
Composite Events in Chimera

Rosa Meo� Giuseppe Psaila� Stefano Ceri�

� Politecnico di Torino� Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi� �� � I������ Torino� Italy

� Politecnico di Milano� Dipartimento di Elettronica e Informazione
Piazza L� Da Vinci� �� � I������ Milano� Italy

rosimeo�polito�it� psaila�ceri�elet�polimi�it

Abstract� In this paper� we extend event types supported by Chimera�
an active object�oriented database system� Chimera rules currently sup�
port disjunctive expressions of set�oriented� elementary event types	 our
proposal introduces instance�oriented event types� arbitrary boolean ex�
pressions 
including negation�� and precedence operators� Thus� we in�
troduce a new event calculus� whose distinguishing feature is to support
a minimal set of orthogonal operators which can be arbitrarily composed�
We use event calculus to determine when rules are triggered	 this is a
change of each rule�s internal status which makes it suitable for being
considered by the rule selection mechanism�
The proposed extensions do not a
ect the way in which rules are pro�
cessed after their triggering	 therefore� this proposal is continuously evolv�
ing the syntax and semantics of Chimera in the dimension of event com�
position� without compromising its other semantic features� For this rea�
son� we believe that the proposed approach can be similarly applied for
extending the event language of other active database systems currently
supporting simple events or their disjunction�

� Introduction

Active database systems provide tight integration of Event�Condition�Action
�ECA� rules within a database system� Such a tight integration is normally
achieved by reusing database system components for implementing conditions
�database predicates or queries� and actions �database manipulations� often em�
bedded within a procedural component�� In general� when a rule is selected for
execution �or triggered�� then its condition is evaluated �or considered�� and
if the condition is satis�ed� then the action is immediately executed �� Thus�
the condition�action �CA� components of an active database have a simple and
uniform behavior� which is common to most active databases�

Instead� event type speci�cation� evaluation� and coupling to conditions and
actions have to be designed and implemented speci�cally for each active database
system� Thus� it is not surprising that the notions of elementary event type� of
event type composition� and of binding between event occurrences and the CA

� An exception is HiPAC ��� which supports several coupling modes between conditions
and actions�



components are quite di�erent in each active database� and such di�erences are
responsible for most of the diversity of active databases�

Most active databases recognize just data manipulation operations �such as
insert� delete� and update� as event types� The proposed SQL� standard� cur�
rently under development by ANSI and ISO� associates to each rule just one
event type� this can be considered as the simple extreme of a spectrum of so�
lutions 	
��� Most relational database products supporting active rules �called
triggers� associate each of them to a disjunction of event types whose instances
are relative to the same table 	
��� this solution is also used by Starburst 	
���
Postgres 	

�� and Chimera� an active object�oriented database prototype de�
veloped at Politecnico di Milano in the context of the IDEA Esprit Project
	�� ��� More complex event calculus are supported by active database prototypes
�see Section 
�
�� In these approaches� rules are associated to event expressions
which normally include generic boolean expressions� precedence operations� and
explicit time references�

In all active rule systems� event instances cause rules to change an internal
state� the corresponding state transition is called triggering of the rule� Once a
rule is triggered� active rule systems react in several ways� When multiple rules
are triggered at the same time� a rule selection mechanism determines which of
them should be considered �rst� this mechanism may be in�uenced by priorities
which are statically associated to rules� In addition� the rule selection may occurr
immediately after the triggering operation or be deferred to some later point in
transaction execution �such as the commit time�� With immediate execution� it is
possible to further identify the cases of rules executing before� after� or instead of

the operation generating the triggering event occurrence� Finally� the triggering
and execution of rules can be repeated for each tuple or object a�ected by an
operation �row�level granularity in 	
��� or instead relate to the overall set of
tuples or objects manipulated by means of the same operation �statement�level

granularity in 	
����
Due to all these alternatives� active rule systems present themselves with

a variety of possible behaviors �a thorough comparative analysis of semantics
supported by active rule systems is presented in 	
���� In order to control the
introduction of complex events in Chimera� and therefore the increase of semantic
complexity due to this extension� we have strictly followed some design principles�

� We have de�ned the event calculus by means of a minimal set of orthogonal
operators�

� The semantics of the event calculus is given simply by de�ning the conditions
upon which rules having as event type a complex event calculus expression
become triggered� detriggering occurs when a rule is selected for considera�
tion and execution� No other state transitions characterize the internal state
of each rule�

� The event calculus extension does not a�ect the way in which rules are pro�
cessed after their triggering� therefore� this proposal continuously evolves the
syntax and semantics of Chimera in the dimension of event type composition�
without compromising its other semantic features�



We believe that these design principles are general and should drive the
design of event calculus for active databases� therefore� we also believe that
the proposed approach extends naturally to active database systems currently
supporting simple event types or their disjunction�

The paper is organized as follows� Section 
 reports the current fundamental
Chimera features� Section � introduces the proposed extension� while Section �
formally gives its semantics� Section � deals with implementation issues� �nally�
Section � draws the conclusions�

��� Related work

There exist several Active Database Systems that have been provided with a
language for event type composition� these languages are presented in 	
��� 	���
	

�� 	
��� 	

�� The way all these proposals deal with composite event types is
quite di�erent depending on the particular systems� in fact� though they have
similar sets of operators� di�erent semantics have been proposed� In the rest of
the section� we brie�y discuss the most important proposals�

Ode 	
�� has a rich event language based on a small set of primitive opera�
tors� These operators deal with event occurrences in a set�oriented way� using set
operations like intersection and complement� they produce subsets of the prim�
itive event occurrence history� considered as an ordered set based on the event
occurrence time�stamps� For example� event conjunction is the set of event oc�
currences that satisfy both component event types �and it produces a not null
result provided that the two event occurrence sets corresponding to the two
operands have at least one common element�� event negation is the complement
with respect to the whole history� relative of an event type A with respect to
type B is the set of occurrences of type B subsequent to the �rst occurrence
of type A� Other operators� like event disjunction� temporal precedence �prior��
strict sequence �sequence�� etc�� are derived from the primitive operators� The
user is allowed to specify conditions on event properties directly in the compo�
sition expressions� i�e� in the event part of the rule� Since the expressive power
is that of regular expressions� composite events are checked by means of a �nite
state automata�

HiPAC 	�� makes available data manipulations events� clock events and ex�

ternal events� Clock events can be speci�ed as absolute� relative and periodic�
Composite event types are de�ned with the use of the following operands� dis�
junction� sequence �temporal precedence of event signals� and closure �event
signals occurred one or more times��

Snoop 	�� interprets an event E as a boolean function de�ned on the time
domain that is true at time t if an event occurrence of that event type occurs at
time t� Event conjunction and disjunction are obtained by the boolean algebra
applied on their operands� Negation of an event E is de�ned as the absence of
an occurrence of E in a closed interval determined by two events E� and E��
While the aperiodic operator determines the presence of all the occurrences of an
event E between two subsequent occorrences of E� and E�� the periodic operator
is equivalent to a periodic event generator� given a time period tp� it is true at



instants separated each other by tp� starting from an occurrence of an event
E� and stopping at the subsequent occurrence of an event E�� The cumulative

versions of these two last operators are de�ned as �accumulating� respectively
occurrences of E and time instants� Depending on the application� it is possible
to de�ne di�erent contexts in order to let a rule be triggered in correspondance
of either all the possible combinations of primitive event occurrences matching
the event expression or only some of them�

Samos 	

� has a rather rich language as well� which provides the usual event
disjunction� conjunction and sequence �ordered conjunction�� A Times operator
returns the point in time when the n�th occurrence of a speci�ed event is ob�
served in a given time interval� The negation is de�ned as the absence of any
occurrence of an event type from a given time interval� and occurs at its end
point� A star ��� operator returns the �rst occurrence of a given event type�
regardless of the number of occurrences� Samos allows information passing from
the event to the condition part of the rule by means of parameters like the iden�
ti�er of the transaction in which a given event occurred �c tid�� or the point in
time of the event occurrence �occ point�� Composite event parameters are de�
rived� disjunction and star ��� receive the parameters of the component event
occurrences� conjunction and Times their union� A keyword same speci�es that
the component events of a composition must have the same parameters�

The Re�ex system 	
�� is an active database system designed for knowledge
management applications� Its event algebra provides operators similar to those
of Samos� These operators can be classi�ed as logical �and� or� xor and not�
or temporal �precedes� succeeds� at� between� within time�spec� every time�spec�
etc���

IFO� 	

� is a conceptual model designed to capture both the structural and
behavioural aspects of the modeled reality� The behavioural nodel is based on
the notion of event� that represents either a fact of the modelled system which
occurs in a spontaneous manner �in the case of external or temporal events� or is
generated by the application� The event constructors are composition �conjunc�
tion�� sequence �temporal precedence�� grouping �collection of events of the same
type� and union �disjunction�� When a IFO� schema is de�ned� it is possible to
translate it into a set of ECA rules by means of an ad hoc algorithm�

� Introduction to Chimera

Chimera is a novel active� object�oriented and deductive database system� the
main goal of its design was the de�nition of a clear semantics� especially for
those aspects concerning active rules� such as rule execution� coupling modes�
triggering�

Chimera active rules �also called triggers� follow the ECA �Event�Condition�
Action� paradigm� Each trigger is de�ned on a set of triggering events� and it
becomes active if any of its triggering events occurs� The Chimera event language
was designed to consider only internal events� i�e� events generated by updates or
queries on the database� like create� modify� delete� generalize� specialize� select�



etc�� In particular� a rule is de�ned either as targeted or untargeted� if targeted to
a class� only events regarding that class are considered for triggering� otherwise
events regarding any class in the database can appear in the event part of the
rule�

The condition part is a logical formula that may perform a query on the
database� its evaluation is called consideration� Depending on the success of this
evaluation� the action part is executed coupled with the condition part�

Chimera does not permit binding transfer from the event section to the con�
dition section because of the set�oriented approach� nevertheless� it is important
for conditions to obtain objects a�ected by occurred events� Thus� a condition
may include event formulas� particular formulas that query the event base and
create bindings to the objects a�ected by a speci�ed set of event types� Two
predicates are available to write event formulas� the occurred predicate and the
holds predicate� The former one extracts all the objects a�ected by the speci�ed
event types� the latter considers event composition�

A rule is triggered as soon as one of the triggering events arises� and it is
no longer taken into account for triggering� until it has been considered� The
triggering mechanism checks for new triggered rules immediately after a non
interruptable execution block �either a user instruction sequence� called trans�

action line� or a rule action��
Based on the Event�Condition �EC� coupling mode chosen by the user� the

rule behaves di�erently� if the rule is de�ned as immediate� the consideration
is performed as soon as possible after the termination of the non interruptable
block that generated the triggering event occurrence� if the rule is deferred� it is
suspended until the commit command is given�

After the triggering mechanism has checked for new triggered rules� it chooses
a rule to be considered and possibly executed� if there is any triggered rule� the
choice is made based on a partial order derived from rule priorities provided by
the user� Notice that after the consideration and possibly the execution of the
rule� it is detriggered and it can be triggered again only by new event occur�
rences� because events occurred before the consideration loose the capability of
triggering the rule�

The user can in�uence the behaviour of the rule specifying the Event Con�
sumption mode as either consuming or preserving� in the former case� only event
occurrences more recent than the last consideration of the trigger are accessible
to event formulas� in the latter� all the events occurred since the beginning of
the transaction are available�

Example The following rule reacts to the creation of stock items� to check whether
the quantity exceeds the maximum quantity admitted for that item�

define immediate checkStockQty for stock

events� create

condition� stock�S�� occurred�create� S��

S�quantity�S�max�quantity



action� modify�stock�quantity� S� S�max�quantity�

end�

The rule� called checkStockQty is de�ned with immediate EC coupling mode
and is targeted to the stock class� The event part indicates that the rule is
triggered when a create event on class stock occurs� The condition is structured
as follows� a variable S is de�ned on class stock� the occurred predicate binds
the objects a�ected by the creation to that variable and �nally the constraint
is checked� If there is some object that violates the constraint� then the action
changes its quantity setting it to the maximum quantity for that object� Note
that the rule is executed in a set�oriented way� so all the objects created and not
checked yet by the rule are processed together in a single rule execution�

� Extending Chimera with Composite Events

Our extension of Chimera with composite event types moves from the currently
available features in order to preserve the characterizing aspects of this system� In
particular� the introduction of an event calculus language should change neither
the triggering�detriggering semantics� nor the processing of triggered rules� in
particular with respect to EC compling modes and event consumption�

A composite event is an event expression obtained from primitive event types
by means of a set of operators� such as conjunction� disjunction� negation and
temporal precedence� These operators are divided in set�oriented and instance�
oriented operators� in the former case� we consider the occurrence of a combi�
nation of event types independently of the a�ected objects� in the latter� the
speci�ed combination must occur on the same object� They are reported in Fig�
ure 
� listed in decreasing priority order� set�oriented operators have lower prior�
ity than instance�oriented ones� and conjunction and precedence operators have
the same priority� A complete introduction to the event calculus language follows
in next Sections ��
 and ��
� While designing the language� we moved on three
othogonal dimensions� as depicted in Figure 
� due to the boolean dimension� we
introduced operators such as conjunction� disjunction and negation� due to the
granularity dimension� these operators are divided in instance�oriented and set�

oriented� due to the temporal dimension we introduced two precedence operators�
one instance�oriented and the other set�oriented�

In the following two Sections� we introduce the set of operators� For each
event expression built by means of each operator� we indicate whether the event
has occurred �we say that the event is active� and we indicate the most recent
time when the event has occurred �called its activation time�stamp�� We make
use of some sample event expressions based on classes stock� describing stock
products� and show� indicating products on shelves in a sale�room�

��� Set�Oriented Operators

A primitive event occurs when an occurrence of that event type arises� inde�
pendently of the object a�ected by it� For instance� let us imagine that two



occurrences of the event create�stock� arise at time t� and t�� At time t � t�
the event is not active� at time t� � t � t� the event is active and its activation
time�stamp is t�� �nally� at time t� � t the event is active and its activation
time�stamp is t��

The �rst version of Chimera already provided the disjunction among prim�
itive events� that was described by a list of primitive event types separated by
commas� We keep the same notation� extending its application to generic event
expressions� Intuitively the disjunction E��E� of two event expressions arises as
soon as one of the component events becomes active� To be more precise� we say
that at a certain time t the disjunction is active if at least one of the component
events is active� If only one of the component events is active� its activation
time�stamp becomes the activation time�stamp of the disjunction� if both the
components events are active� the highest activation time�stamp of them is as�
sumed to be the activation time�stamp of the disjunction�

For instance� as an example let us consider the sample event expression
create�stock�� modify�stock�quantity�� two occurrences of the primitive
event create�stock� at times t� and t�� and one occurrence of the primitive
event modify�stock�quantity� at time t�� with t� � t� � t�� At time t � t�
the disjunction event is not active� at time t� � t � t� the disjunction is active
and its activation time�stamp is t�� at time t� � t � t�� the disjunction is active
and its activation time�stamp is now t�� �nally� at time t � t� the disjunction is
active and its activation time�stamp is now t��

When we consider the conjunction E�	E� of two events� it is intuitive that
it is active when both of the component events are active� If so� the activation
time�stamp is the highest of the activation time�stamps of the component events�

For instance� as an example let us consider the sample event expression
create�stock� 	 modify�stock�quantity�� two occurrences of the primitive
event create�stock� at times t� and t�� and one occurrence of the primitive
event modify�stock�quantity� at time t�� with t� � t� � t�� At time t � t�
the conjunction event is not active� at time t� � t � t� the conjunction is still
not active� at time t� � t � t�� the conjunction is active and its activation
time�stamp is t�� �nally� at time t � t� the activation time�stamp is now t��

In complex applications it is often necessary to consider the absence of an
event� i�e� one would like to check for the absence of occurrences of an event�

We think that a negation event 
 E is active when the negated event �also
called component event� is not active� in particular� if there are no occurrences

Instance�Oriented Set�Oriented

Negation �� �

Conjunction �� �

Precedence �� �

Disjunction �� �

Fig� �� Composition Operators Set�



temporal
precedence

boolean
dimension

set

instance

<=

<

−=

−

+=

,
+

negation

conjunction

disjunction precedence

granularity dimension

,=

Fig� �� Event operators dimensions

of the negated event at time t� the activation time�stamp is the current time�

For instance� let us consider the �rst occurrence of the event create�stock�
at time t� and its negation� 
create�stock�� At time t � t�� since the event
create�stock� is active� the negation is not active� at time t � t�� since
create�stock� is not active� the negation is active and its activation time�stamp
is t� because it is occurring at time t�

Similarly to the conjunction� the precedence E��E� of two event expressions
is active provided that both the component events are active� moreover� the �rst
component event must become active earlier than the second one�

For instance� as an example let us consider the sample event expression
create�stock� � modify�stock�quantity�� two occurrences of the primitive
event create�stock� at times t� and t�� and one occurrence of the primitive
event modify�stock�quantity� at time t�� with t� � t� � t�� At time t � t�
the precedence event is not active� at time t� � t � t� the precedence is still not
active� at time t� � t � t�� the precedence is active and its activation time�stamp
is t�� �nally� at time t � t� the precedence is active and its activation time�stamp
still remains at t�� because the second creation has time�stamp greater than that
of the last modi�cation�

We are able to write any complex set�oriented event expression� e�g�

modify�show�quantity� 	

� 
� create�stockOrder� � modify�stockOrder�del�quantity�� �

� modify�stock�min�quantity� � modify�stock�quantity� � �

which is active if there is a modi�cation of the product quantity on a shelf� and
there is not a creation of a stock order followed by a modi�cation of the delivered
quantity for a stock order� or there is a modi�cation of the minimum quantity
for a stock followed by a modi�cation of the quantity for a stock�



��� Instance�Oriented Operators

Instance�Oriented operators are useful to catch the occurrence of composite
events on the same object� For this reason� instance�oriented operators have
higher priority than set�oriented ones� and they cannot be applied to event sub�
expressions obtained by means of set�oriented operators�

In contrast� an event expression obtained using instance�oriented operators
can appear as an operand of a set�oriented operator� in fact� it is very intuitive
to pass from the instance�oriented to the set�oriented level� as we will show later�

A primitive event occurs on an object O when a new occurrence of that event
type arises and a�ects O� As in the set�oriented case� at time t the following
situations are possible� no event occurrences of that type have arisen yet on O�
so the primitive event is not active for O� at least one occurrence of that type
has arisen on O� then the primitive event is active for O and the activation

time�stamp is that of the more recent occurrence� For instance� let us imagine
that two occurrences of the event create�stock� arise at time t� and t� on the
objects O� and O� respectively� At time t � t� the event is not active for both
the objects� at time t� � t � t� the event is active only for O� and its activation
time�stamp is t�� �nally� at time t� � t the event is still active for O� with
activation time�stamp t�� but it becomes active for O� too and its activation
time�stamp is t��

The instance�oriented conjunction E�	�E� of two events on the same object
O� is active when both the component events are active for O� The activation
time�stamp for O is the highest of the activation time�stamps for the compo�
nent events� For instance� create�stock� 	� modify�stock�quantity� is an
instance�oriented conjunction that becomes active for a stock object O when O

has been created and its quantity has been changed� When used in a set�oriented
expression� an instance�oriented conjunction is active if there is at least one ob�
ject a�ected by the two component event expressions� For instance� consider the
expression

modify�show�quantity� 	 �create�stock� 	� modify�stock�quantity��

which is active when a change of a shown product quantity occurs and at
least a stock object has been created and its quantity modi�ed�

The instance�oriented disjunction E���E� of two event expressions on an ob�
ject O intuitively arises as soon as one of the component events becomes active
for O� Precisely� at a certain time t the disjunction is active for O if at least one
of the component events is active for O� If only one of the component events is
active for O� its activation time�stamp becomes the activation time�stamp of the
disjunction� if both the components events are active for O� the highest activation
time�stamp of them is assumed to be the activation time�stamp of the disjunc�
tion� Consider the expression create�stock��� modify�stock�quantity� as
an example of instance�oriented disjunction� two occurrences of the primitive
event create�stock� at times t� and t� on objects O� and O� respectively� and
two occurrences of the event modify�stock�quantity� at time t� on objects O�

and O� respectively� with t� � t� � t�� At time t � t� the disjunction event is



not active for all the three mentioned objects� at time t� � t � t� the disjunction
is active for O� with activation time�stamp t� and still not active for O� and
O�� at time t� � t � t�� the disjunction is still active for O� with activation
time�stamp t� but is now active for O� with activation time�stamp t�� �nally� at
time t � t� the disjunction is now active also for O� with activation time�stamp
t�� When used in a set�oriented expression� an instance�oriented disjunction is
active if there is at least one object a�ected by the disjunction of the component
event expressions� For instance� consider the expressions�

modify�show�quantity� 	 �create�stock� �� modify�stock�quantity��

modify�show�quantity� 	 �create�stock� � modify�stock�quantity��

modify�show�quantity� 	

�create�stock� 	�

�modify�stock�min�quantity� �� modify�stock�quantity���

The �rst one is active when a change of a shown product quantity occurs and a
stock object has been created or its quantity modi�ed� Observe that with such a
use the e�ect is the same as the second expression� that is active when a change
of a shown product quantity occurs and there are a creation of a stock object or
a modi�cation of the quantity for a stock object� the two objects being possibly
di�erent� in fact� the instance�oriented disjunction operator has been introduced
to be used in instance�oriented event expressions� based on a operator set that
we want to be orthogonal w�r�t� set�oriented operator set� The third expression
clari�es this concept� because it is active when a change of a shown product
quantity occurs and there is a creation of a stock objecy on which either a
modi�cation of the minimum quantity or a modi�cation of the quantity occur�

The instance�oriented negation 
� E expresses the absence of occurrences of
an event type for an object O� it is active when the negated event is not active for
O and the activation time�stamp is the current time� For instance� let us consider
two occurrences of the event create�stock� at time t� and t� a�ecting O� and
O� respectively� and the negation event 
�create�stock�� At time t � t� the
negation is active for both O� and O�� with activation time�stamp t for both�
at time t� � t � t�� since the event create�stock� is active for O� but not for
O�� the negation is not active for O� but is still active for O� with activation
time�stamp t� �nally� at time t� � t� since create�stock� is active for both� the
negation is not active for both O� and O�� It is easy to think of the use of an
instance�oriented negation in the following intuitive way� it is active if there is
no object which the instance�oriented negation is active for� otherwise it is not
active� Notice that if the 
� operator is applied to elementary event types� using
it in a set�oriented expression leads to the same result as the set�oriented version�
things change when it is applied to more complex instance�oriented expressions�
For instance� consider the expressions�

modify�show�quantity� 	 
��create�stock�	�modify�stock�quantity��

modify�show�quantity� 	 
�create�stock� 	 modify�stock�quantity��

The �rst one is active when a change of a shown product quantity occurs and no
stock object has been created and its quantity modi�ed� Instead� the second one
is active when a change of a shown product quantity occurs and there is neither



a creation of a stock object nor a modi�cation of the quantity for a stock object�
the two objects being possibly di�erent�

Similarly to the conjunction� the instance�oriented precedence E���E� of two
events is active when both the component events are active on the same object
O� the �rst one becoming active earlier than the second one� For instance� let
us consider modify� stock�min�quantity� �� modify� stock�quantity��
two occurrences of the event modify�stock�min�quantity�at times t� and t� on
the same object O�� and one occurrence of the event modify�stock�quantity�
at time t� again on the object O�� with t� � t� � t�� At time t � t� the prece�
dence event for O� is not active� at time t� � t � t� the precedence is still
not active for O�� at time t� � t � t�� the precedence is active for O� and its
activation time�stamp is t�� �nally� at time t � t� the precedence is active for O�

and its activation time�stamp is still t�� When used in a set�oriented expression�
an instance�oriented precedence is active if there is at least one object a�ected
by the sequence of the two component event expressions� For instance� consider
the expressions�

modify�show�quantity� 	 �create�stock� �� modify�stock�quantity��

modify�show�quantity� 	 �create�stock� � modify�stock�quantity��

The �rst one is active when a change of a shown product quantity occurs and
at least a stock object has been created and later its quantity modi�ed� Instead�
the second one is active when a change of a shown product quantity occurs and
there is a creation of a stock object followed by a modi�cation of the quantity
for a stock object� the two objects being possibly di�erent�

��� Event Formulas

As introduced in Sections �� event formulas �see Section 
� are extended in con�
sequence of the introduction of the event language�

Event expressions� The occurred predicate now supports event expressions lim�
ited to instance�oriented operators� This is due to the semantics of the predicate�
it returns all the objects a�ected by the speci�ed event expression �� For example�

occurred� create�stock� �� modify�stock�quantity� � X �

binds all the objects created whose attribute quantity has been modi�ed to
variable X� Depending on the consumption mode selected for the rule� the above
formula retrieves either all the objects a�ected by that particular combination

� Chimera supports also a predicate holds which composes event types� However� there
is no need of such predicate in the new Chimera extended with event calculus� since
event composition can be explicitily evaluated by the calculus� For instance� net e
ect
for the creation operation in presence of sequences of modi�cations and deletions is
given by the following event formula�

create�class	�
�create�class	 �� �create�class	 �� modify�class�attr			 ��

���create�class	 �� delete�class	�



of event types since the beginning of the transaction �preserving rule� or only
those a�ected since the last consideration of the rule �consuming rule�� Observe
that this is exactly the same semantics of Chimera without composite events�
reviewed in Section 
�

Occurrence time�stamp� This new predicate is similar to the occurred predicate
but it provides the time�stamp of the speci�ed composite event occurrences as
well� For example�

at� create�stock� �� modify�stock�quantity� � X� T �

where T is a variable de�ned on type time�
Its semantics is de�ned as follows� given an object X� T assumes all the time�

stamps� in the observed time interval� at which an occurrence of the speci�ed
event expression arises for that object� In the above example� if the creation of a
stock object is followed by two updates of its quantity attribute� the speci�ed
composite event occurs twice� exactly when the two updates occur�

The observed time interval depends on the consumption mode selected for
the rule� it can range either from the beginning of the transaction to the current
time �preserving rules�� or from the last consideration of the rule to the current
time �consuming rule��

� Formal Semantics

This Section is organized as follows� at �rst� we describe our approach to the
de�nition of event calculus� then we precisely de�ne our model of Event Base�
on which the de�nitions presented later are based� then� we give the formal se�
mantics for both set�oriented and instance�oriented operators� �nally� triggering
semantics is formulated in formal way�

Composite event semantics The main goal of our work is to provide the event
language with a semantics that preserves boolean properties� such as De Morgan
rules� when time properties associated to event occurrences �their time�stamp�
are considered� In fact� event occurrences exist because they are generated at a
certain time instant� thus that aspect should be always taken into account when
event expressions are evaluated�

Event expressions are used in the event part of the rule and possibly in event
formulas in the condition part� So the event occurrence determine whether the
rule is triggered or not�

The main idea is the following� when a portion of the event base EB �the
log of all events occurred since the beginning of the transaction� see Section ��
�
is investigated� for each primitive event type we construct a function dependent
on time t� called the time�stamp of the more recent event occurrence in the
investigated portion of EB� indicated with ts� The ts function of an event type
is constructed on the basis of the positive time�stamp of the last occurrence of
the event type� if an event occurrence exists in the investigated portion of EB�
Otherwise� ts calculated in t is set to a negative value� equal to �t�



EID event�type OID time�stamp

e� � create� stock � o� t�

e� � create� stock � o� t�

e� � create� order � o� t�

e� � create� notFilledOrder � o� t�

e� � modify� stock� quantity � o� t�

e� � modify� stock� quantity � o� t�

e� � delete� stock � o� t�

Fig� �� Example of EB�

Thus� the sign of the ts function of an event type states whether an occurrence
of that event type exists in the portion of EB relevant for rule triggering� if
positive� an event type occurrence exists� if negative� otherwise� Consequently�
it is su�cient to determine an instant t in which function ts is positive to solve
rule triggering�

When dealing with negation� the intuition is that ts function of a negation
event calculated at time t has the opposite value of ts of the negated component
event� for each time value� In fact if an occurrence of an event type does not
exist in the portion of EB relevant for rule triggering �i�e� all event occurrences
more recent than the last consideration of the rule�� from the instant of the last
consideration of the rule� ts value of the negated event at time t� is the time
value t� It comes that ts functions of primitive event types are calculated by a
simple lookup into a portion of EB�

From these basic ts functions� our event calculus algebraically derives ts

functions for event expressions from ts functions associated to its primitive com�
ponents� As already said� these expressions are obtained applaying arbitrarily
boolean operators and precedence operator to primitive event types� Derived ts

functions associated to event expressions have the same properties of ts functions
for primitive event types�

��� The Event Base

The Event Base �EB� is the log containing all the event occurrences since the
beginning of the transaction� In this paper we model the EB as a table having
the structure depicted in Figure ��

Each row contains an event occurrence� characterized by its unique identi�er
�EID�� the event type� the Object Identi�er �OID� of the object a�ected by the
event occurrence� and the time�stamp of the time instant the event occurred
at� The event type is described by the name of the command that changed the
object state� possibly followed by the object class name and an attribute name�
In the following� we refer to the EID of a generic event occurrence as e�

Given an event occurrence e� we can de�ne a set of useful functions returning
properties of e stored in the EB� Figure � contains examples of the de�ned
functions� derived from the EB state of Figure ��



type � e� �� create� stock � obj � e� � o�
type � e� �� modify� stock� quantity � obj � e� � o�

type � e� �� delete� stock � obj � e� � o�

timestamp � e� � t� eventonclass � e� � stock

timestamp � e� � t� eventonclass � e� � stock

timestamp � e� � t�

Fig� �� Examples of event attribute matches on events in EB�

type type � EID � eventtype

This function matches each event occurence to its event type�

obj obj � EID � OID

This relation matches each event occurrence to the object whose state has
been modi�ed by that event�

timestamp timestamp � EID � time

This function matches each event occurrence to its time�stamp�

eventonclass eventonclass � EID � classname

This function matches each event occurrence to the class to which the object
a�ected by the event occurrence belongs� Note that this piece of information
is part of the event�type attribute�

��� Set�Oriented Case

The de�nition of ts of a primitive event type E at time t is�

ts�E � t�
def
�

������
�����

�t if �t� �t� � t � � �e � R �
type�e� � E � timestamp�e� � t���

tE otherwise� where

tE � maxft��t� � t � �e � R�type�e� � E
� timestamp�e� � t���g

where R is the set of event occurrences to which the event calculus applies�

We also introduce the function u�t�� u�t�
def
� � if t � �� u�t�

def
� 
 if t � ��

From the above de�nitions� the presence of an event occurrence in R at time
t� is expressed by the logical predicate occ�E � t� which is true if u� ts�E � t�� � 
�
false otherwise�

As already said informally� the semantics of negation is ts�
E � t�
def
� �ts�E � t��

Semantics of the other set�oriented operators is given in two steps� at �rst�
we give a precise de�nition in logical style� second� that de�nition is translated
into an algebraic equivalent expression that can be used for the evaluation of
the ts function associated to the overall event expression�



LogicalStyleSemantics


� ts�A	B� t�
def
�

�
minfts�A� t�� ts�B� t�g if 	occ�A� t� 
 	occ�B� t�
maxfts�A� t�� ts�B� t�g if occ�A� t� � occ�B� t�


� ts��A�B�� t�
def
�

�
minfts�A� t�� ts�B� t�g if 	occ�A� t� � 	occ�	B� t�
maxfts�A� t�� ts�B� t�g if occ�A� t� 
 occ�B� t�

�� ts��A�B�� t�
def
�

������
�����

�t if 	occ�A� t�
 	occ�B� t�

 occ�A� t� � occ�B� t�
� ts	A� ts�B� t�� � �

ts�B� t� if occ�A� t� � occ�B� t�
� ts	A� ts�B� t�� � �

AlgebraicSemantics


�
ts�A	B� t� � minfts�A� t�� ts�B� t�g 	
� u� ts�A� t�� u� ts�B� t����

maxfts�A� t�� ts�B� t�g 	u� ts�A� t�� u� ts�B� t����


�
ts��A�B�� t� � maxfts�A� t�� ts�B� t�g 	
� u��ts�A� t�� u��ts�B� t����

minfts�A� t�� ts�B� t�g 	u��ts�A� t�� u��ts�B� t���

��
ts��A�B�� t� � �t	
� u� ts�B� t�� u� ts�A� ts�B� t�����

ts�B� t�	u� ts�B� t�� u� ts�A� ts�B� t����

It is possible to show that several properties holds� like the De Morgan prop�
erty that ts�
��
A�	�
B��� t� is equivalent to ts��A�B�� t��

ts�
��
A�	�
B��� t� �
� �minfts�
A� t�� ts�
B� t�g 	
� u� ts�
A� t�� u� ts�
B� t����

maxfts�
A� t�� ts�
B� t�g 	u�ts�
A� t�� u� ts�
B� t���� �
� maxfts�A� t�� ts�B� t�g 	
� u��ts�A� t�� u��ts�B� t����

minfts�A� t�� ts�B� t�g 	u��ts�A� t�� u��ts�B� t��� �
� ts��A�B�� t�
�

A graphical proof of this property is shown in Figure �� for a set of event
occurrences �of type A� B� and C� where event type C is not involved in the ex�
pression�� it shows ts functions for both primitive and complex event expressions
used in De Morgan proof�

The dual De Morgan property ts��A	B�� t� � ts�
�
A�
B�� t� and the fol�
lowing properties can be proved analogously�

E�	E� � E�	E�
E��E� � E��E�
�E�	E��	E� � E�	�E�	E��
�E��E���E� � E���E��E��
E�	�E��E��� � E�	E��E�	E�

�E�	E���E� � �E��E��	�E��E��
�E��E���E� � �E��E����E��E��
E���E�	E�� � �E��E����E��E��
E���E��E�� � �E��E��	�E��E��
E��E��E� � �E��E���E�

��� Instance�Oriented Case

Instance�Oriented operators are useful to catch the occurrence of composite
events on the same object� For this reason� instance�oriented operators have
higher priority than set�oriented ones� and they cannot be applied to event
subexpressions obtained by means of set�oriented operators�



C A CB A BC

tts(A,t)

ts(−A,t)

ts(B,t)

ts(A+B,t)

−ts(A+B,t)

ts((−A,−B),t)

Fig� �� Examples of ts functions with event expression

The exposition will follow a schema similar to that of Section ��
� after the
introduction of basic de�nitions and instance�oriented composition operators� we
show how instance�oriented event expressions are evaluated inside set�oriented
expressions�

In the instance�oriented case we make use of ots functions� which are very
similar to ts functions� except for the fact that they refer to a single object�

ots�E � t� oid�
def
�

������
�����

�t if �t��t� � t � � �e � R�type�e� � E
�timestamp�e� � t� � obj�e� � oid��

tE otherwise� where

tE � maxft��t� � t � �e � R�type�e� � E
� timestamp�e� � t� � obj�e� � oid��g

where R is the set of event occurrences to which the event calculus applies� As
in the set�oriented case� it is oocc�E � t� oid� � true if u� ots�E � t�� oid� � 
�
false otherwise�

Conjunction � LogicalStyleSemantics

ots�A	�B� t� oid�
def
��

minfots�A� t� oid�� ots�B� t� oid�g if 	oocc�A� t� oid�
 	oocc�B� t� oid�
maxfots�A� t� oid�� ots�B� t� oid�g if oocc�A� t� oid� � oocc�B� t� oid�

Conjunction � AlgebraicSemantics

ots�A	�B� t� oid� �
minfots�A� t� oid�� ots�B� t� oid�g 	
� u�ots�A� t� oid��u�ots�B� t� oid����
maxfots�A� t� oid�� ots�B� t� oid�g 	u�ots�A� t� oid��u�ots�B� t� oid����

The disjunction� negation and precedence operators are similarily extended
to the instance�oriented case� and expressed respectively with ����� �
�� and
����� So all the properties valid for the set�oriented operators� can be easily
extended to the instance�oriented case�



We now show how ots functions are related to ts functions to be evaluated
inside set�oriented expressions� and which properties can be proved�

ots to ts

ts�A	�B� t� � minfots�A	�B� t� oid�g� �oid � R

ts�A��B� t� � minfots�A��B� t� oid�g� �oid � R

ts�A��B� t� � minfots�A	�B� t� oid�g� �oid � R

ts�
�A� t� � maxfots�
�A� t� oid�g� �oid � R

properties

ots�A� t� oid� � ts�A� t� �oid
ts�A	�B� t� � ts�A	B� t� ts�A��B� t� � ts�A�B� t�
ts�A��B� t� � ts�A�B� t� ts�
�A� t� � ts�
A� t�

��� Speci�cation of rule triggering

The formal speci�cation of rule triggering at time t for a rule r is given by the
predicate T �r� t�� if the result of its evaluation is true� then the rule is triggered�

T �r� t�
def
� R � feje � EB � r�t� � timestamp�e� � tg �

R �� � � � t��r�t� � t� � t � ts�r�E � t�� � ��

where r�t� is the time�stamp of the last consideration of the rule� while r�E is the
triggering event expression of the rule� Observe that the predicate de�nes the
set R which the ts function must be applied to as the set of all event occurrences
more recent than the last consideration of the rule� in fact� the event calculus
can be applied to a generic set of event occurrences� orthogonally� the triggering
semantics de�nes this set�

Note that intuitively this semantics implies that a rule can be triggered only
if something happened� otherwise the triggering mechanism ends because there
is nothing which rules can react to� The reason of this choice �R �� �� is that
removing this constraint� a rule triggered by negated event types would always
be �red even in absence of new event occurrences� then the system would become
active instead of being reactive�

� Implementation

The introduction of the event calculus language does not change the general
architecture of the implementation of Chimera� described in 	��� but a�ects only
some specialized component� like the Event Handler and the Trigger Support� the
former deals with event occurrences and stores them into the Occurred Events

data structure� the latter maintains the current status of active rules �called
triggers and chooses the trigger to be executed among those activated�

Chimera has a component� called Block Executor� which executes non inter�
ruptable execution blocks �user transaction lines or rule actions�� �nishes the
execution of a block� it sends all the last generated event occurrences to the
Event Handler in order to store them into the Occurred Events data structure�
This data structure is maintaned as an event tree whose leaves are lists of event
occurrences of the same type� furthermore� each leaves keeps the time�stamp of
the more recent occurrence of the associated event type�



At this moment� the Event Handler calls the Trigger Support whose task is
the determination of new activated rules� The Trigger Support maintains in the
Rule Table the current status of all de�ned rules� this table is managed by means
of a hash table� for fast access� but rules are also linked together by means of
a queue on the basis of the priority order� To deal with composite events� each
rule has two time�stamps associated to it� one� called last�consideration� stores
the last consideration time�stamp� the other� called last�consumption� stores the
time�stamp of the last event consumption� which is either the last consideration
time if the rule is consuming or the initial time�stamp of the transaction if the
rule is preserving� Another �ag associated to a rule is the triggered �ag� set to
true if the rule is triggered or to false otherwise�

The Trigger Support checks for activated rules in the following way� It looks
up into the Rule Table for all rules which are not triggered� When it �nds one�
it computes the ts value for the associated triggering event expression� if the
computed value is positive� the rule is then triggered and the triggered �ag is set
to true �the rule will be detriggered once after its consideration��

Once new triggered rules are determined� the one to be executed is chosen
by means of the rule queue� and passed to the Block Executor�

The evaluation of ts should take into account a certain number of things�
At �rst� to determine the ts of a primitive event type is su�cient to query the
occurred events table to get the last occurrence time�stamp of the desired event
type E� if this time�stamp is not less than the value of last�consideration� this is
the value of ts�E� t� � otherwise ts�E� t� value is �t �where t is the current time�
stamp�� Second� when dealing with instance�oriented operators� it is necessary
to keep trace of all monitored events occurred on a single object� to do that� a
sparse data structure can be associated to each rule and maintained until the
consideration� then it is made empty� each item in this data structure stores the
OID of an object a�ected by some event type since the last consideration and
the list of event occurrences a�ecting that object since the last consideration�

��� Static Optimization

In general� the computation of the ts function for a given rule is an expensive
task� especially if a large rule set has been de�ned� Our approach is to reduce
the ts recomputation� by doing it only when it is highly probable that ts value
becomes positive� The goal of the static optimization is to extract conditions
on an event expression that guarantees� if not met� that the value of ts cannot
become positive �recall rule triggering condition�� This analysis should be per�
formed when a rule is de�ned� and its results used to drive the Trigger Support
in determining triggered rules�

The occurrence of composite event type E � at time t� is indicated by the fact
that the associated function ts assumes a new positive value at time t� thus� we
need to check positive variations of ts� that we indicate as ���E�� Depending
on the composition operator� it may depend on positive or negative �indicated
with ���E�� variations of the component event expressions� the �rst case arises
with conjunction� disjunction and precedence� the second one with negation�



��
�E�� ��
E�
��
�E�� ��
E�
��
E��E��� ��
E��
��
E��E��� ��
E��
��
E�bin�opE��� ��
E����

�
E��
��
E�bin�opE��� ��
E�����
E��

��
��E�� �
�

O

E�

��
��E�� �
�

O

E�

�
�

O

��E�� �

�

O

E�

�
�

O

��E�� �

�

O

E�

��
E���E��� �
�

O

E��

��

O

E���E��� ��

O

E��

��
E���E��� ��
O

E��

��
O

E���E��� ��

O

E��

��
E�bin�op�E��� ��

O

E����

�

O

E��

��

O

E�bin�op�E��� ��

O

E����

�

O

E��

��
E�bin�op�E��� ��
O

E����

�

O

E��

��
O

E�bin�op�E��� ��

O

E����

�

O

E��

Fig� �� Derivation Rules�

f��

O

E�� ��

O

E�g � f�O
E�g f�

�
E�� ��

O

E�g � f�
E�g

f�O
E�� �
�

O

E�g � f�O
E�g f�O
E�� �

�
E�g � f�
E�g
f�O
E�� �

�

O

E�g � f�O
E�g f�O
E�� �

�
E�g � f�
E�g
f��
E����

O

E�g � f��
E�g f��
E����
E�g � f�
E�g

f��
E�� ��
O

E�g � f��
E�g f��
E���
E�g � f�
E�g

f��
E����
O

E�g � f�
E�g f��
E�� �
E�g � f�
E�g

Fig� �� Simpli�cation Rules�

This process can be performed until primitive event types are reached using a
proper set of derivation rules �see Figure ��� In these rules for simplicity� we have
used the symbol �bin�op� to indicate either the conjunction or the disjunction
operator� These rules consider the instance�oriented operators as well� in order
to deal with them� they use the symbols ��

O�E�� �
�

O�E� and �O�E�� which
are analougous to the previous ones� but indicating ots variations for a single
object� In the end� it leads to a set V �E� of variations �positive or negative�
for primitive event types describing whether or not the value of ts must be
recomputed� because it might have changed� when new event occurrences arise�
in practice� the conditions described by V �E� are su�cient conditions ensuring
that if new arising event occurrences do not match V �E�� no recomputation of
ts is required�

Set V �E� can be simpli�ed using rules in Figure �� in particular� with the
symbol ��E� both a positive and negative variation is indicated� As an example�
consider the following event expression E �

E � ��A	B���C	�
A��	��A	�C����
��B���A��

The V �E� set is obtained applying at �rst the derivation rules� then the simpli�
�cation rules� as shown below�



V �E� � ���E� �
� f����A	B���C	�
A��������A	�C����
��B���A��g �
� f���A�����B�����C�����A����

O�A	�C���
�

O�B���A�g �
� f���A�����B�����C�����A����

O�A���
�

O�C���
�

O�B���
�

O�A�g �
� f��A����B�����C�g

� Conclusions

This paper has proposed an extension of event calculus for Chimera� character�
ized by the following features�

� It requires a minimal set of orthogonal operators�
� It continuously evolves the semantics of Chimera by enabling more sophis�
ticated rule triggering� while preserving the other semantic features of the
rule system�

� It supports a formal and e�cient evaluation of triggering caused by event
expressions of arbitrary complexity� based on the use of a function ts which
associates each event expression to an integer value� a rule is triggered when
the corresponding ts expression is positive� and not triggered otherwise�

� The function ts is assigned in such a way that certain obvious properties
of calculus hold� such as De Morgan�s rules or distributivity� associativity�
and factoring of precedence expressions� Although this requirement seems
mandatory to us� indeed it is not explicitly demontrated by some other event
calculus proposals in the literature� achieving this result has required to us
a nonobvious �twisting� of the ts functions�

� As an optimization� the evaluation of the ts function is required when certain
operations occur which have the potential of �changing the sign� of ts� and
can be skipped otherwise�

Given the above features� we believe that the proposed event calculus applies
not only to Chimera� but also to all other systems which currently support
individual or disjunctive events �including all relational products which support
triggers��

References

�� H� Branding� A� Buchmann� T� Kudrass� and J� Zimmermann� Rules in an open
system� The reach rule system� In Proc� of the �st Int� Workshop on Rules in
Database Systems� pages �������� Edimburgh� August �����

�� H� Branding� A� Buchmann� T� Kudrass� and J� Zimmermann� Rules in an open
system� The reach rule system� In Proc� of the �st Int� Workshop on Rules in
Database Systems� pages �������� Edimburgh� August �����

�� S� Castangia� G� Guerrini� D� Montesi� and G� Rodriguez� Design and implemen�
tation for the active rule language of chimera� In DEXA��� �th international
Workshop and Conference on Database and Expert Systems Applications� London�
UK� September �����



�� S� Ceri� P� Fraternali� S� Paraboschi� and L� Tanca� Active rule management in
chimera� In ���	�

�� S� Ceri and R� Manthey� Consolidated speci�cation of chimera� Technical Report
IDEA DE��P�������� November �����

�� S� Chakravarthy� E� Anwar� L Maugis� and D� Mishra� Design of sentinel� an
object�oriented dbms with event�based rules� Information and Software Technol�
ogy� ��
��� �����

�� S� Chakravarthy� V� Krishnaprasad� E� Anwar� and S� K� Kim� Composite events
for active databases� Semantics� context and detection� In Proceedings of the �
th
International Conference on Very Large Data Bases� pages �������� Santiago�
Chile� September �����

�� U� Dayal� A� P� Buchmann� and S� Chakravarthy� The hipac project� In ���	�

�� U� Dayal� A� P� Buchmann� and D� R� McCarthy� Rules are objects too� A knowl�
edge model for an active object�oriented database system� In K� R� Dittrich� edi�
tor� Proceedings of the �nd International Workshop on Object�Oriented Databases�
Springer�Verlag� ����� LNCS ����

��� P� Fraternali and L� Tanca� A structured approach for the de�nition of the seman�
tics of active databases� June ����� submitted to ACM�TODS�

��� S� Gatziu and K� R� Dittrich� Events in an active object�oriented database system�
In Proc� of the �st Int� Workshop on Rules in Database Systems� pages ������
Edimburgh� August �����

��� N� H� Gehani and H� V� Jagadish� Ode as an active database� Constraints and
triggers� In Proceedings of the ��th International Conference on Very Large Data
Bases� pages �������� Barcelona� Spain� September �����

��� N� H� Gehani� H� V� Jagadish� and O� Shmueli� Composite event speci�cation in
active databases� Model and implementation� In Proceedings of the ��th Interna�
tional Conference on Very Large Data Bases� pages �������� Vancouver� Canada�
����� British Columbia�

��� N� H� Gehani� H� V� Jagadish� and O� Shmueli� Event speci�cation in an active
object�oriented database� In ���� ACM SIGMOD� pages ������ San Diego� CA�
USA� May �����

��� E� N� Hanson� Rule condition testing and action execution in ariel� In Proceedings
of the ��th International Conference on Very Large Data Bases� pages ��������
Barcelona� Spain� September �����

��� E� N� Hanson� M� Chaabouni� C�H� Kim� and Y�W� Wang� A predicate matching
algorithm for database rule systems� ACM Journal� pages �������� May ���O�

��� ISO�OSI� SQL� Document X�H���
�
�
 and SOU�

�� ISO�ANSI Working Draft�
�����

��� R� Maiocchi and B� Pernici� Temporal data management systems� A comparative
view� IEEE Transactions on Knowledge and Data Engineerging� �
�����������
December �����

��� W� Naqvi and M� T� Ibrahim� Rule and knowledge management in an active
database system� In ���	�

��� N� W� Paton� O� Diaz� M� H�Williams� J� Campin� A� Dinn� and A� Jaime� Dimen�
sions of active behaviour� In Proc� of the �st Int� Workshop on Rules in Database
Systems� pages ������ Edimburgh� August �����

��� M� Stonebraker� A� Jhingran� J� Goh� and S� Potamios� On rules� procedures�
chaching� and views in data base systems� In Proc�ACM�SIGMOD Int� Conference�
pages �������� Atlantic City� June �����



��� M� Teisseire� P� Poncelet� and R� Cicchetti� Towards event�driven modelling for
database design� In Proceedings of the �
th International Conference on Very
Large Data Bases� pages �������� Santiago� Chile� September �����

��� J� Widom and S� Ceri� Active Database Systems� Morgan Kaufmann� San Matteo�
California� August �����

��� J� Widom� R� J� Cohrane� and B� G� Lindsay� Implementing set�oriented produc�
tion rules as an extension od starburst� In Proceedings of the ��th International
Conference on Very Large Data Bases� pages �������� Barcelona� Spain� Septem�
ber �����

��� J� Widom and S� J� Finkelstein� Set�oriented production rules in relational
database systems� In Proc�ACM�SIGMOD Int� Conference� pages �������� At�
lantic City� June �����



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


