictly contains the -redex, it can be postponed.
3. the critical case: when there is a critical pair, the r’-contraction can be eliminated.

The first two cases hold in A |, the last one holds only in Am. Due to potential duplication, there is a technicality
for the below case.

First, we show the below case. To treat it formally and according to the philosophy of explicit substitution,
we need what is called projection lemmas. In the case of Eta, this lemma says that an Eta-rewrite between
terms of Avy translates in a 7’-reduction between their v, -normal forms. If the Fta-rewrite takes place inside
a closure [ ] we call it internal, if it takes place outside each closure, we call it external. External and internal
are abbreviated by the superscripts ext and int.

Lemma 5 (Projection lemmas on A} )

1. If a,b € Avy such that a __,** b then vy (a) —77 vy (b).

Eta

INRIA
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2. Ifa,b € Avy such that a "' b then vy (a) —*7> v (b)

Eta

The proof of this lemma is in appendix C. The Beta projection lemma is similar, its proof extends the one given

in [LRD94a] (Cf appendix B).

Lemma 6 (The case i’ below ) Let a,b,c € A.
LIf (Aa)b 7 (Ac)b —> vi(c[b/]) then (Aa)b — vi(alb/]) > vi(c[b/]).
If (Ab)a 7 (Ab)e > v (ble/]) then (Ab)a —» vy (bla/]) = vi(ble/])-
The proof comes directly from the projection lemma 5.

Proof:
1. We suppose:

(AA(a 1))b = (Avr(a[L/D)b - vi(vi(a[L/][b/])) = vi(a[L/][b/])

We observe :

(AM(a 1))b =" (A(a 1)[b/] " a[L/][b/]

Beta Eta

By external projection lemmas, we get :
(A(a 1))b — v ((Ma D)[B/]) 7 vaa[L/][b/])
The key part, i.e. Barendregt style substitution lemma [Bar84], is inside the projection lemma:
a[f(b/[L/] = alf(b/[L[B/1/] = alL/][b/]
2. We suppose :

(A8)(Ma 1)) 7 (A0)(vi(a[L/])) - vi(blvi(a[L/])/]) = vi(bla[L/]/])

We observes :

(Ab)(Ma 1)) " b[(A(a 1))/] ™" bla[L/]/]

Beta Eta

By external and internal projection lemmas, we get :
(Ab)(A(a 1)) — vi(b[(A(a 1))/]) —:7 v (bla[L/]/])
O

Lemma 7 (The case n’ above ) Let a,c € Ay. If A(a 1) 7 vy (a[L/]) = ¢ then there exists d € Ay such
that A(a 1) —d e

Proof: We translate the hypothesis

Ma 1) = vi(a[L/]) 5 ¢
into a f-reduction :

(Aa)L —?'UJ_(G[J_/]) —c

Since L is not an abstraction, the first S-contraction does not create a f-redex in v, (a[L/]). So, the
structure of the f-redex in vy (a[L/]) is already in a. Hence, there exists a d € A; such that:

a—d
5

As we have:
(A @)L — vi(alL/]) = e
(Aa)L — (A d)L — vi(d[L/])
RR n~° 2417
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By the substitution lemma for 3 [HS86], we get :

¢ =wy(d[L/])
Back to 1-contraction, we get the postponement :
Ma1) = Md 1) = vi(dlL/) = e
O

The previous lemmas imply :

Lemma 8 Let a,b,c € Ay. Ifa - b %5 ¢ when 1/ is below or above (B then there exists d € Ay such that:
' 8
a_d-5b.
8 '
The proof is by a double induction on, first, the length of the 75’-reduction, and, second, the length of the
(B-reduction.

The following lemma shows what becomes of the classical commutation of classical £ and 7.

Lemma 9 (The critical case) Let M, N € Ay . If(A(M 1))N —7 (ve (M[L/]))N = P € A then (A(M 1))N -, P.
" 5 s

Proof: We prove it with the classical formalism. Here, we treat L as a free variable and we rename
1L by T, a fresh variable, in M and N :
N'= N[T/Ll]and N'= N[T/Ll]. We have:

(Az.M'" z)N' i (M'[L/z))N" 5 PeA

B

By stability of 3 (or substitution lemma [HS86]) :
(ML/e)NOIN'/ L] — PIN'/ L]
As L ¢ FV(N'P), P[N'/1]= P and N’[N'/1] = N'.
(M'[L/2][N'/ LN = P

And M'[L/2][N'/L1] = M'[N'/z],
(M/N'/e])N' =, P
5
By B-expansion :
(Az.M' z)N' 2, P
5
By renaming, as T ¢ FV(MN),

(MM )N . P
5
a

Lemma 10 (Postponement of 7'-contractions) Let a € Am and ¢ € A such that: a—— c. Then there exists

Bn'
deAN:a L d_,
B n

C.

Proof: We proceed by induction on the number of 7’-steps. We consider the last n’ step. If there is
no 1/-step, we get the result. If this step is a critical case, by lemma 9, we eliminate it. If this step is
an upon or below case, by lemma 8, it is postponed and may be duplicated (or eliminated). As only

-steps eliminate L occurences, final 7/-steps are in fact classical n-steps : a—— b_*, c and b € A, so
Bn’'

n
that we apply the induction hypothesis on a—— b. O
Bn’'

Theorem 1 87’ is confluent on Am.

INRIA
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Proof: Let a,b,c € Am such that a —— b and a — c¢. As b,c € Am, there exists b’, ¢’ € A such that
Bn’ Bn'
. .
b->b andc — ¢'. So:
Bn' Bn'
. .
a——b a-¢
Bn’' Bn’'
By previous lemma, we associate to these two reductions two classical ones :
a b a L
Bn Bn

As classical fn is confluent on A plus a constant, there exists d € A (d € A, because n-steps are
correct and b, ¢’ € A):
VL, d d Ld
Bn Bn

By correction, ' can simulate 7:
ro* ! *
b —d ¢ —d
Bn' Bn'
O

The definition of Am is very general and we do not know a syntactic characterization for it (we conjecture there
is none). If one wants to implements an 1’ reduction strategy, one may wish to know if one stays in Am. The
absence of a syntactic characterization seems to prevent providing such a criterion. Even a smaller set, like,

{aeA|FbeEA a4 b}
5

is of no more help. Nevertheless, n’ sheds more light on the relation between n and g.

3 Confluence and strong normalization of \vy

In this section, we study two properties of Avp, the rewrite system {Beta, Eta} U vy, namely confluence and
strong normalization. The proof of these properties are straightforward extension of Av ones, so we just sketch
them.

3.1 Confluence of vy

We prove confluence of Avn, the theory Av augmented with the rule Fta on a smaller and handy set :

Definition 11
Avp={a€Avi|Fb€Av 1a = b}

We prove the confluence of Avp by the interpretation method [HL89]. We review it for our particular case.
Consider the relation Avn defined on the set Avp and such that:

1. Avp = RU vy with R = {Beta, Eta}

2. vy is convergent, that is to say confluent and strongly normalizing, on the set A of v -normal forms of
Avny.

3. Bn C (Avn)*
If
1. Bn is defined on the set A of v -normal forms of Avr, and

2. the projection lemmas on A hold: a Beta (resp. Eta) contraction between terms of Avny translates in a g
(resp. n) reduction between their v -normal forms.

then
0On is confluent on A if and only if Avun is confluent on Awvp.

So the confluence of Avn on Awvng relies on the projection lemmas of Beta and Eta on A. In a first step, we recall
the projection lemmas concerning terms of Avy :

RR n-°2417
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Lemma 11 (Projection lemmas on A ) Ifa,b € Avy such thata __ b (resp. a __, b)thenvy(a) -5 vy (b)
Beta Eta B

(resp. vi(a) —*7> vy (b))
As a subcase, as vy (b) € A for b € Avn, we get:

Corollary 1 (Projection lemmas on A) Ifa, b€ Avy such thata __, b (resp. a __, b) then vy (a) 5 vi(b)
Beta Eta B
(resp. vi(a) —*7> vy (b)) and vy(a),vi(b) € A.

Theorem 2 The reduction Avn is confluent on Avr.

So, we prove the ground confluence of Avnp on a set equivalent to, on the one hand, the classical one, on the
other hand, the Hardin ground one. Unlike Hardin, we can not achieve a stronger result, i.e. confluence on terms
containing variables of type Term or Substitution. Indeed, there is a counter-example to such a confluence,
which is already present in Av:

alb/ls] — ((Aa)b)ls] = (Aalfi(s)])(bls]) — alfi(s)][Bls]/]

Beta Beta

If we consider a, b and s as variables, we get two distinct v-normal forms. But for each ground instance of a, b

and s, we have (Cf appendix B):
alb/][s]«— a[fi(s)][b[s]/]

That is to say, it is a theorem of the inductive theory, not of the equational theory of v. On the contrary, Aoy
-calculus is confluent on open terms [HL89]. As a counterpart, typed Av is strongly normalizing, an interesting
property which does not hold in Aoy nor in Ao [Mel95].

3.2 Strong normalization of typed \uvy
We now look at the preservation of strong normalisation of Avn on Av, terms. Then, we deduce strong norma-

lisation of Avn on simply typed terms.

We adapt the Av strong normalization preservation proof [LRD94a] and comment it. The main ideas are: use
the strong normalization of Bn' and the fact that b/ substitutions, with b # L, come from Beta rewrites. We
emphasize the fact that this last property of v is essential to this proof of strong normalization of Av and Avng.
The following lemma formalizes this property.

Lemma 12 Let ag € Ay such that ag-% a, = C{d[ff(¢/)]} with ¢ # L. Then there exists a;, 0 < i < n such
Avn
that: a; = D{(Ae)b} and b% c.

The proof can be found in [BBLRDY94]. This lemma does not hold in the o calculus because of the rule
(a-s)ot — aft] (sot). Indeed, one observes that it creates a closure [ ] and so it may create [b - id],

the equivalent in Ao of [b/] [Mel95].

We now state the second key point of this normalization proof: this lemma isolates the sources of the potentially
infinite derivations in closures [ ].

Lemma 13 Let a € Avy such that vyi(a) is strongly normalizing. In a Avn derivation starting from a, there
exists a rank N such that each Avn-step following N is internal

That property, proved in [LRD94a], depends only on v, not on Beta, L or Fta. It is not shared by the o
substitution calculus [ACCL91] because of the same rule. Indeed, in the o-derivation :

1a-s)ot] " Lfalf]- (s0)] » alf]
the external redex 1[-] produced by the internal o-rewrite (a-s)ot — aft]-(sot) can not be pushed up.

By the two previous lemmas, we get :

Theorem 3 Let a € Avy such that vy (a) is By -strongly normalizing. Then, a is dvy -strongly normalizing.

INRIA
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The proof follows closely the Av case, described in [BBLRD94]. It is based on a minimal counter-example, more
precisely a minimal Avn-derivation.

So Aunm preserves strong normalization. As a consequence, we derive strong normalization of a simply typed
version of Avny on Av, . For this, first, we need a typing system, second, we have to show 8n’ is strongly norma-
lizing on simply typed pure terms.

Thus, we enlarge Av simply typed terms [LRD94a] to Avn ones. This part heavily relies on the simply typed
version of Av-calculus described in [LRD94a]. To introduce a typed Eta rule, we have to type terms of Av, .
For this, instead of a single constant L, we need, for each simple type A, a typed constant 1 4 and a rule
La[s] — La. We just add an axiom scheme to the typing system of Av in order to type La and terms
containing occurences of L 4.

The grammar of the pseudo-terms is:

Type A == A ... |A|A=>B
Naturals n = 1|n+1

Terms a == nlab|XAala[s]| La
Substitutions s == a/| 1t | fi(s)

Context r == []]A-T

where A1 ... A, is a family of atomic types. The set of Avp-simply typed terms is noted Av]" and is produced
by the typing system :

Terms
Fl_J_A:A
I''ta: A=B T'F b: A AT F a: B
I'' - ab: B I' H Mua: A= B
'a: A AFs:T F'Fn: A
Al oafs]: A AT F1: A B-T'Fn+1l: A
Substitutions
' Fa: A ' - s: A

rta/: AT ATEMT AT FAfi(s): A-A
We define a typed Fta rule accordingly :

Lemma 14 (Subject reduction theorem) Leta € AT . The rewrite extension on AT of AA.(al) __ a[La/],
Eta
that is to say typed Eta, preserves types. '

Proof:
A-T'Fa: A=B A TF1:A4 'k 14: A
A-TFHal: B ATkFa: A= B F'F La/: AT
' XA(al): A=>B I' - alla/]: A= B
O

So, having defined simply typed terms, it remains to show 8’ strong normalization on simply typed pure terms.
We note the set of simply typed pure terms A7"; it is a subset of AvT.

Lemma 15 Let a € A7, a is i -strongly normalizing.

The adaptation of the 87 case [HS86] is quite straightforward. It relies on an easy "reverse” substitution lemma:
let M, L be pure terms and z, y be variables. if M{y/r};—} L then there is a pure term N such that: M;—] N
n n

and L = N{y/z}.

The conditions of the preservation theorem 3 are fulfilled , so:

Corollary 2 Let a € AvT, a is Avn-strongly normalizing.
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Conclusion

Hardin and Rios definition® of Eta [Har92, Rio93] in the framework of Av, is:
Ma 1), bif o(a) = v(oft]) (I R)

Eta

which raises few comments. That rule does not make the 7-reduct computation explicit since it uses an
v-matching [JK91] instead of our vj-normalization. More precisely, imagine Eta applied on a term A(a 1).
To apply rule (HR), one must solve, modulo the theory v, the equation a =, b[t] where b, the Eta-reduct, is
the unknown (the variable to instantiate). This computation is what we call v-matching. Clearly, v-matching is
more complex than v, -normalization: we do not even know whether v-matching is decidable or not and since
v-matching may produce several solutions, rule (HR) may produce several reducts for the same Eta-redex,
among them the classical p-reduct. Consequently, rule (H R) is less operational than our Eta rule.

Moreover, our Eta rule is generic. Indeed, in this report we apply our definition to Av. But all we need in
order to define Eta is a term rewriting system that computes G-contraction; for instance we do not use re-
naming operators like 1. Hence, Eta can be adapted to every A-calculus of explicit substitution, with explicit
names or not. For instance, in Aoy, [HL89], we would write :

Aa 1) _ a[L -id]

Eta

and in Ay [LRD94b] :

Az;.(a x;) — alL/z;]o
Last, our rule is unconditional. We have seen that this lead to a very general alternative of the classical 75,
namely n’ which does not require De Bruijn notation. The condition of application of the classical 5 rule is too
strong and as we have shown, there are other confluent reductions which are not captured by this rule. This
examplifies our conviction that explicit substitutions help to a deeper understanding of A-calculus, not only of
its S-reduction aspect but also of other aspects like n-reduction. In that manner, according to Curry [CF58],
explicit substitutions concur to precise the fundamentals of logic.

Acknowledgments. We would like to thank Pierre Lescanne and Jocelyne Rouyer-Degli for their constant
support, and Philippe de Groote and Roberto Amadio for their remarks.

3To be consistent with our notations, we take Rios syntax.
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A Quotation from Curry and Feys

We quote Curry and Feys [CF58]: ‘Combinatory logic is a branch of mathematical logic which concerns itself
with the ultimate foundations. Its purpose is the analysis of certain notions of such basic character that they
are ordinarily taken for granted. These include the processes of substitution usually indicated by the use of
variables; and also the classification of entities constructed by these processes into types or categories, which
in many systems has to be done intuitively before the theory can be applied. It has been observed that these
notions, although generally presupposed are not simple; they constitute a prelogic, so to speak, whose analysis
is by no means trivial. [...] It is the synthetic theory* which gives the ultimate analysis of substitution in
terms of a system of extreme simplicity. The theory of lambda-conversion is intermediate in character between
the synthetic theory and ordinary logics. Although its analysis is in some ways less profound - many of the
complexities in regard to variables are still unanalysed there - yet it is none the less significant; and it has the
advantage of departing less radically from our intuitions.’

B Properties of applied \v-calculus
We add a finite set of constants to Av, forming Av,, and their associated constant rules ¢[s] — ¢ to v, then
Theorem 4 (Convergence of v.)

1. v, terminates.

2. v is orthogonal, therefore confluent.

Remark 1 (well-foundedness of (— U 3)%) The termination of v. is proved with a simplification ordering,
>. So it contains 1 and ——, and therefore the transitive closure of their union.

Remark 2 (application and abstraction structure is preserved) As no left hand side of v, rules is an
application or an abstraction, for a,b € A.,

1. ve(ab) = ve(a)v.(b)
2. ve(Aa) = Avg(a)
Remark 3 (Church-Rosser consequence) As v, is Church-Rosser, for a,s € A¢, ve(a[s]) = ve(ve(a)[ve(s)])

Lemma 16 Forn > 1 and i > 0, n[{}"+(s)] — n.
Lemma 17 Forn>1andi> 0, n+1 [ﬂz(s)] —:—> n[s][17].
Corollary 3 (Barendregt style Substitution Lemma) a[b/][s] < a[fi(s)][b[s]/].

Theorem 5

1. the projection lemma for Beta holds: a Beta-rewrite between terms of Av. translates in a (-reduction
between their vy -normal forms.

2. Beta is confluent on Av., by previous item.

C FEta projection lemma on A

In the next lemma, we prove that an external (in the term part) Eta-rewrite corresponds to exactly one 7/'-
reduction. In particular, an external Eta-redex structure does not tamper with v -normalization. (basic case:

4b)

Lemma 18 (External Projection Lemma) Let a,b € Av,
ifa __, ““*b then vy (a) =5 vi(b).

Eta

4what we now call combinatory logic
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Proof: By noetherian induction with the well-founded order ——.
vy

1. a = A(¢ 1) : by Remark 2 and Remark 3, vj (@) = v (A(e 1)) = AMvi(a) 1) —7]7 vy (v (a)[L/]) =
vi(a[L/]) = vi(b)
2. a=Xc _, A
Asc __}Eteamc’, by induction hypothesis: v, (¢) UL ().
By co]i’;;patibility of ' : Avy(e) = Avy ().
And v -normalisation left unchanged the abstraction structure, so: vy (Ae) —7]7 vy (Ad).

3. a = cd: as previous case.

4. a = c[s] __, **¢'[s]. We can not apply the same reasoning, because 7 is not defined on Av, , so
Eta
we have not the compatibility step. We must look at the structure of c:

(a) a = de[s] __, ““'d’e[s] = b. We have:

a = de[s] - d[s]e[s]

By compatility of Eta on Avg,

d[sle[s] . d'[s]e[s]

Eta

By induction hypothesis,
vy (dsle[s]) 7 vi(d'[s]e[s])

And v, -normalisation left unchanged the application structure, so:
vy (de[s]) 77 vi(d'e[s])

vi(a) 77 vi(b)

(b) a = A(d fs] _, e[s] = b

Eta

vi(a) =vi(Md D)[s]) = vi(Md

(¢) a=(Ad)[s] — (Ae)[s]=band d €
We have : (A d)[s] - A[1r (s)]) so (A d)[s] >(:I,:|) A(d[fr (s)]) By compatibility of Eta,

A ()]) — el ()

By induction hypothesis, v, (A(d[ft (s)]) 77 vL(Ae[f (5)]))
v ((A d)[s])) 77 vi((A €)ls])
vi(a) 7 vi(b)
(@) a=dlifs] _, el =band d _ e.
d[t] is a subterm of d[t][s], so we can apply the induction hypothesis on it :
v (d[t]) 77 vi(elt])

By definition of i’ there exists g such that:

'UJ_(d[t]) — g w7 UJ_(e[t])

RR n-°2417
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By compatibility of Eta on Aj :

v (dt])[s] — gls] o= vi(e[t])[s]

Eta

As a closure is not in vy-nf, vy (d[t])[s] <(_5 3) d[t][s], so we can apply the induction
hypothesis : *

vi(vi(d[t])]s]) > va(vr(e[t])]s])

And by convergence of v :

O

In the following lemma, we prove that an internal Eta-rewrite corresponds to zero, one or several n-contractions.
We point out where the Eta-redexes are eliminated or duplicated.

Lemma 19 Let a,b € Avy, ifa __, b then v, (a) —*7> vy (b).

Eta
Proof: By noetherian induction with the well-founded order (—— 3).
vy

1. a = Ac __, "™ \¢ = b. By induction hypothesis on ¢ and compatibility of 1 on A.

Eta
2. a = cd. Idem.
3. a=c[s]

(a) c[s] _, c[t]. By next ‘lemma’.
Eta

(b) cfs] _, "ds].

Eta

As ¢ __, "*d by induction hypothesis:

Etia
vi(e) - vi(d)

By correction, Fta simulates ' on pure terms,

vy (C) __)e:ct

d —svi(d)... vi(d)
Eta YL

The Fta-rewrite are external because pure terms contain no closure. By compatibility of
Fta and vy :

0i(©)ls] " ¢fs] = v (). v (d)ls]

Eta

By zero or more applications of the external projection lemma,

v (ve(e)s]) 77 vi(d[s]) = vi(va(c)ls]) ... vi(vr(d)s)
By remark 3,
o1 (el < va(dls)
O

We extract a particular case of the previous proof:

Lemma 20 Let a,b € Avy,
if a[s] __, ""'a[t] then vy (a) —*7> vy (b).

ta

Proof: We suppose: s __, ¢

Eta
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1. @ = be and (be)[s] . (be)[t]

Eta

bels] 2 b[s]c[s] O c[s] so be]s] >(:I,:|) b[s]

As
by induction hypothesis :
Similarly,

By compatibility of 5,

By transitivity of 5,

By remark 2,
v (bels]) <> v (belt)

n

Here, the Eta-redex is duplicated. (We use twice the induction hypothesis.)
2. a = Acand (Ac)[s] _ (Ae)[t]
Eta

(Ac)ls] 2 Melt (9)]) s0 (Ae)ls] >(— 3) Alc[ft (5)])
By compatibility of Fta on Avy :

At (9)]) — Aleltr (D))

Eta

By induction hypothesis on A(c[f (s)]),
vy (A(e[f (5)])) -ﬁ v (Ale[fr (1))
By remark 2,
vL((Ac)[s]) —;7 vL((Ac)[t])

3. a = c[u] and c[u][s] __, c[u][f]

clulls] 5 v (c[u])[s] so c[u][s] > (523 valelu))ls]
By compatibility of EFta on Avy :

vi(elu])[s] — vi(e[u])[t]

Eta

By induction hypothesis on v (c[u])[s],
vi(ve(eful)ls]) = va(va(cu))lf])

By remark 3,

v (efu]ls]) = va(c[u]ft])

4. a = mand n[s] __, m[t]. The form of s is necessarily : f*(¢/). So, we suppose :n[fi(c/)] __ n[f}
. Eta Eta
*(d/)] with ¢ _, d.
RR n°2417 e
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1fe/] = 1solfe/] > 1

i. ¢ _, "d. By induction hypothesis :

FEtia
vi(e) = vi(d)

ii. ¢ __, ®®'d. By external projection lemma:
Eta

vy (e) —:7 vy (d)

As vi(L[e/]) = vi(o), .
vi(L[e/]) - vy (1[d/])

v (m(s]) —:7 vi(m[t])

Notice that we need the external projection lemma to prove the internal one (but not
conversely).

(b) m=n+1i=0and nt1[e/] _, n+1[d/
As,vi(n+1[e/])=n= UL(M [d/]), trivially:

vi(ntLfe/]) = vi(nt1[d/])

vi(m[s]) —;7 vi(m[t])
Here, we see that a Fta-redex is eliminated by the rule RVar
() m=1i=j+Land 1{fi(/(c/))] — LMt (7 (d/))]

As, v (LI (e/D]) = 1= vi (1 (17 (d/))]), trivially:
oL (1 (@) > va (U (11 (@)

vi(m[s]) = vi(mlt])

Here, we see that a Eta-redex is eliminated by the rule F'VarLift
(d) m=n+1i=j+landnt LI/ (c/)] — nt L[ (N7 (d)))]
By compatibility of Eta on Avg,

w (/) ™ @)1

nA LI (/)] 5= [ (/)] so n+ 11 (/)] > (52 3) n [t (c/)]1)

By induction hypothesis :
ve(n [t (e/)0) 7 ve(n 7 (d)I)

As v (n [/ (/)] = ve(n+ LI (c/)D),
vi(nt LI (/) = va(nt 1IN (d/)))

vi(m[s]) = vi(mlt])
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