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Abstract. In this paper, we extend event types supported by Chimera,
an active object-oriented database system. Chimera rules currently sup-
port disjunctive expressions of set-oriented, elementary event types; our
proposal introduces instance-oriented event types, arbitrary boolean ex-
pressions (including negation), and precedence operators. Thus, we in-
troduce a new event calculus, whose distinguishing feature is to support
a minimal set of orthogonal operators which can be arbitrarily composed.
We use event calculus to determine when rules are triggered; this is a
change of each rule’s internal status which makes it suitable for being
considered by the rule selection mechanism.

The proposed extensions do not affect the way in which rules are pro-
cessed after their triggering; therefore, this proposal is continuously evolv-
ing the syntax and semantics of Chimera in the dimension of event com-
position, without compromising its other semantic features. For this rea-
son, we believe that the proposed approach can be similarly applied for
extending the event language of other active database systems currently
supporting simple events or their disjunction.

1 Introduction

Active database systems provide tight integration of Event-Condition-Action
(ECA) rules within a database system. Such a tight integration is normally
achieved by reusing database system components for implementing conditions
(database predicates or queries) and actions (database manipulations, often em-
bedded within a procedural component). In general, when a rule is selected for
execution (or triggered), then its condition is evaluated (or considered), and
if the condition is satisfied, then the action is immediately executed 3. Thus,
the condition-action (CA) components of an active database have a simple and
uniform behavior, which is common to most active databases.

Instead, event type specification, evaluation, and coupling to conditions and
actions have to be designed and implemented specifically for each active database
system. Thus, it is not surprising that the notions of elementary event type, of
event type composition, and of binding between event occurrences and the CA

® An exception is HIPAC [9] which supports several coupling modes between conditions
and actions.



components are quite different in each active database, and such differences are
responsible for most of the diversity of active databases.

Most active databases recognize just data manipulation operations (such as
insert, delete, and update) as event types. The proposed SQL3 standard, cur-
rently under development by ANSI and ISO, associates to each rule just one
event type; this can be considered as the simple extreme of a spectrum of so-
lutions [17]. Most relational database products supporting active rules (called
triggers) associate each of them to a disjunction of event types whose instances
are relative to the same table [23]; this solution is also used by Starburst [24],
Postgres [21], and Chimera, an active object-oriented database prototype de-
veloped at Politecnico di Milano in the context of the IDEA Esprit Project
[4, 5]. More complex event calculus are supported by active database prototypes
(see Section 1.1). In these approaches, rules are associated to event expressions
which normally include generic boolean expressions, precedence operations, and
explicit time references.

In all active rule systems, event instances cause rules to change an internal
state; the corresponding state transition is called ¢riggering of the rule. Once a
rule is triggered, active rule systems react in several ways. When multiple rules
are triggered at the same time, a rule selection mechanism determines which of
them should be considered first; this mechanism may be influenced by priorities
which are statically associated to rules. In addition, the rule selection may occurr
immediately after the triggering operation or be deferred to some later point in
transaction execution (such as the commit time). With immediate execution, it is
possible to further identify the cases of rules executing before, after, or instead of
the operation generating the triggering event occurrence. Finally, the triggering
and execution of rules can be repeated for each tuple or object affected by an
operation (row-level granularity in [17]) or instead relate to the overall set of
tuples or objects manipulated by means of the same operation (statement-level
granularity in [17]).

Due to all these alternatives, active rule systems present themselves with
a variety of possible behaviors (a thorough comparative analysis of semantics
supported by active rule systems is presented in [10]). In order to control the
introduction of complex events in Chimera, and therefore the increase of semantic
complexity due to this extension, we have strictly followed some design principles:

— We have defined the event calculus by means of a minimal set of orthogonal
operators.

— The semantics of the event calculus is given simply by defining the conditions
upon which rules having as event type a complex event calculus expression
become triggered; detriggering occurs when a rule is selected for considera-
tion and execution. No other state transitions characterize the internal state
of each rule.

— The event calculus extension does not affect the way in which rules are pro-
cessed after their triggering; therefore, this proposal continuously evolves the
syntax and semantics of Chimera in the dimension of event type composition,
without compromising its other semantic features.



We believe that these design principles are general and should drive the
design of event calculus for active databases; therefore, we also believe that
the proposed approach extends naturally to active database systems currently
supporting simple event types or their disjunction.

The paper is organized as follows: Section 2 reports the current fundamental
Chimera features; Section 3 introduces the proposed extension, while Section 4
formally gives its semantics; Section 5 deals with implementation issues; finally,
Section 6 draws the conclusions.

1.1 Related work

There exist several Active Database Systems that have been provided with a
language for event type composition; these languages are presented in [13], [7],
[11], [19], [22]. The way all these proposals deal with composite event types is
quite different depending on the particular systems; in fact, though they have
similar sets of operators, different semantics have been proposed. In the rest of
the section, we briefly discuss the most important proposals.

Ode [13] has a rich event language based on a small set of primitive opera-
tors. These operators deal with event occurrences in a set-oriented way, using set
operations like intersection and complement: they produce subsets of the prim-
itive event occurrence history, considered as an ordered set based on the event
occurrence time-stamps. For example, event conjunction is the set of event oc-
currences that satisfy both component event types (and it produces a not null
result provided that the two event occurrence sets corresponding to the two
operands have at least one common element); event negation is the complement
with respect to the whole history; relative of an event type A with respect to
type B is the set of occurrences of type B subsequent to the first occurrence
of type A. Other operators, like event disjunction, temporal precedence (prior),
strict sequence (sequence), etc., are derived from the primitive operators. The
user is allowed to specify conditions on event properties directly in the compo-
sition expressions, i.e. in the event part of the rule. Since the expressive power
is that of regular expressions, composite events are checked by means of a finite
state automata.

HiPAC [8] makes available data manipulations events, clock events and ez-
ternal events. Clock events can be specified as absolute, relative and periodic.
Composite event types are defined with the use of the following operands: dis-
junction, sequence (temporal precedence of event signals) and closure (event
signals occurred one or more times).

Snoop [7] interprets an event F as a boolean function defined on the time
domain that is true at time ¢ if an event occurrence of that event type occurs at
time ¢. Event conjunction and disjunction are obtained by the boolean algebra
applied on their operands. Negation of an event E is defined as the absence of
an occurrence of E in a closed interval determined by two events F1 and FE-s.
While the aperiodic operator determines the presence of all the occurrences of an
event FE between two subsequent occorrences of E; and E», the periodic operator
is equivalent to a periodic event generator: given a time period ,, it is true at



instants separated each other by ¢,, starting from an occurrence of an event
E; and stopping at the subsequent occurrence of an event E5. The cumulative
versions of these two last operators are defined as “accumulating” respectively
occurrences of F and time instants. Depending on the application, it is possible
to define different contexts in order to let a rule be triggered in correspondance
of either all the possible combinations of primitive event occurrences matching
the event expression or only some of them.

Samos [11] has a rather rich language as well, which provides the usual event
disjunction, conjunction and sequence (ordered conjunction). A Times operator
returns the point in time when the n-th occurrence of a specified event is ob-
served in a given time interval. The negation is defined as the absence of any
occurrence of an event type from a given time interval, and occurs at its end
point. A star (*) operator returns the first occurrence of a given event type,
regardless of the number of occurrences. Samos allows information passing from
the event to the condition part of the rule by means of parameters like the iden-
tifier of the transaction in which a given event occurred (c_tid), or the point in
time of the event occurrence (occ_point). Composite event parameters are de-
rived: disjunction and star (*) receive the parameters of the component event
occurrences, conjunction and Times their union. A keyword same specifies that
the component events of a composition must have the same parameters.

The Reflex system [19] is an active database system designed for knowledge
management applications. Its event algebra provides operators similar to those
of Samos. These operators can be classified as logical (and, or, zor and not)
or temporal (precedes, succeeds, at, between, within time-spec, every time-spec,
etc..)

IFO; [22] is a conceptual model designed to capture both the structural and
behavioural aspects of the modeled reality. The behavioural nodel is based on
the notion of event, that represents either a fact of the modelled system which
occurs in a spontaneous manner (in the case of external or temporal events) or is
generated by the application. The event constructors are composition (conjunc-
tion), sequence (temporal precedence), grouping (collection of events of the same
type) and uwnion (disjunction). When a IF O3 schema is defined, it is possible to
translate it into a set of ECA rules by means of an ad hoc algorithm.

2 Introduction to Chimera

Chimera is a novel active, object-oriented and deductive database system; the
main goal of its design was the definition of a clear semantics, especially for
those aspects concerning active rules, such as rule execution, coupling modes,
triggering.

Chimera active rules (also called triggers) follow the ECA (Event-Condition-
Action) paradigm. Each trigger is defined on a set of triggering events, and it
becomes active if any of its triggering events occurs. The Chimera event language
was designed to consider only internal events, i.e. events generated by updates or
queries on the database, like create, modify, delete, generalize, specialize, select,



etc.. In particular, a rule is defined either as targeted or untargeted: if targeted to
a class, only events regarding that class are considered for triggering, otherwise
events regarding any class in the database can appear in the event part of the
rule.

The condition part is a logical formula that may perform a query on the
database; its evaluation is called consideration. Depending on the success of this
evaluation, the action part is executed coupled with the condition part.

Chimera does not permit binding transfer from the event section to the con-
dition section because of the set-oriented approach; nevertheless, it is important
for conditions to obtain objects affected by occurred events. Thus, a condition
may include event formulas, particular formulas that query the event base and
create bindings to the objects affected by a specified set of event types. Two
predicates are available to write event formulas: the occurred predicate and the
holds predicate. The former one extracts all the objects affected by the specified
event types; the latter considers event composition.

A rule is triggered as soon as one of the triggering events arises, and it is
no longer taken into account for triggering, until it has been considered. The
triggering mechanism checks for new triggered rules immediately after a non
interruptable execution block (either a user instruction sequence, called trans-
action line, or a rule action).

Based on the Event-Condition (EC) coupling mode chosen by the user, the
rule behaves differently: if the rule is defined as immediate, the consideration
is performed as soon as possible after the termination of the non interruptable
block that generated the triggering event occurrence; if the rule is deferred, it is
suspended until the commit command is given.

After the triggering mechanism has checked for new triggered rules, it chooses
a rule to be considered and possibly executed, if there is any triggered rule; the
choice is made based on a partial order derived from rule priorities provided by
the user. Notice that after the consideration and possibly the execution of the
rule, it is detriggered and it can be triggered again only by new event occur-
rences, because events occurred before the consideration loose the capability of
triggering the rule.

The user can influence the behaviour of the rule specifying the Event Con-
sumption mode as either consuming or preserving: in the former case, only event
occurrences more recent than the last consideration of the trigger are accessible
to event formulas; in the latter, all the events occurred since the beginning of
the transaction are available.

Example The following rule reacts to the creation of stock items, to check whether
the quantity exceeds the maximum quantity admitted for that item.

define immediate checkStockQty for stock
events: create
condition: stock(S), occurred(create, S),
S.quantity>S.max_quantity



action: modify(stock.quantity, S, S.max_quantity)
end;

The rule, called checkStockQty is defined with immediate EC coupling mode
and is targeted to the stock class. The event part indicates that the rule is
triggered when a create event on class stock occurs. The condition is structured
as follows: a variable S is defined on class stock; the occurred predicate binds
the objects affected by the creation to that variable and finally the constraint
is checked. If there is some object that violates the constraint, then the action
changes its quantity setting it to the maximum quantity for that object. Note
that the rule is executed in a set-oriented way, so all the objects created and not
checked yet by the rule are processed together in a single rule execution.

3 Extending Chimera with Composite Events

Our extension of Chimera with composite event types moves from the currently
available features in order to preserve the characterizing aspects of this system. In
particular, the introduction of an event calculus language should change neither
the triggering/detriggering semantics, nor the processing of triggered rules, in
particular with respect to EC compling modes and event consumption.

A composite event is an event expression obtained from primitive event types
by means of a set of operators, such as conjunction, disjunction, negation and
temporal precedence. These operators are divided in set-oriented and instance-
oriented operators: in the former case, we consider the occurrence of a combi-
nation of event types independently of the affected objects; in the latter, the
specified combination must occur on the same object. They are reported in Fig-
ure 1, listed in decreasing priority order: set-oriented operators have lower prior-
ity than instance-oriented ones, and conjunction and precedence operators have
the same priority. A complete introduction to the event calculus language follows
in next Sections 3.1 and 3.2. While designing the language, we moved on three
othogonal dimensions, as depicted in Figure 2: due to the boolean dimension, we
introduced operators such as conjunction, disjunction and negation; due to the
granularity dimenston, these operators are divided in instance-oriented and sei-
oriented; due to the temporal dimension we introduced two precedence operators,
one instance-oriented and the other set-oriented.

In the following two Sections, we introduce the set of operators. For each
event expression built by means of each operator, we indicate whether the event
has occurred (we say that the event is active) and we indicate the most recent
time when the event has occurred (called its activation time-stamp). We make
use of some sample event expressions based on classes stock, describing stock
products, and show, indicating products on shelves in a sale-room.

3.1 Set-Oriented Operators

A primitive event occurs when an occurrence of that event type arises, inde-
pendently of the object affected by it. For instance, let us imagine that two



occurrences of the event create(stock) arise at time ¢; and t5. At time ¢ < ¢
the event is not active; at time ¢; < ¢ < £5 the event is active and its activation
time-stamp is ¢1; finally, at time ¢; < ¢ the event is active and its activation
time-stamp is ts.

The first version of Chimera already provided the disjunction among prim-
itive events, that was described by a list of primitive event types separated by
commas. We keep the same notation, extending its application to generic event
expressions. Intuitively the disjunction £;1,E> of two event expressions arises as
soon as one of the component events becomes active. To be more precise, we say
that at a certain time ¢ the disjunction is active if at least one of the component
events is active. If only one of the component events is active, its activation
time-stamp becomes the activation time-stamp of the disjunction; if both the
components events are active, the highest activation time-stamp of them is as-
sumed to be the activation time-stamp of the disjunction.

For instance, as an example let us consider the sample event expression
create(stock), modify(stock.quantity), two occurrences of the primitive
event create(stock) at times ¢; and t3, and one occurrence of the primitive
event modify(stock.quantity) at time %5, with ¢; < 5 < 3. At time ¢ < ¢
the disjunction event is not active; at time ¢; < ¢ < 5 the disjunction is active
and its activation time-stamp is ¢1; at time ¢ < ¢t < t3, the disjunction is active
and its activation time-stamp is now t¢5; finally, at time ¢ > ¢3 the disjunction is
active and its activation time-stamp is now tj.

When we consider the conjunction £1+€; of two events, it is intuitive that
it is active when both of the component events are active. If so, the activation
time-stamp is the highest of the activation time-stamps of the component events.

For instance, as an example let us consider the sample event expression
create(stock) + modify(stock.quantity), two occurrences of the primitive
event create(stock) at times ¢; and t3, and one occurrence of the primitive
event modify(stock.quantity) at time %5, with ¢; < 5 < 3. At time ¢ < ¢
the conjunction event is not active; at time ¢; < ¢ < ¢5 the conjunction is still
not active; at time t; < ¢ < t3, the conjunction is active and its activation
time-stamp is t2; finally, at time ¢ > ¢3 the activation time-stamp is now 3.

In complex applications it is often necessary to consider the absence of an
event, i.e. one would like to check for the absence of occurrences of an event.

We think that a negation event - £ is active when the negated event (also
called component event) is not active; in particular, if there are no occurrences

Instance-Oriented|Set-Oriented
Negation -= -
Conjunction += +
Precedence <= <
Disjunction ,= s

Fig. 1. Composition Operators Set.
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of the negated event at time ¢, the activation time-stamp is the current time.

For instance, let us consider the first occurrence of the event create(stock)
at time ¢; and its negation, -create(stock). At time ¢ > ¢;, since the event
create(stock) is active, the negation is not active; at time ¢ < ¢;, since
create(stock) is not active, the negation is active and its activation time-stamp
is ¢, because it is occurring at time ¢.

Similarly to the conjunction, the precedence £1<€; of two event expressions
is active provided that both the component events are active; moreover, the first
component event must become active earlier than the second one.

For instance, as an example let us consider the sample event expression
create(stock) < modify(stock.quantity), two occurrences of the primitive
event create(stock) at times ¢; and ¢3, and one occurrence of the primitive
event modify(stock.quantity) at time {5, with ¢; < ¢3 < 3. At time ¢ < ¢
the precedence event is not active; at time ¢; < ¢ < ¢5 the precedence is still not
active; at time £5 < ¢ < t3, the precedence is active and its activation time-stamp
is t2; finally, at time ¢ > ¢3 the precedence is active and its activation time-stamp
still remains at ¢2, because the second creation has time-stamp greater than that
of the last modification.

We are able to write any complex set-oriented event expression, e.g.

modify(show.quantity) +
( -( create(stockOrder) < modify(stockOrder.del_quantity)) ,
( modify(stock.min_quantity) < modify(stock.quantity) ) )

which is active if there is a modification of the product quantity on a shelf, and
there is not a creation of a stock order followed by a modification of the delivered
quantity for a stock order, or there is a modification of the minimum quantity
for a stock followed by a modification of the quantity for a stock.



3.2 Imnstance-Oriented Operators

Instance-Oriented operators are useful to catch the occurrence of composite
events on the same object. For this reason, instance-oriented operators have
higher priority than set-oriented ones, and they cannot be applied to event sub-
expressions obtained by means of set-oriented operators.

In contrast, an event expression obtained using instance-oriented operators
can appear as an operand of a set-oriented operator; in fact, it is very intuitive
to pass from the instance-oriented to the set-oriented level, as we will show later.

A primitive event occurs on an object O when a new occurrence of that event
type arises and affects O. As in the set-oriented case, at time ¢ the following
situations are possible: no event occurrences of that type have arisen yet on O,
so the primitive event is not active for O; at least one occurrence of that type
has arisen on O, then the primitive event is active for O and the activation
time-stamp is that of the more recent occurrence. For instance, let us imagine
that two occurrences of the event create(stock) arise at time ¢; and ¢5 on the
objects O; and O, respectively. At time ¢ < ¢; the event is not active for both
the objects; at time 1 < ¢ < ¢ the event is active only for O; and its activation
time-stamp is t1; finally, at time ¢; < ¢ the event is still active for O; with
activation time-stamp ¢;, but it becomes active for O too and its activation
time-stamp is ts.

The instance-oriented conjunction £1+=E; of two events on the same object
O, is active when both the component events are active for O. The activation
time-stamp for O is the highest of the activation time-stamps for the compo-
nent events. For instance, create(stock) += modify(stock.quantity) is an
instance-oriented conjunction that becomes active for a stock object O when O
has been created and its quantity has been changed. When used in a set-oriented
expression, an instance-oriented conjunction is active if there is at least one ob-
ject affected by the two component event expressions. For instance, consider the
expression

modify(show.quantity) + (create(stock) += modify(stock.quantity))

which is active when a change of a shown product quantity occurs and at
least a stock object has been created and its quantity modified.

The instance-oriented disjunction €1 ,=E> of two event expressions on an ob-
ject O intuitively arises as soon as one of the component events becomes active
for O. Precisely, at a certain time ¢ the disjunction is active for O if at least one
of the component events is active for O. If only one of the component events is
active for O, its activation time-stamp becomes the activation time-stamp of the
disjunction; if both the components events are active for O, the highest activation
time-stamp of them is assumed to be the activation time-stamp of the disjunc-
tion. Consider the expression create(stock),= modify(stock.quantity) as
an example of instance-oriented disjunction, two occurrences of the primitive
event create(stock) at times ¢; and ¢3 on objects O; and Oj respectively, and
two occurrences of the event modify(stock.quantity) at time ¢5 on objects O,
and O respectively, with ¢; < t3 < #3. At time ¢ < t; the disjunction event is



not active for all the three mentioned objects; at time ¢; < ¢ < ¢, the disjunction
is active for O; with activation time-stamp ¢; and still not active for O5 and
O3; at time t5 < t < t3, the disjunction is still active for O; with activation
time-stamp #; but is now active for O, with activation time-stamp ¢»; finally, at
time ¢ > ¢35 the disjunction is now active also for O3 with activation time-stamp
t3. When used in a set-oriented expression, an instance-oriented disjunction is
active if there is at least one object affected by the disjunction of the component
event expressions. For instance, consider the expressions:

modify(show.quantity) + (create(stock) ,= modify(stock.quantity))
modify(show.quantity) + (create(stock) , modify(stock.quantity))
modify(show.quantity) +
(create(stock) +=

(modify(stock.min_quantity) ,= modify(stock.quantity)))
The first one is active when a change of a shown product quantity occurs and a
stock object has been created or its quantity modified. Observe that with such a
use the effect is the same as the second expression, that is active when a change
of a shown product quantity occurs and there are a creation of a stock object or
a modification of the quantity for a stock object, the two objects being possibly
different; in fact, the instance-oriented disjunction operator has been introduced
to be used in instance-oriented event expressions, based on a operator set that
we want to be orthogonal w.r.t. set-oriented operator set. The third expression
clarifies this concept, because it is active when a change of a shown product
quantity occurs and there is a creation of a stock objecy on which either a
modification of the minimum quantity or a modification of the quantity occur.

The instance-oriented negation —= € expresses the absence of occurrences of
an event type for an object O: it is active when the negated event is not active for
O and the activation time-stamp is the current time. For instance, let us consider
two occurrences of the event create(stock) at time ¢; and ¢; affecting O; and
O; respectively, and the negation event -=create(stock). At time ¢ < ¢; the
negation is active for both O; and O3, with activation time-stamp ¢ for both;
at time t; < ¢t < %3, since the event create(stock) is active for O; but not for
O3, the negation is not active for O; but is still active for O; with activation
time-stamp ¢; finally, at time ¢» < ¢, since create(stock) is active for both, the
negation is not active for both O; and O,. It is easy to think of the use of an
instance-oriented negation in the following intuitive way: it is active if there is
no object which the instance-oriented negation is active for, otherwise it is not
active. Notice that if the —= operator is applied to elementary event types, using
it in a set-oriented expression leads to the same result as the set-oriented version;
things change when it is applied to more complex instance-oriented expressions.
For instance, consider the expressions:

modify(show.quantity) + -=(create(stock)+=modify(stock.quantity))
modify(show.quantity) + -(create(stock) + modify(stock.quantity))
The first one is active when a change of a shown product quantity occurs and no

stock object has been created and its quantity modified. Instead, the second one
is active when a change of a shown product quantity occurs and there is neither



a creation of a stock object nor a modification of the quantity for a stock object,
the two objects being possibly different.

Similarly to the conjunction, the instance-oriented precedence £1<=€5 of two
events is active when both the component events are active on the same object
O, the first one becoming active earlier than the second one. For instance, let
us consider modify( stock.min_quantity) <= modify( stock.quantity),
two occurrences of the event modify(stock.min_quantity) at times ¢; and ¢3 on
the same object O1, and one occurrence of the event modify(stock.quantity)
at time ¢; again on the object Oy, with ¢; < ¢35 < ¢3. At time ¢ < ¢; the prece-
dence event for O; is not active; at time t; < ¢ < t5 the precedence is still
not active for Oj; at time t; < ¢t < t3, the precedence is active for O; and its
activation time-stamp is ¢5; finally, at time ¢ > ¢35 the precedence is active for O,
and its activation time-stamp is still 2. When used in a set-oriented expression,
an instance-oriented precedence is active if there is at least one object affected
by the sequence of the two component event expressions. For instance, consider
the expressions:

modify(show.quantity) + (create(stock) <= modify(stock.quantity))
modify(show.quantity) + (create(stock) < modify(stock.quantity))

The first one is active when a change of a shown product quantity occurs and
at least a stock object has been created and later its quantity modified. Instead,
the second one is active when a change of a shown product quantity occurs and
there is a creation of a stock object followed by a modification of the quantity
for a stock object, the two objects being possibly different.

3.3 Event Formulas

As introduced in Sections 3, event formulas (see Section 2) are extended in con-
sequence of the introduction of the event language.

Event expressions. The occurred predicate now supports event expressions lim-
ited to instance-oriented operators. This is due to the semantics of the predicate:
it returns all the objects affected by the specified event expression . For example:

occurred( create(stock) <= modify(stock.quantity) , X )

binds all the objects created whose attribute quantity has been modified to
variable X. Depending on the consumption mode selected for the rule, the above
formula retrieves either all the objects affected by that particular combination

* Chimera supports also a predicate holds which composes event types. However, there
is no need of such predicate in the new Chimera extended with event calculus, since
event composition can be explicitily evaluated by the calculus. For instance, net effect
for the creation operation in presence of sequences of modifications and deletions is
given by the following event formula:

create(class) =
(create(class) ,= (create(class) <= modify(class.attr))) +=
-=(create(class) <= delete(class))



of event types since the beginning of the transaction (preserving rule) or only
those affected since the last consideration of the rule (consuming rule). Observe
that this is exactly the same semantics of Chimera without composite events,
reviewed in Section 2.

Occurrence time-stamp. This new predicate is similar to the occurred predicate
but it provides the time-stamp of the specified composite event occurrences as
well. For example:

at( create(stock) <= modify(stock.quantity) , X, T )

where T is a variable defined on type time.

Its semantics is defined as follows: given an object X, T assumes all the time-
stamps, in the observed time interval, at which an occurrence of the specified
event expression arises for that object. In the above example, if the creation of a
stock object is followed by two updates of its quantity attribute, the specified
composite event occurs twice, exactly when the two updates occur.

The observed time interval depends on the consumption mode selected for
the rule: it can range either from the beginning of the transaction to the current
time (preserving rules), or from the last consideration of the rule to the current
time (consuming rule).

4 Formal Semantics

This Section is organized as follows: at first, we describe our approach to the
definition of event calculus; then we precisely define our model of Event Base,
on which the definitions presented later are based; then, we give the formal se-
mantics for both set-oriented and instance-oriented operators; finally, triggering
semantics is formulated in formal way.

Composite event semantics The main goal of our work is to provide the event
language with a semantics that preserves boolean properties, such as De Morgan
rules, when time properties associated to event occurrences (their time-stamp)
are considered. In fact, event occurrences exist because they are generated at a
certain time instant, thus that aspect should be always taken into account when
event expressions are evaluated.

Event expressions are used in the event part of the rule and possibly in event
formulas in the condition part. So the event occurrence determine whether the
rule is triggered or not.

The main idea is the following: when a portion of the event base EB (the
log of all events occurred since the beginning of the transaction, see Section 4.1)
is investigated, for each primitive event type we construct a function dependent
on time t, called the time-stamp of the more recent event occurrence in the
investigated portion of EB, indicated with ¢s. The ¢s function of an event type
is constructed on the basis of the positive time-stamp of the last occurrence of
the event type, if an event occurrence exists in the investigated portion of EB.
Otherwise, ts calculated in ¢ is set to a negative value, equal to —t.



EID|event-type OID |time-stamp
e1 |< create, stock > 01 t1
ez |< create, stock > 02 t2
e; |< create, order > 03 t3
es |< create, notFilledOrder > 03 t3
es |< modify, stock, quantity >| o1 t4
es |< modify, stock, quantity >| o2 t4
er |< delete, stock > 01 tx

Fig. 3. Example of EB.

Thus, the sign of the ¢s function of an event type states whether an occurrence
of that event type exists in the portion of EB relevant for rule triggering: if
positive, an event type occurrence exists; if negative, otherwise. Consequently,
it is sufficient to determine an instant ¢ in which function s is positive to solve
rule triggering.

When dealing with negation, the intuition is that ¢s function of a negation
event calculated at time ¢ has the opposite value of ¢s of the negated component
event, for each time value. In fact if an occurrence of an event type does not
exist in the portion of EB relevant for rule triggering (i.e. all event occurrences
more recent than the last consideration of the rule), from the instant of the last
consideration of the rule, ¢s value of the negated event at time ¢, is the time
value t. It comes that ¢s functions of primitive event types are calculated by a
simple lookup into a portion of EB.

From these basic t¢s functions, our event calculus algebraically derives ts
functions for event expressions from ¢s functions associated to its primitive com-
ponents. As already said, these expressions are obtained applaying arbitrarily
boolean operators and precedence operator to primitive event types. Derived ts
functions associated to event expressions have the same properties of s functions
for primitive event types.

4.1 The Event Base

The Event Base (EB) is the log containing all the event occurrences since the
beginning of the transaction. In this paper we model the EB as a table having
the structure depicted in Figure 3.

Each row contains an event occurrence, characterized by its unique identifier
(EID), the event type, the Object Identifier (OID) of the object affected by the
event occurrence, and the time-stamp of the time instant the event occurred
at. The event type is described by the name of the command that changed the
object state, possibly followed by the object class name and an attribute name.
In the following, we refer to the EID of a generic event occurrence as e.

Given an event occurrence e, we can define a set of useful functions returning
properties of e stored in the EB. Figure 4 contains examples of the defined
functions; derived from the EB state of Figure 3.



type : e1 —< create, stock > obj :eq4 — 03
type : es —< modify, stock,quantity >|obj : es — 01

type : es —< delete, stock > obj : e — 02
timestamp : ez — t2 eventonclass : e; — stock
timestamp : es — i3 eventonclass : es — stock

timestamp : eq4 — i3

Fig. 4. Examples of event attribute matches on events in EB.

type type: EID — eventtype
This function matches each event occurence to its event type.
obj obj: EID — OID
This relation matches each event occurrence to the object whose state has
been modified by that event.
timestamp timestamp: EID — time
This function matches each event occurrence to its time-stamp.
eventonclass eventonclass : EID — classname

This function matches each event occurrence to the class to which the object
affected by the event occurrence belongs. Note that this piece of information
is part of the eveni-type attribute.

4.2 Set-Oriented Case

The definition of s of a primitive event type £ at time ¢ is:

—t if V¢ (' <tA Be€R(
type(e) = € Atimestamp(e) = t'))
ts(€,1) def tg otherwise, where
tg = maz{t'(t' <t A Je € R(type(e) = €
A timestamp(e) = t'))}

where R is the set of event occurrences to which the event calculus applies.

We also introduce the function u(t): u(2) 40 if ¢ >0, u(t) df 1 if ¢ > 0.

From the above definitions, the presence of an event occurrence in R at time
t, is expressed by the logical predicate occ(€,t) which is true if u( ts(€,t)) =1,
false otherwise.

As already said informally, the semantics of negation is ts(-€,t) def —ts(€, ).

Semantics of the other set-oriented operators is given in two steps: at first,
we give a precise definition in logical style; second, that definition is translated
into an algebraic equivalent expression that can be used for the evaluation of
the ts function associated to the overall event expression.



LogicalStyleSemantics
det | min{ts(A,1t),ts(B,t)} if —oce(A,t) V —oce(B,t
1) ts(A+B, 1) = {ma:c{ts((.A, t)), ts((B, t))} if occ(.fl, t) 3\ occ(B,(t) :
det [ min{ts(A,t),ts(B,t)} if —oce(A,t) A —oce(—B,t)
2) ts((A4,B),1) = {ma:c{ts(A,t),ts(B,t)} if oce(A,t) V oce(B,t)
—t if —oce(A,t)V —oce(B,t)
vV occ( A, t) A oce(B,t)
3) ts((A<B),t) & A ts[A, ts(B,1)] < 0
ts(B,t) if occ(A,t) A oce(B,t)
A ts[A,ts(B,t)] > 0
AlgebraicSemantics
1) ts(A+B,t) = min{ts(4,1),ts(B,1)} [ 1)) u(
mas{15(4,0).15(8,0) [u{ts(A.0) u(5(3.1))
o) BB} 1) = mao{is(4, ), to(B, 0} [1 - w(—tsC4, ) u(—ts(B, )]+
min{ts(A,8),45(B,1)} [u(—ts(A, 1)) u(—ts(B,1))]
ts((A<B),t) = —t[1 — u( ts(B,t)) u( ts(A,ts(B,1)))]+
ts(B,t)[u( ts(B, 1)) u( ts(A,ts(B,1)))]

1— u( ts(A, 1)) u( ts(B,1))]+

3)

It is possible to show that several properties holds, like the De Morgan prop-
erty that ¢s(-((-A)+(-B)), ) is equivalent to ts((A, B),1).
ts(=((-A)+(-B)),t) =
— —min{ts(-A, 1), ts(~B, )} [1— u( ts(-4,2)) u( ts(
maz{ts(~A,1), ts(-B, 1)} [u(ts(-A,1)) u( ts(-B,1)))] =

= maz{ts(A, ), ts(B, )} [1 - u(—ts(A,8)) u(—ts(B, )]+
min{ts(A,t),ts(B,t)} [u(—ts(A, 1)) u(—ts(B,1))] =

I]: ts((A,B),t)

A graphical proof of this property is shown in Figure 5: for a set of event
occurrences (of type A, B, and C, where event type C is not involved in the ex-
pression), it shows t¢s functions for both primitive and complex event expressions
used in De Morgan proof.

The dual De Morgan property ts((A+B),t) = ts(-(-A,-B),t) and the fol-
lowing properties can be proved analogously.

E1tEy = E3+& (£1+£2)<83 = (81<83)+(82<83)
81,82 = 82,81 (81,82)<83 (81<83),(82<83)
(£1+£2)+83 = 81+(82+83) 81<(82+83) (£1<82) (£1<83)
(81,82),83 = 81,(82,83) £1<(82,83) (£1<82) (£1<83)
81+(82 ,83)) = £1+£2,81+£3 £1<82<83 = (£1<82)<83

4.3 Instance-Oriented Case

Instance-Oriented operators are useful to catch the occurrence of composite
events on the same object. For this reason, instance-oriented operators have
higher priority than set-oriented ones, and they cannot be applied to event
subexpressions obtained by means of set-oriented operators.



C A C B A B C
\ I N ) B
ts(At) | 1 | | | | t
| | | | | |
ts(—A,b) | | | |
[ T — \ \
| | | | _t
\ \ \ \_l_‘—t_
ts(B.1) l l L t ! l
t t t } }
|
ts(A+B.t) | | | |

—ts(A+B,1) T

ts((—A,—B),1)

Fig. 5. Examples of ts functions with event expression

The exposition will follow a schema similar to that of Section 4.2: after the
introduction of basic definitions and instance-oriented composition operators, we
show how instance-oriented event expressions are evaluated inside set-oriented
expressions.

In the ¢nstance-oriented case we make use of ots functions, which are very
similar to ¢s functions, except for the fact that they refer to a single object.
—t if VH'(t' <t A Ae € R(type(e) =&
Ntimestamp(e) = t' A obj(e) = oid))
ots(€,t, 0id) def ity otherwise, where
tg = maz{t'(t' <t Ade € R(type(e) = €
A timestamp(e) = t' A obj(e) = oid))}
where R is the set of event occurrences to which the event calculus applies. As
in the set-oriented case, it is oocc(€,¢,0id) = true if wu( ots(€,t),0id) = 1,
false otherwise.

Conjunction : LogicalStyleSemantics

ots(A+=B, t, 0id) def

min{ots(A,t,o0id), ots(B,t,0id)} if —oocc(A,t,oid) V —ooce(B, t, 0id)
maz{ots(A,t,oid), ots(B,t,0id)} if oocc(A,t,o0id) A ooce(B, t, oid)

Conjunction : AlgebraicSemantics

ots(A+=B,t,0id) =
min{ots(A,t,0id), ots(B,t, 0id)} [1 — u(ots(A,t,oid))u(ots(B, t, 0id))]+
maz{ots(A,t,o0id), ots(B,t,0id)} [u(ots(A,t, oid))u(ots(B, t, 0id)))]

The disjunction, negation and precedence operators are similarily extended
to the instance-oriented case, and expressed respectively with “,=”, “-=" and
“<=”_ So all the properties valid for the set-oriented operators, can be easily

extended to the instance-oriented case.



We now show how ots functions are related to ts functions to be evaluated
inside set-oriented expressions, and which properties can be proved.
ts(A+=B,t) = min{ots(A+=B,t,0id)}, Void € R
ts(A<=B,t) = min{ots(A<=B, t,0id)}, Void € R
ts(A,=B,t) = min{ots(A+=B,t,0id)}, Void € R
ts(-=A,t) = maz{ots(-=A,¢,0id)}, Yoid € R
ots(A,t, 0id) < ts(A,t) Yoid
properties|ts(A+=B,t) < ts(A+B,t)  ts(A,=B,t)
ts(A<=B,t) < ts(A<B,t)  ts(-=A,t) > ts(-A,t)

ots to ts

4.4 Specification of rule triggering

The formal specification of rule triggering at time ¢ for a rule r is given by the
predicate T'(r,t): if the result of its evaluation is true, then the rule is triggered.

T(r,t) = {ele € EB A r.tg < timestamp(e) <t} A

R#£OA Tt (rto <t <tAts(r.,t)>0)
where r.7g is the time-stamp of the last consideration of the rule, while r.£ is the
triggering event expression of the rule. Observe that the predicate defines the
set R which the ts function must be applied to as the set of all event occurrences
more recent than the last consideration of the rule: in fact, the event calculus
can be applied to a generic set of event occurrences; orthogonally, the triggering
semantics defines this set.

Note that intuitively this semantics implies that a rule can be triggered only
if something happened, otherwise the triggering mechanism ends because there
is nothing which rules can react to. The reason of this choice (R # 0) is that
removing this constraint, a rule triggered by negated event types would always
be fired even in absence of new event occurrences; then the system would become
active instead of being reactive.

5 Implementation

The introduction of the event calculus language does not change the general
architecture of the implementation of Chimera, described in [3], but affects only
some specialized component, like the Fvent Handler and the Trigger Support: the
former deals with event occurrences and stores them into the Occurred Events
data structure; the latter maintains the current status of active rules (called
triggers and chooses the trigger to be executed among those activated.

Chimera has a component, called Block Ezecutor, which executes non inter-
ruptable execution blocks (user transaction lines or rule actions), finishes the
execution of a block, it sends all the last generated event occurrences to the
Event Handler in order to store them into the Occurred Events data structure.
This data structure is maintaned as an event tree whose leaves are lists of event
occurrences of the same type; furthermore, each leaves keeps the time-stamp of
the more recent occurrence of the associated event type.



At this moment, the Event Handler calls the Trigger Support whose task is
the determination of new activated rules. The Trigger Support maintains in the
Rule Table the current status of all defined rules; this table is managed by means
of a hash table, for fast access, but rules are also linked together by means of
a queue on the basis of the priority order. To deal with composite events, each
rule has two time-stamps associated to it: one, called last-consideration, stores
the last consideration time-stamp; the other, called last-consumption, stores the
time-stamp of the last event consumption, which is either the last consideration
time if the rule is consuming or the initial time-stamp of the transaction if the
rule is preserving. Another flag associated to a rule is the iriggered flag, set to
true if the rule is triggered or to false otherwise.

The Trigger Support checks for activated rules in the following way. It looks
up into the Rule Table for all rules which are not triggered. When it finds one,
it computes the ts value for the associated triggering event expression: if the
computed value is positive, the rule is then triggered and the iriggered flag is set
to true (the rule will be detriggered once after its consideration).

Once new triggered rules are determined, the one to be executed is chosen
by means of the rule queue, and passed to the Block Ezecutor.

The evaluation of ¢s should take into account a certain number of things.
At first, to determine the ¢s of a primitive event type is sufficient to query the
occurred events table to get the last occurrence time-stamp of the desired event
type E: if this time-stamp is not less than the value of last-consideration, this is
the value of ts(E,t) , otherwise ts(E,t) value is —t (where ¢ is the current time-
stamp). Second, when dealing with instance-oriented operators, it is necessary
to keep trace of all monitored events occurred on a single object: to do that, a
sparse data structure can be associated to each rule and maintained until the
consideration, then it is made empty; each item in this data structure stores the
OID of an object affected by some event type since the last consideration and
the list of event occurrences affecting that object since the last consideration.

5.1 Static Optimization

In general, the computation of the ¢s function for a given rule is an expensive
task, especially if a large rule set has been defined. Our approach is to reduce
the ¢s recomputation, by doing it only when it is highly probable that ¢s value
becomes positive. The goal of the static optimization is to extract conditions
on an event expression that guarantees, if not met, that the value of ¢s cannot
become positive (recall rule triggering condition). This analysis should be per-
formed when a rule is defined, and its results used to drive the Trigger Support
in determining triggered rules.

The occurrence of composite event type £, at time £, is indicated by the fact
that the associated function ¢s assumes a new positive value at time ¢; thus, we
need to check positive variations of ¢s, that we indicate as A*(£). Depending
on the composition operator, it may depend on positive or negative (indicated
with A~ (€)) variations of the component event expressions: the first case arises
with conjunction, disjunction and precedence, the second one with negation.



AT (=€) — A (&)
AT (-=€) = AL(E)
AL(-=€) = A(€)

AT (=€) = AT(€) AG(-=€) — A%(€)

AT(-E) = AT(&) AT(£,<=6) — AL(&)
At (£1<E) — AT(&) AL (E1<=&3) — AL(E2)
A_(gl—gz) — A_(gz) A_(€1<=52) —r A5(€2)

AT(E1bin-op&s) — AT (&), AT (&) AG(&1<=E2) — Ag(&2)

A~ (&bin-optz) — A™(&1), A7(&) | At (Erbin-op=£z) — AL (&1), AL(E2)
A"(;(é'lbin—op=52) — AES(&), AZ(&*)
A‘(é‘lbin—op=52) — Aa(gl)aA5(52)
Aa(é‘lbin—op=52) — Aa(gl)aA5(52)

Fig. 6. Derivation Rules.

{A%(6), A5()} — {A0(E)}{AT(£), A5(6)} — {A(€)}
{A0(€), A5(E)} — {A0(E)}{A0(£), AT(E)} — {A(£)}
{40(€), 45(8)} = {A0(E)}{A0(€), A7(€)} — {A(€)}
{A*(£), A5(6)} = {AT(E)}{A*(€), A7 (6)} — {A(£)}
{A7(£), A5(6)} — {A™(E)}{A (), A(6)} — {A(£)}
{A%(£),A5(6)} = {A(€)} [{A7(€), A(E)} — {A(£)}

Fig. 7. Simplification Rules.

This process can be performed until primitive event types are reached using a
proper set of derivation rules (see Figure 6). In these rules for simplicity, we have
used the symbol “bin-op” to indicate either the conjunction or the disjunction
operator. These rules consider the instance-oriented operators as well; in order
to deal with them, they use the symbols A}(E), A5 (E) and Ao(€), which
are analougous to the previous ones, but indicating ots variations for a single
object. In the end, it leads to a set V() of variations (positive or negative)
for primitive event types describing whether or not the value of ¢ts must be
recomputed, because it might have changed, when new event occurrences arise;
in practice, the conditions described by V(€) are sufficient conditions ensuring
that if new arising event occurrences do not match V(£), no recomputation of
ts is required.

Set V() can be simplified using rules in Figure 7; in particular, with the
symbol A(€) both a positive and negative variation is indicated. As an example,
consider the following event expression €.

£ = ((4+B), (CH(-A)*((A4+=C)<=(-=(B(<=4))

The V(&) set is obtained applying at first the derivation rules, then the simpli-
fication rules, as shown below.



V(E)=AT(E) =
= {A*((A+B),(C+(-A))), AT ((A+=C)<=(-=(B(<=4))} =
= {A+(A)v A+(B)7 A+(C)7 A_(A)v Ag(A"':C)v AE(B(<=A)} =
= {A+(A)v A+(B)7 A+(C)7 A_(A)v Ag(A ) Ag(c)v A5(3)7 AE(A)} =
= {A(A)v (B)v A+(C)}

6

Conclusions

This paper has proposed an extension of event calculus for Chimera, character-
1zed by the following features:

It requires a minimal set of orthogonal operators.

It continuously evolves the semantics of Chimera by enabling more sophis-
ticated rule triggering, while preserving the other semantic features of the
rule system.

It supports a formal and efficient evaluation of triggering caused by event
expressions of arbitrary complexity, based on the use of a function ¢s which
assoclates each event expression to an integer value; a rule is triggered when
the corresponding ¢s expression is positive, and not triggered otherwise.
The function ts is assigned in such a way that certain obvious properties
of calculus hold, such as De Morgan’s rules or distributivity, associativity,
and factoring of precedence expressions. Although this requirement seems
mandatory to us, indeed it is not explicitly demontrated by some other event
calculus proposals in the literature; achieving this result has required to us
a nonobvious “twisting” of the {s functions.

As an optimization, the evaluation of the s function is required when certain
operations occur which have the potential of “changing the sign” of ¢s, and
can be skipped otherwise.

Given the above features, we believe that the proposed event calculus applies

not only to Chimera, but also to all other systems which currently support
individual or disjunctive events (including all relational products which support
triggers).
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