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Categorical completeness results for thesimply-typed lambda-calculusAlex K. SimpsonLFCS, Department of Computer Science, University of Edinburgh,JCMB, The King's Buildings, Edinburgh, EH9 3JZEmail: Alex.Simpson@dcs.ed.ac.ukAbstract. We investigate, in a categorical setting, some completenessproperties of beta-eta conversion between closed terms of the simply-typed lambda calculus. A cartesian-closed category is said to be completeif, for any two unconvertible terms, there is some interpretation of thecalculus in the category that distinguishes them. It is said to have acomplete interpretation if there is some interpretation that equates onlyinterconvertible terms. We give simple necessary and su�cient conditionson the category for each of the two forms of completeness to hold. Theclassic completeness results of, e.g., Friedman and Plotkin are immediateconsequences. As another application, we derive a syntactic theorem ofStatman characterizing beta-eta conversion as a maximum consistentcongruence relation satisfying a property known as typical ambiguity.1 IntroductionIn 1970 Friedman proved that beta-eta conversion is complete for deriving allequalities between the (simply-typed) lambda-de�nable functionals in the cat-egory Set [5]. (Incidentally, this result was independently discovered by Plotkin[10], published in [11].) However, in computer science one is often interestedin interpretations in other cartesian closed categories (such as the category ofcomplete partial orders and continuous functions). It is natural to ask whethersimilar completeness results also hold in such cases. For the category of com-plete partial orders, Plotkin was able to extend Friedman's argument and showthat completeness does indeed still hold (see [9, Theorem 5.2.28]). More recently,Berger and Schwichtenberg used di�erent techniques to show that completenessholds relative to any model capable of faithfully representing certain basic oper-ations on syntax [3].In this paper we investigate such completeness questions in a categoricalsetting. As is well known, cartesian-closed categories (CCCs) provide a generalnotion of model for the simply-typed lambda calculus. We ask under what condi-tions on a CCC, C, does beta-eta conversion derive all equalities between termswhich are true in C. Actually, this question is not yet well de�ned, as di�erentinterpretations of base types in C might induce di�erent equalities. Thus thereare two natural strengths of completeness. The weaker form holds when beta-etaconversion derives all those equalities between terms which are true under all



interpretations in C. The stronger form holds when there is a single interpreta-tion that equates only terms that are beta-eta convertible. In this paper we givenecessary and su�cient conditions on C for each of the forms of completeness tohold (Theorems 1 and 2). The conditions turn out to be simple ones that are eas-ily checked in particular cases. Moreover, they show the failure of completenessto be the exception rather than the rule.As an application, we use Theorem 1 to obtain Statman's [16] characteriz-ation of beta-eta convertibility as a maximally consistent congruence relationsatisfying typical ambiguity (Theorem 3). Indeed, as will be seen, our work isclosely related to, and also heavily dependent upon, some fundamental syntacticwork of Statman. We shall discuss this dependency further in Section 7.2 PreliminariesIn order to have a tight connection between the lambda-calculus and cartesian-closed categories we work with a calculus with �nite product types. We use�; �; : : : to range over a non-empty set of base types, X, containing a distin-guished base type, 0. We use �; �; : : : to range over types which comprise: basetypes, function types � ! � , (binary) product types � � � , and a unit type 1.We work with explicitly typed variables x�; y� ; : : : although we often omit typelabels for convenience. We use U; V; : : : to range over open terms which are givenby the grammar:U ::= x� j �x�: U j U (V ) j hU; V i j �1(U ) j �2(U ) j �(where hU; V i and �i(U ) are pairing and projection for product types and � isthe canonical element of 1) subject to the usual typing constraints. Each termhas a unique type and we write U� to mean that the type of U is �. We useL;M;N; : : : to range over closed terms. We write �X for the set of closed terms.We write �!X for those terms in �X that are terms of the usual pure functionallytyped lambda-calculus (i.e. those terms all of whose subterms have types builtfrom X using !). We adopt standard conventions such as associating ! to theright and application to the left. We also use evident notation for products ofarbitrary �nite arity, their tuples and projections.We assume that the reader is acquainted with the rules for beta-eta convert-ibility, =�� , between terms of identical type (see, e.g, [1, 4, 7]). Two classes ofterms, the neutral terms and the long-�� normal forms, are de�ned by mutualinduction. A term is neutral if it has one of the following forms: x�; or U (V )where U is neutral and V is in long-�� normal form; or �i(U ) where U is neutral.A term is in long-�� normal form if it has one of the following forms: U� whereU is neutral (note the restriction to a base type); or �x�: U where U is in long-��normal form; or hU; V i where U and V are both in long-�� normal form; or �.The important fact about long-�� normal forms is that, for every term U , thereis a unique long-�� normal form, ��(U ), such that U =�� ��(U ) (see [1, 4, 7]).By this characterization it is clear that =�� between terms in �X is conservativeover the usual beta-eta convertibility between terms in �!X .



Let C be a cartesian-closed category with distinguished: terminal object, 1;binary products, A�B; and exponentials, BA. (We do not assume that C has all�nite limits.) An interpretation of the calculus in C is determined by a function [[�]]fromX to objects of C. This extends (using the CCC structure of C) to interpretarbitrary types � as objects [[�]] of C. Then a closed term M� is interpreted as amorphism [[M ]] 2 C(1; [[�]]). (The interpretation is de�ned using a more generalinterpretation of open terms, U�, as morphisms from objects interpreting thecontext of free variables in U to [[�]].) We write �X ! C for the class of allinterpretations of the calculus in C. The soundness of beta-eta conversion inCCCs says that M =�� N implies that, for all [[�]] : �X ! C, it holds that[[M ]] = [[N ]]. We shall be interested in when the converse implication holds, andrelated questions.Before considering such completeness questions we consider the categoricalformulation of what an interpretation of the lambda-calculus in C is (see [8]).This formulation is in terms of cartesian-closed functors (CC-functors), which arethose functors between CCCs that preserve the cartesian-closed structure \onthe nose".1 Let FX be the free cartesian-closed category generated by the setof objects X. To give a concrete description, FX is the category whose objectsare types and whose morphisms from � to � are the closed long-�� normalforms of type � ! � . The identities and composition are obtained as the long-�� normal forms of the evident lambda-terms. The freeness of FX means thatany function [[�]] from X to objects of C extends to a unique CC-functor, F ,from FX to C, where \extends" means that F (�) = [[�]]. Further, if we write[[�]] for the interpretation of the lambda-calculus induced by the function on X,it holds that, for all M�, [[M ]] = F (��(�x1:M )) 2 C(1; [[�]]) and, for all long-�� normal forms M�!� that F (M ) 2 C([[�]]; [[� ]]) is the evident exponentialtranspose of [[M ]] 2 C(1; [[� ]][[�]]). Thus interpretations of the lambda-calculus inC are essentially equivalent to CC-functors from FX to C.3 The Completeness TheoremsWe now de�ne the two forms of completeness we shall be investigating. First theweaker notion, which is the direct converse to the soundness statement above.We say that C is complete (for =��)2 if, for all M�; N�,M =�� N i� for all [[�]] : �X ! C, [[M ]] = [[N ]].This concept has a natural categorical formulation.Recall that a class of functorsfrom a category A to a category B is collectively faithful if, for all A f�! B andA g�! B in A, whenever it holds that F (f) = F (g) for all functors F in the1 The whole discussion here could easily be generalized to deal with functors preservingthe structure up to isomorphism. Such functors are categorically more natural, butfor our purposes the simpler \on the nose" functors su�ce.2 It would perhaps be preferable to say that =�� is complete for C, however this is notso easily shortened.



class, then f = g. Thus, using the equivalence between interpretations and CC-functors, C is complete if and only if the class of CC-functors from FX to C iscollectively faithful.For the stronger notion we require completeness relative to a single interpret-ation rather than the class of all interpretations. We say that an interpretation[[�]] : �X ! C is complete (for =��) if, for all M�, N�,M =�� N i� [[M ]] = [[N ]]:We say that C has a complete interpretation (for =��) if there exists a completeinterpretation [[�]] : �X ! C. Again these concepts have natural categoricalreformulations. An interpretation is complete if and only if the correspondingCC-functor from FX to C is faithful. Similarly, C has a complete interpretationif and only if there exists a faithful CC-functor from FX to C.In this paper we characterize the conditions under which C is complete (The-orem 1) and under which C has a complete interpretation (Theorem 2). It is alsointeresting to consider the question of characterizing when a given interpretation[[�]] : �X ! C is complete. This problem is of a di�erent nature as it no longerconcerns a property intrinsic to the category C. In the case that X = f0g, such acharacterization (essentially due to Statman) will be obtained in Section 4 (Co-rollary 4). We do not have such a result for arbitrary X. Some of the problemsin obtaining one will be considered in Section 6.Before giving the characterizations, we consider some motivating examples.First, the category Set has a complete interpretation. Indeed any interpretationmapping each base type to an in�nite set is complete. This result is provedexplicitly in [4], but it is closely related to Friedman's famous completenesstheorem [5]. (There is a detailed discussion of the di�erences in [4].) It is clearthen that Set is complete, as in general the existence of a complete interpretationimplies completeness. The converse is not true. An example that is complete butwhich has no complete interpretation is the category of �nite sets, FinSet. Thecompleteness of FinSet is proved explicitly in [13], but it is closely related toTheorem 2 of [15] (a result originally due to Plotkin [10]), which is basically a�nite model property for beta-eta conversion. The non-existence of a completeinterpretation in FinSet was essentially observed by Friedman [5]. The reasonis simply that there exist types with an in�nite number of equivalence classes ofclosed terms modulo =�� , for example (0! 0)! 0! 0. Lastly, there do indeedexist cartesian-closed categories that are not complete. Recall that a preorder isa category with at most one morphism in each hom-set. It is obvious that anycartesian-closed preorder (for example, any Heyting algebra) is not complete.The �rst characterization says that the preorder observation above is theonly obstacle to completeness.Theorem 1 C is complete if and only if it is not a preorder.So, perhaps surprisingly, completeness turns out to be merely a question of thenon-triviality of the hom-sets of C.



We have seen that completeness is determined by the simple cardinality con-dition that there exists a hom-set with cardinality � 2. Given that the counter-example to a complete interpretation in FinSet is also via a cardinality argu-ment, one might wonder whether C has a complete interpretation if and only ifit has an in�nite hom-set. This, however, is not the case. For a counterexampletake the full subcategory of the co-Kleisli category of the !�� comonad on Setdetermined by those objects that are the image of �nite sets under the inclusionfrom Set to the co-Kleisli category. We call this category FinSet!��. (Moreconcretely, FinSet!�� has �nite sets for objects, and the morphisms from X toY are those functions from ! � X to ! � Y that preserve the �rst componentof pairs.) Theorem 2 below gives an elementary way of checking that there isindeed no complete interpretation in FinSet!��. A more abstract reason forthis failure is that any CC-functor from FX to FinSet!�� necessarily factorsthrough the inclusion fromFinSet. This can be proved using the universal prop-erty of the co-Kleisli category as a polynomial category (see [8]) together withthe initiality of FX . We omit the argument.Nevertheless, a closely related condition does succeed in characterizing theexistence of a complete interpretation. We say that an endomorphism A a�! Ais non-repeating if all its iterates are distinct (i.e. if ah = ak implies h = k).Theorem 2 C has a complete interpretation if and only if it contains a non-repeating endomorphism.Note that it is not apparent from the de�nitions of the two forms of completenessthat they are independent of the choice of X. Theorems 1 and 2 show this to bethe case.4 Proofs of Theorems 1 and 2We shall prove Theorem 2 �rst and then derive Theorem 1 as a consequence.Throughout the proofs we move freely between categorical formulations in termsof CC-functors and syntactic formulations in terms of interpretations. We alsomove freely between the interpretations of terms as morphisms in C(1; [[� ]][[�]])and their exponential transposes as morphisms in C([[�]]; [[� ]]).For the left-to-right implication of Theorem 2, suppose that [[�]] is a completeinterpretation. Not surprisingly, a non-repeating endomorphism is given by asuccessor function on the interpretation of the Church numerals. Speci�cally,the endomorphism is:3[[(0! 0)! 0! 0]] [[�x(0!0)!0!0: �y0!0: �z0:(x(y)(y(z)))]]- [[(0! 0)! 0! 0]](making use of an exponential transpose as discussed above). It is non-repeatingbecause if its n-th iterate is composed with1 [[�y0!0: �z0:z]]- [[(0! 0)! 0! 0]]3 This and other \diagrams" were prepared using Paul Taylor's Latex diagram macrospackage.



then one obtains:1 [[�y0!0: �z0:yn(z)]]- [[(0! 0)! 0! 0]];and, by completeness, it is clear that the latter di�ers for distinct values of n.Incidentally, here we have shown that it is a necessary condition for [[�]] to becomplete that the above endomorphism is non-repeating. In Section 6 we showthat this is not in general a su�cient condition, even for interpretations of �f0g.For the converse implication, given a non-repeating endomorphism in C, wemust construct a faithful CC-functor from FX to C.Proposition 1 There is a faithful CC-functor from FX to Ff0g.Proof. The CC-functor is that determined by the unique function from Xto f0g. This maps any X-type, �, to the f0g-type, �, obtained by replacingevery base type � with 0. For any M� 2 �X de�ne M to be the �f0g-termobtained by replacing every variable x� in M with x�. Clearly M has type �.For faithfulness it is enough to show that, for any two distinct long-�� normalforms M�; N� 2 �X , it holds that M and N are distinct long-�� normal formsin �f0g. This is done by a straightforward induction on the structure of long-��normal forms. �Thus it remains to �nd a faithful CC-functor fromFf0g to C. For this we appeal toa deep syntactic result about the (pure functional) simply-typed lambda-calculusdue to Statman [15, Theorem 3]. De�ne > to be the type (0! 0! 0)! 0! 0.Proposition 2 (Statman) For all M�; N� 2 �!f0g, it holds that M =�� N ifand only if, for all L�!>, L(M ) =�� L(N ).A detailed proof can be found in [12]. Incidentally, in [14, Proposition 1], Statmanshows that, for each �, there exists L�!>, such that M =�� N if and only ifL(M ) =�� L(N ), but we do not need this stronger result here.Proposition 3 For all M� ; N� 2 �f0g, it holds that M =�� N if and only if,for all L�!>, L(M ) =�� L(N ).Proof. Left-to-right is trivial. For the converse suppose that M� 6=�� N�. Itis easily shown that � is isomorphic (in Ff0g) to a �nite product �1 � : : :� �n(where n � 0) of types �i built from 0 using!. We write �0 for this product typeand I�!�0 for the lambda-term giving (one half of) the isomorphism. ClearlyI(M ) 6=�� I(N ), so h�1(I(M )); : : : ; �n(I(M ))i 6=�� h�1(I(N )); : : : ; �n(I(N ))i.Therefore there is some i for which �i(I(M )) 6=�� �i(I(N )). So ��(�i(I(M ))) 6=��(�i(I(N ))). But these terms are both normal forms of type �i, and hencethey are terms of �!f0g (because all subterms of a normal form have subtypes ofits type). So, by Proposition 2, there exists L�i!> such that L(�i(I(M ))) 6=��L(�i(I(N ))). But then �x�: L(�i(I(x))) is the term of type � ! > that we aretrying to �nd. �



Corollary 4 An interpretation, [[�]] : �f0g ! C, is complete if and only if for allM>, N> it holds that [[M ]] = [[N ]] implies M =�� N .Proof. Left-to-right is trivial. For the converse, suppose that for all M>, N>it holds that [[M ]] = [[N ]] implies M =�� N . Suppose that [[M�]] = [[N�]]. Bythe \compositionality" of [[�]] we have, for all L�!>, that [[L(M )]] = [[L(N )]].Whence, by the assumption, for all L�!>, we have L(M ) =�� L(N ). So, byProposition 3, M =�� N . Thus [[�]] is indeed complete. �The corollary gives a necessary and su�cient condition for an interpretation of�f0g in C to be complete. We use this to obtain a useful su�cient condition. Avery weak natural number object in C is an object B together with morphisms:1 0 - B s - B � +� � B � Bsuch that, for allm, n, it holds that m + n = +�hm;ni and m� n = ��hm;ni,where we write n for the \numeral" morphism sn � 0.4 A very weak naturalnumber object is said to be faithful if all the numerals are distinct (i.e. if m = nimplies m = n).The next lemma generalizes the completeness theorem that appears in Bergerand Schwichtenberg [3] (although they work in a non-categorical setting).Lemma 5 An interpretation, [[�]] : �f0g ! C, is complete if [[0]] is a faithful veryweak natural number object.Proof. Let B be [[0]]. Let � be the binary function on natural numbers de�ned by�(m;n) = (m+n)2+m+1. By simple composition using the very weak naturalnumber morphisms, there is a morphism B � B ��! B such that � � hm;ni =�(m;n). We shall use this to show that the condition of Corollary 4 is satis�ed.First, it is routine to check that the closed long-�� normal forms of type >have the form �p0!0!0: �l0: t where t is given by the grammar:t ::= l j p(t1)(t2):Now we de�ne inductively a numerically valued function, (�)�, on the set of sucht by: l� = 0;(p(t1)(t2))� = �(t�1; t�2):It is easily seen that t�1 = t�2 implies t1 and t2 are identical (as � is an injectivefunction from N �N to N+).4 Note that there is no requirement that + and � satisfy any of the usual algebraicidentities.



Now, for any t, we have a morphism [[�p: �l: t]] 2 C(1;>) and we note theevident corresponding B(B�B) � B ~t�! B. We also note the exponential trans-pose 1 ~��! B(B�B) of �. It is easily checked that the composite:1 h~�; 0i- B(B�B) � B ~t - Bis equal to t�. So if [[�p: �l: t1]] = [[�p: �l: t2]] then t�1 = t�2 and thus t1 and t2 areidentical (as the very weak natural number object is faithful).To complete the proof, suppose that [[M>]] = [[N>]]. Suppose that ��(M ) =�p: �l: t1 and ��(N ) = �p: �l: t2. Then, by the above, t1 and t2 are identical soM =�� N . Thus the condition of Corollary 4 is indeed satis�ed. �Note that the condition of the lemma is not necessary for [[�]] to be complete. Itfails, for example, for the evidently complete \identity" interpretation of �f0g inFf0g where there is no morphism from 1 to [[0]] (and the only endomorphism on[[0]] is the identity).Let A a�! A be a non-repeating endomorphism in C. Let B be the object(AA)(AA). We use the internal lambda-calculus of C to de�ne arrows:0 = 1 �fAA :�aA:a- Bs = B b 7! �fAA :�aA:b(f)(f(a))- B+ = B �B hb; b0i 7! �fAA :�aA:b(f)(b0(f)(a))- B� = B �B hb; b0i 7! �fAA :�aA:b(b0(f))(a)- Bmaking use of standard encodings of successor, addition and multiplication onChurch numerals. It is clear that these morphisms show B to be a very weaknatural number object. To see that it is faithful note that, by exponential trans-pose, each n gives a morphism AA ~n�! AA and a gives a morphism 1 ~a�! AA. Itis easily seen that the exponential transpose of the composite ~n � ~a is A an�! A.Thus the numerals must all be distinct as otherwise would contradict a being anon-repeating endomorphism.It now follows from Lemma 5 that the interpretation [[�]] : �f0g ! C determ-ined by setting [[0]] = B is complete. Together with Proposition 1, this completesthe proof of Theorem 2.We now turn to Theorem 1. The left-to-right implication is trivial. For theconverse, suppose that C is not a preorder. We shall show that there is a faithfulCC-functor, F , from FX to C! (the countably in�nite power of C), which isindeed a CCC. Given such an F , a collectively faithful set of CC-functors fromFX to C is f�i � F j i 2 !g where �i is is the i-th projection from C! to C (it iseasily checked that the projections are CC-functors), from which it is clear thatthe class of all CC-functors is collectively faithful.To obtain F we use Theorem 2, by which it su�ces to �nd a non-repeatingendomorphism in C!. As C is not a preorder, suppose that f and g are two



distinct morphisms in C(A;B). For n � 1 de�ne Bn = BBn where Bn is then-fold product of B with itself. For i 2 f0; : : : ; n� 1g de�ne:in = 1 �cBn : �i(c)- Bnsn = Bn d 7! �cBn : d(h�2(c); : : : ; �n(c); �1(c)i)- Bn:Clearly sn�in = jn where j is i+1 modulo n. We now show that 0n; : : : ; (n� 1)nare all distinct. Let Bn ~in�! B be the exponential transpose of in. It is clear thatthe composite: A h jz }| {f; : : : ; f; g; : : : ; gi- Bn ~in - Bis equal to f if i � j and is equal to g otherwise. This shows that j > i impliesin 6= jn (as f 6= g), so 0n; : : : ; (n� 1)n are indeed all distinct. It is now clearthat (B1; B2; : : :) (s1; s2; : : :)- (B1; B2; : : :)is a non-repeating endomorphism in C!, as required.5 Typical AmbiguityIn this section we apply Theorem 1 to obtain a syntactic characterization of =��as, in a sense to be de�ned below, a maximally consistent congruence relationsatisfying typical ambiguity (Theorem 3). For the calculus �!f0g, this result isoriginally due to Statman [16]. Although the theorem for �X is easily derivedfrom Statman's result for �!f0g, it is an interesting application of our complete-ness results to obtain it instead as a consequence of Theorem 1. As a matter offact, we shall also see that one can turn the tables and derive Theorem 1 fromTheorem 3. Thus, in some sense, Theorem 1 is a semantic counterpart to thesyntactic Theorem 3.First we introduce the necessary notation to state Theorem 3. Given a func-tion � from X to types, we write �[�] for the type obtained by simultaneouslyreplacing each occurrence of a base type � in � with �(�). Similarly, we writeM [�] for the term obtained by replacing all variables x� in M with x�[�]. IfM has type � then M [�] has type �[�]. Such a substitution of types clearlycorresponds to a CC-functor from FX to itself.Let � be a well-typed equivalence relation on �X (i.e. one for which M � Nimplies M and N are of identical type) such that M =�� N implies M � N .We say that � is a congruence if M� � N� implies that, for all L�!� , L(M ) �L(N ) (the other properties of a congruence relation follows from this because �contains =��). We say that � is consistent if, for some �, there exist two terms,M� and N�, such that M 6� N . We say that � satis�es typical ambiguity if, forall type-valued functions, �, on X, it holds that M � N implies M [�] � N [�].



Theorem 3 If � is a consistent congruence relation containing =�� and �satis�es typical ambiguity then M � N if and only if M =�� N .To prove the theorem, suppose that � satis�es the assumptions.We constructa category FX=� as follows. The objects of FX=� are types. The morphisms from� to � are the equivalence classes of the set of closed terms of type � ! �modulo �, and we write [M ] for the equivalence class of M . The identities andcomposition are evident. It is easily checked that FX=� is a CCC, using thefact that � extends =�� and the congruence property of �. Further, by theconsistency property, FX=� is not a preorder.Lemma 6 Given any [[�]] : �X ! FX=�, de�ne � from X to types by �(�) = [[�]].Then [[M ]] = [�x1:M [�]] in FX=� (1; �[�]).This is proved by induction on the structure ofM . The induction, which involvesgoing through interpretations of open terms, is routine.Now suppose that M � N . Let [[�]] be any interpretation in FX=�, and de�ne� as above. By typical ambiguity, M [�] � N [�]. Whence, by the congruenceproperty, �x1:M [�]� �x1: N [�]. So it follows from the lemma that [[M ]] = [[N ]].We have shown that, for any [[�]], we have that [[M ]] = [[N ]]. Thus Theorem 1implies that M =�� N . This proves Theorem 3.As commented above, one can also derive Theorem 1 from Theorem 3. To thisend, suppose that C is not a preorder. De�ne a well-typed equivalence relation,�, by: M � N i� for all [[�]] : �X ! C, [[M ]] = [[N ]].By the soundness of =�� , we have that � contains =��. Theorem 1 says thatM =�� N if and only ifM � N . To show this we need only verify that � satis�esthe conditions of Theorem 3. The congruence property is straightforward (itholds because of the \compositionality" of [[�]] : �X ! C). Consistency followsfrom C not being a preorder, as it is easy to �nd an interpretation such that[[�x0: �y0: x]] 6= [[�x0: �y0: y]]. It remains to show typical ambiguity. First we notethe lemmabelow, which is proved by a straightforward induction on the structureof M (again involving interpretations of open terms).Lemma 7 Given any � from X to types and interpretation [[�]] : �X ! C, let[[�]]0 be the interpretation determined by [[�]]0 = [[�(�)]]. Then [[M [�]]] = [[M ]]0.Suppose that M � N . Let [[�]] be any interpretation. By the lemma, we havethat [[M [�]]] = [[M ]]0 and [[N [�]]] = [[N ]]0. Now M � N , so by the de�nition of �we have that [[M ]]0 = [[N ]]0. Therefore [[M [�]]] = [[N [�]]]. So M [�] � N [�], and �does indeed satisfy typical ambiguity.The derivation of Theorem 1 from Theorem 3, gives a proof of Theorem 1not involving Theorem 2. However, Statman's proof of Theorem 3 (for �!f0g) alsorelies on the reduction of =�� to the single type > (Proposition 2), on which ourproof of Theorem 2 was based. It is an interesting fact that an alternative directproof of Theorem 3 is possible using a typed version of the B�ohm-out technique[2, Ch. 10]. The details are beyond the scope of this paper.



6 Complete InterpretationsIn this section we consider the problem of obtaining a characterization of whena given interpretation is complete. Corollary 4 already characterizes when aninterpretation [[�]] : �f0g ! C is complete. We consider whether this characteriz-ation can be improved in a natural way. We also consider whether it generalizesto interpretations of �X for an arbitrary X. Although the results we obtainare negative, they do illustrate well some of the more delicate aspects of thecompleteness questions.One natural question is whether Corollary 4 can be improved by simplifyingthe type of M and N from > to (0 ! 0) ! 0 ! 0. Below, we use logicalrelations to construct a model answering this questions in the negative. Thisnegative answer justi�es the comment made at the end of our proof of the left-to-right implication of Theorem 2. In general it is an insu�cient condition foran interpretation [[�]] : �f0g ! C to be complete that the interpretation of thesuccessor function on Church numerals be a non-repeating endomorphism.The category R3 is de�ned as follows. Its objects A are pairs (jAj; RA) wherejAj is a set andRA is a ternary relation on jAj such thatRA(a; a; a) for all a 2 jAj.The morphisms from A to B are those functions f : jAj ! jBj such that, for alla1; a2; a3 2 jAj, it holds that RA(a1; a2; a3) impliesRB(f(a1); f(a2); f(a3)). Thiscategory is cartesian closed with: j1j = f;gwhere R1(;; ;; ;) holds; and jA�Bj =jAj � jBj with RA�B(ha1; b1i; ha2; b2i; ha3; b3i) if and only if RA(a1; a2; a3) andRB(b1; b2; b3); and jBAj = R3(A;B) with RBA(f1; f2; f3) if and only if, for alla1; a2; a3 2 jAj, it holds that RA(a1; a2; a3) implies RB(f1(a1); f2(a2); f3(a3)).The details are easily checked. Let A be the object of R3 de�ned by jAj = !and RA(l;m; n) if and only if either l = m = n or l + 1 = m = n� 1.De�ne an interpretation [[�]] : �f0g ! R3 by setting [[0]] = A. We claim that,for all M (0!0)!0!0; N (0!0)!0!0, it holds that [[M ]] = [[N ]] implies M =�� N .Note that the closed long-�� normal forms of (0 ! 0) ! 0 ! 0 have theform �s: �z: sn(z) for n � 0. As the function n 7! n + 1 is in R3(A;A), andhence in jAAj, it is easily seen that any two distinct long-�� normal forms of(0! 0)! 0! 0 get interpreted as di�erent functionals in [[(0! 0)! 0! 0]].The claim follows.Despite completeness for the type (0 ! 0) ! 0 ! 0, it turns out that [[�]]is not complete. By Corollary 4, we know that the incompleteness must alreadyarise for terms of type >.Lemma 8 A function f : A � A ! A is in R3(A � A;A) if and only if, forsome k � 0, it holds that f is one of: hm;ni 7! k; or hm;ni 7! m + k; orhm;ni 7! n + k.Proof. The right-to-left implication is easily checked. For the converse, supposethat f 2 R3(A�A;A). Set k = f(0; 0). We have that: RA�A(h0; 0i; h0; 1i; h0; 2i),and RA�A(h0; 0i; h1; 0i; h2; 0i), and RA�A(h0; 0i; h1; 1i; h2; 2i). So there are ap-parently �ve choices for the four values (f(0; 0); f(0; 1); f(1; 0); f(1; 1)) namely:(i) (k; k; k; k); (ii) (k; k; k; k+ 1); (iii) (k; k; k+ 1; k+ 1); (iv) (k; k+ 1; k; k+ 1);(v) (k; k+ 1; k+ 1; k+ 1).



However, (ii) and (v) are impossible.We show this for (v). Clearly (v) requiresthat f(0; 2) = k+2 and, because RA�A(h1; 0i; h1; 1i; h1; 2i), that f(1; 2) = k+1.But then, as RA�A(h0; 2i; h1; 2i; h2; 2i), there is no possible value for f(2; 2).We claim that for the other cases: (i) determines f to be hm;ni 7! k; (iii)determines f to be hm;ni 7! m+k; and (iv) determines f to be hm;ni 7! n+k.We show this for (iv). Clearly (iv) determines that f(2; 0) = k and that f(2; 1) =k + 1. Now a simple inductive argument shows, for all m, that f(m; 0) = k andf(m; 1) = k+1. But then it is clear that f(m; 2) = k+2, and another inductiveargument shows that indeed f(m;n) = n+ k. �It is now straightforward to show that, for example, the two distinct long-��normal forms, �p: �l: p(p(l)(l))(l) and �p: �l: p(p(l)(p(l)(l)))(l), of type >, areinterpreted as the same functional in [[>]] (as are any two \trees" such that bothleftmost branches have the same length, h say, and both rightmost brancheshave length k say). Thus we have shown that completeness cannot be reducedto completeness for the single type (0! 0)! 0! 0.Another direction in which one might hope to improve Corollary 4 would beto characterize the complete interpretations of �X for arbitrary X. One wouldprefer a characterization that is both simple and useful (like Corollary 4), butunfortunately we do not have one. Here we content ourselves with showing thata most na��ve attempt at a generalization of Corollary 4 fails. Speci�cally, de�ne>� to be the type (� ! � ! �) ! � ! �. We show that it is not necessarilythe case that [[�]] : �X ! C is complete when, for all � 2 X, for all M>� ,N>� , it holds that [[M ]] = [[N ]] implies M =�� N . For a counterexample takeX = f0; 00g and C = Set � Set. De�ne [[0]] = (!; ;) and [[00]] = (;; !). By thecompleteness of �X in Set we have that, for all � 2 X, for all M>� , N>� , itholds that [[M ]] = [[N ]] implies M =�� N . However, one sees that [[0 ! 00]] isinterpreted as (;;1) and so, for example, the two distinct terms (modulo =��)of (0! 00)! (0! 00)! (0! 00) are interpreted as the same (unique) point of[[(0! 00) ! (0 ! 00)! (0 ! 00)]]. It follows that [[�]] is not complete. We leavethe �nding of a useful characterization of complete interpretations of �X as anopen question. A related question is to �nd the simplest set of types to which=�� can be reduced in the manner of Proposition 2.7 DiscussionIt is clear that the work presented in this paper is heavily dependent on oldresults of Statman. In particular we use Theorem 3 of [15] (our Proposition 2)in a critical way, and our Theorem 2 is not too di�cult a consequence of it.Further, we saw in Section 5 that Theorem 1 could also be derived as a fairlystraightforward consequence of Statman's typical ambiguity theorem. However,although our main results follow without too much e�ort from Statman's work,the elegance and generality of our theorems makes them compelling semanticalternatives to Statman's syntactic results. We also hope that the present paperwill have the e�ect of drawing attention to Statman's results, whose implicationsdeserve to be better known.



Two departures from Statman's work are that we work with a calculus withunit and product types and that we allow more than one base type. The formerdi�erence is overcome using the characterization of =�� in terms of long ��-normal forms, which until quite recently was a �eld of active research (see, e.g.,[1, 4, 7]). The latter di�erence turns out to be irrelevant in the case of Theorems1 and 2 (as is shown by Proposition 1). In Section 6 we saw that this di�erence isnon-trivial for the question of characterizing when an interpretation is complete.It is interesting to compare our work with Statman's own semantic applica-tion of his syntactic results. In [17] he states his important 1-Section Theoremgiving necessary and su�cient conditions for an interpretation of �!f0g in a Hen-kin model to be complete. (See [12] for a detailed discussion and proof of thetheorem.) The 1-Section Theorem is closely related to our Corollary 4, but it goesfurther, reducing completeness at the second-order type > to a property of ele-ments of �rst-order types in a countable direct-product of the model. However, indoing so, the 1-Section Theorem makes essential use of the \well-pointedness"of Henkin models. There is a natural analogue of the 1-Section Theorem forwell-pointed cartesian-closed categories, but not for general cartesian-closed cat-egories. In this paper we have preferred not to consider results that apply onlyto well-pointed categories. After all, one of the bene�ts of the categorical settingis that non-well-pointed structures (such as closed-term categories) are handledalongside (the more set-theoretic) well-pointed structures in a uniform semanticframework. Note that our derivation of Theorem 3 from Theorem 1 made essen-tial use of the applicability of our results to non-well-pointed categories.One question is whether the results can be generalized to give completenessresults for �X augmented with typed constants. Categorically, one then considersCC-functors from the free cartesian closed category generated by a graph. �Cubri�cused Friedman's techniques to show that there is a faithful CC-functor from anysuch free CCC to Set [4]. Unfortunately, our proofs do not extend in this way,as Proposition 2 fails once constants are added to the syntax.Another interesting question is whether the purely categorical formulationsof Theorems 1 and 2 extend to other kinds of categories with structure. It seemslikely that both results will generalize to bicartesian closed categories. The mainobstacle in proving such a generalization is to get a good handle on equality inthe internal language. It is already di�cult to generalize long-�� normal forms(although see [6] for progress on this question), let alone the deep syntacticresults of Statman. On the other hand, for recursion theoretic reasons, it is clearthat our results do not generalize to cartesian-closed categories with a naturalnumbers object.AcknowledgementsI thank Aurelio Carboni, Eugenio Moggi and Pino Rosolini for useful feedbackwhen I presented this work in Genoa. This research was carried out under anEPSRC postdoctoral fellowship.
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