Efficient Distribution Analysis via Graph Contraction

Thomas J. Sheffler * Robert Schreiber = William Pugh f John R. Gilbert *#
Siddhartha Chatterjee ®

Abstract

Alignment and distribution of data by an optimizing compiler is adream of both manufacturers and
users of paralel computers. The distribution problem has been formulated as an NP-complete graph
optimization problem. The graphs arising in applications are large, and the optimization problem does
not lend itself to traditiona heuristic optimization techniques. In this paper, we improve some earlier
results on methods that use graph contraction to reduce the size of a distribution problem. We report
on an experiment using seven example programs that show these contraction operationsto be effective
in practice; we obtain from 60 to 99 percent reductionsin problem size, the larger number being more
typical, without loss of solution quality.

1 Introduction

Programmers expect that array parallel languages such as High-Performance Fortran (HPF) will provide
high performance on distributed memory parallel computers, if they pay careful attention to the distribution
of arraysto theavailable processors. Currently, array distribution must be performed by a programmer, who
then annotates a program with distribution directives. Thisdifficult task is further complicated by the fact
that the optimal distribution for a program is dependent on the target machine. In theinterest of simplifying
the task of the programmer and enhancing the portability of array parallel programs, distribution should be
handled by the compiler.

Unfortunately, distribution is a difficult combinatorial optimization problem [1]. Heuristic algorithms
can be effective for small programs. However, for very large programsor very detailed analyses (employing
inter-procedura analysis, for example) these algorithms may become less effective or unacceptably slow.

In this paper, we show how to reduce the size of adistribution problem. Werecall theformulation[1, 2]
of the distribution problem as agraph labeling problem, then show how parts of the graph may be eliminated
through graph contraction operations. The contraction operations are based on identifying program regions
(the nodes of a subgraph) that may be performed under the same distribution. Once identified, we collapse
these regions into a single node that captures all of the information present in the original problem. Our
contraction operations are lossless: they do not diminish the quality of solutionsthat may be found.

*Research Institute for Advanced Computer Science, Mail Stop T27A-1, NASA Ames Research Center, Moffett Field, CA
94035-1000. (sheffler @i acs. edu, schrei ber @i acs. edu). The work of this author was supported by the NAS
Systems Division via Contract NAS 2-13721 between NASA and the Universities Space Research Association (USRA).

Department of Computer Science, University of Maryland, College Park MD 20742. pugh@s. und. edu

{Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304-1314. gi | bert @ar c. xer ox. com
Copyright (©1993, 1994 by Xerox Corporation. All rights reserved.

§Department of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175. sc@s. unc. edu

We examine different strategiesfor applying the contracti on operations and eval uate their rel ative merit.
Initial experiments conducted with example programs show that these contraction operations are effective
in practice. It ispossible, moreover, that stronger contraction operations could further reduce problem sizes
to the point where they could be solved exactly.

2 Thegraph model

A data-parallel program may be modeled as a directed graph (V,). Each node v € V of the graph
corresponds to an array operation in the program. An operati on consumes one or more arrays, and produces
one or more arrays as aresult. A directed edge (v, w) € E connects a definition of an array object in array
operation » to a use by operation w.

In our representation, there are al so three special nodetypes. A fanout node produces copies of an array
with many uses; abranch node produces copies of an array with mutually exclusive uses, and amerge node
combines mutually exclusive definitions of an array value (usualy due to branchesto a particular pointin a
program).

A weight labels each edge; it is (an estimate of) the number of elementsin the array represented by the
edge multiplied by an estimated trip-count of the edge in an execution of the program. In this way, the
weight incorporates information about control flow.

Alignment isspecified for the head and tail of each edge, giving theaignment of an array at itsdefinition
and use. Distribution must also be given for each node, specifying the distribution that is applied to each
of the arrays involved in the node computation. The graph, a ong with these labels, is called an Alignment
Distribution Graph (ADG) [3].

We dlow the same mappings as HPF. an array is aigned to a template, which is distributed over the
available processors. A templateis an abstract array used as atarget in alignment directives. An alignment
is specified by four separate components. These are axis, stride, offset, and replication. Axis alignment
determinesthe correspondence of array axesto templateaxes. Strideaignment specifiesthefactor by which
the array is stretched across the template. Offset is a vector specifying the distance of an array from the
origin of the template, and replication specifies certain axes of the template over which an array might be
copied.

An example of aignment and distribution as specified in an HPF program follows. The first two
directives declare the template and describe the alignment of the array. The third and fourth lines together
describe the distribution. The PROCESSORS directive describes the allocation of arrays to the axes of the
template, while the DI STRI BUTE directive specifies how the template is divided over the processors. In
thiscase, the BLOCK directive says that the first dimension of the templateisdistributed in blocks of 25 over
4 processors, and the CYCLIC di r ect i ve specifiesthat the second dimension is distributed in blocks of
10 over 8 pracessors. Since the extent of the template is 200 in the second dimension, the blocks will wrap
around the processors.

real :: A(100, 100)

| HPF$ TEMPLATE T(100, 200)

| HPF$ ALI GN A(i,j) WTH T(i,j+100)

| HPF$ PROCESSORS P(4, 8)

| HPF$ DI STRI BUTE T(BLOCK, CYCLIC(10)) ONTO P

Theaignment of an array object may change between itsdefinition and use (as represented by thetail and
head of an edgeinthe graph model). A changein alignment effectively changes the data mapping of an array
and resultsin realignment communication. Thetype of communication needed toimplement therealignment
is determined by the component of an alignment that changes. Axisor stride realignment requires all-to-all
personalized communication (AAPC), offset realignment requires shift communication, and replication
realignment requires a spread (broadcast) communication operation. In genera, redistribution requires
AAPC.

In our model, each node in the graph is assigned a distribution. If an edge connects two nodes with
different distributions, then the array carried by the edge is redistributed between its definition at the tail of
the edge and its use at the head.

We chooseto perform distribution analysisafter alignment analysis. In our system, wefirst optimizeaxis
and stride alignment, then replication alignment, followed by shift aignment. The order of the optimizations
is motivated by the relative costs of the communication required by these types of realignment. It might
be possible to find a better alignment if distribution information were known, but distribution analysis is
difficult without some model of realignment communication costs. Consider the following example code
fragment.

i nteger, paranmeter :: N = 1000

real a(N), left(N2), right(N2), cl, cr
tl =cl * a(l:N2)

t2 =cr * a(3:N

a(2:N1) = a(2:N1) +t1 +12

In our system, we would perform alignment first. The axis and stride alignments chosen here cause no
realignment, but there is offset realignment in this typical finite-difference stencil computation. Because
of the necessary offset realignment, which comes to light in the alignment optimization phase, we would
prefer to give the arrays a block rather that a cyclic distribution, since this reduces data traffic when shift
communication if performed. 1t would be difficult to determine this fact about distribution without having
established alignment information first.

2.1 Modeingredistribution cost

The Alignment-Distribution Graph (ADG) G = (V, £') may be used to model the effects of distribution
decisions. Our system first findsa set D of candidate distributions. Node costs are recorded in amatrix, €',
and edge costs are recorded in amatrix, W. Entry C'(d, v) estimates thetime required to perform operation
v € V under distribution d € D. Realignment costs are aso incorporated in this model by adding an
estimate of the cost of performing the realignment, if any, on directed edge (u, v), for each distribution
d, into the cost entry C'(d,). Each edge, (u,v) € £, has an associated weight, W (u, v), which is an
estimate of the time required to redistribute the array value communicated along the edge. Even though
this single weight is a simplistic measure of redistribution (since it is insensitive to the actual starting and
ending layouts) experiments have shown that this discrete metric accurately reflects the cost of performing
aredistribution step [7].

We seek to give each ADG node a distribution in D, i.e., we seek amapping m : V. — D. For a
particular distribution map, the cost of performing the computation of the graph isthe sum over the nodes of
the cost of performing their computation in the given distribution, plus the sum of the weights of all edges

whose endpoints have different distributions:

cost(m) = Z C(m(v),v)+ Z W(u,v).

veV (w,v)EE, m(uw)£m(v)

The goal of distribution analysisisto map each node to a distribution so that this cost is minimized.

The mode’s node cost component is trivially minimized by mapping each node to its distribution of
smallest node cost; this can result in many edges carrying redistribution communication. Edge costs may
be avoided entirely by mapping every node to some one distribution, the best of these being the distribution
that minimizes the sum of the node costs. The optimal solution typically lies at neither of these extremes.
The centrifugal tendencies toward reducing node costs (by |abeling nodes independently) and eliminating
edge costs (by labeling nodes identically) are what make the problem difficult. Bixby, et al. [1] in fact show
that thisformulation of the distribution problem is NP-complete.

2.2 Theset of distributions

A distributiond € D specifiesboth the deployment of processorsto the axes of the template and the blocking
factor with which each axis is distributed to the processors (in a cyclic fashion). Our analysis requires a
set D of candidate distributions.> The set may be specified by a programmer, or may be generated by a
compiler asit analyzes the program. We adopt the latter approach.

Thegeneration of aset of distributionsrequirescare. Theachieved costisingeneral reduced by alowing
alarger set of candidate distributions. But the running time of our optimization algorithms is sensitive to
the size of D. We have previously shown how to select candidate distributions and how to limit their
number [2].

2.3 Static and dynamic mappings

We introduce two terms to describe a distribution map for a subset of ADG nodes 5. Let m be a given
distribution map. Then 5 is static under m if m maps each element of .5 to the same distribution; S is
dynamic under m otherwise. We say that the map m is static if V' is static under m. Since al nodesin a
static subset have the same distribution, no edges in a static subset carry redistribution costs and the cost of
a static distribution is completely determined by the node costs.

The way in which we attempt to reduce the size of the graph is to identify optimally static (O.S.)
subgraphs of the distribution graph.

Definition 1 (Optimally Static) Asubset 5 C V,isoptimally staticif for anymapm : V' — D thereexists
amap m’ suchthat ' and m takeidentical valueson V' — 5, S isstatic under ' and cost(m’) < cost(m).

(Note the difference between this and the following definition: 5 is weakly optimally static if there is a
minimum cost distribution map 2 under which S’ is static. The strong definition allows one to identify a
family of digoint O.S. subsets and collapse them simultaneously, the | atter does not.)

Our overall plan for finding a distribution map m is this. We first determine a collection of subsets
that we require to be static under m. This partialy determines m. Then, for these subsets, we can ignore
internal edges and aggregate them into a single "super”" node whose node cost is the sum of the node costs

1This approach differentiates our strategy from others. For example, Wholey employed a search strategy to determine the
optimal distribution for a program [8], and Gupta used heuri stic methods to determine distribution parameters [6].

of its elements, thus reducing the size of the graph. Clearly, any O.S. subset should be so contracted, as
this does not increase the cost of the best distribution that can be found. The remainder of the paper will be
concerned with finding O.S. subsets.

Graph contraction based on O.S. subsetsrequiresfirst finding acandidate subset and then testing whether
itis O.S. The next section develops a theory of O.S. subsets. A later section discusses heuristic strategies
for finding candidate subsets.

3 Node amalgamation for the distribution problem.

An understanding of properties of the distribution graph allows us to develop theorems that describe how
subsets of nodes can be collapsed or amalgamated into super nodes, without changing the problem in an
essential way. In this manner, we will reduce the size of the ADG as afirst step in distribution anaysis.

3.1 Definitions

Each cost matrix entry, C'(d, v), gives an estimate of the time required to perform the computation of node
» under distribution d. It is convenient to speak of the cost table of a node, which is simply the column of
entries pertaining to the node, denoted (',. We extend this term to sets of nodes, .5, where the cost table of
asubset is simply the vector sum of the columns of the nodesin 5, denoted C's. Thus, C's(d) is the cost of
performing all of the operations of 5 in distribution d.

Recall that a set of nodes 5 is O.S. if some optimal program distribution assigns the same distribution
to all nodesin 5. We may also speak of astatic cost of a set of nodes, which is simply the cost of the set
of nodes if they were to be placed at the same distribution. Because the cost table C's gives the cost of the
subset for each candidate distribution, we may obviously select the smallest value. The static cost of a set
of nodes S is

static(5) = min{Cs(d) | d € D}.

We will aso occasionally be interested in the worst static cost that a set could incur:
worst(.S) = max{Cs(d) | d € D}.

The difference between the maximum and minimum cost of a single node is called the range of the
node.
range(v) = max Cy(d) — r%in Cy(d).

Let asubset S C V be given. We shall use a simple lower bound on the cost of a distribution map
under which ' is dynamic. Such a distribution map could potentially assign every element of S to its
minimum cost distribution; or it could avoid redistribution costs on edges leaving S’ at the expense of some
redistribution cost internally (assumingthat .5 isconnected). In either case, adynamicsolutiondivides .S into
at least two partitionswith different distributions, and every edge crossing the partition carries redistribution
communication. This redistribution cost is at least as great as the weighted minimum-cut (min-cut) of the
undirected subgraph induced by 5. Thus, for a distribution map m such that .5’ is dynamic under m,

dynamic(5) = > minC, + mincut(5)
veES

isalower bound on cost(m).

Many of our proofs require consideration of the edges crossi ng from one set 5 to another set 7'. Define
the function weight(.5, 7") asfollows:

weight(5,7) = Z Wiv,w)+ W(w,v).
vES,WweT

Thus, weight(.5, 5') isthe sum of theweightsof all edgesentering or leaving 5. We will also need afunction
that determines the maximum weight with which a set is attached to any particular neighbor.

maxweight(.5) = meag weight(.5, {v}).

3.2 Optimally static subsets

We present a number of tests that may be used to verify that a subset of nodesis O.S. Each of the lemmas
below gives an explicit construction showing, for a class of subsets 5, how a map with dynamic S can be
modified on 5" to make S’ static and not increase the cost. A following section discusses the implementation
of the tests and the expected running time of each.

Lemma 1 (Accretion) [2] Let S beO.S andassumew ¢ 5. If

weight({v}, 5) + range(v) < weight({v},.5)

then S U {v} isO.S

Proof: ~Any map may, by assumption, be modified on 5 to make ' static without increasing its cost.
Now consider amap in which 5 is static with distribution d and » has a different distribution «’. Changing
the distribution of node v to d reduces the cost of the mapping by w(v,.5) and raises it by at most
w(v, S) + range(v). By the hypotheses, this change al so does not increase the cost. Hence S U {v} isO.S.
O

Corollary 1 (Series) Given a node y with only two distinct neighbors, = and z, theset 5 = {z,y} isO.S
if W(y,z) + range(y) < W(z, y).
Proof: Since any singleton node isan O.S. subset, the corollary followsimmediately from Lemmal. O

Thistrivial corollary of Lemma 1 turns out to be very useful in practice: it identifies pairs of nodes that
should be merged. In particular, unary operations representing SPREAD and REDUCE functions often have
small ranges and have input and output edges of very different weights. Elementwise unary operations may
have zero range with equal weights on their two incident edges.

Lemma2 (Min-cut) [2] Aset S isO.S if static(.5) + weight(.5, 5) < dynamic(5).

Proof: Assumethat 5 is dynamic under a given distribution map. If the inequality holds, then the cost of
this map is not increased by assigning S’ to its best static distribution, incurring the static node cost as well
as potentia redistribution on all edges leaving 5. O

The strategy of the previous lemma was to remap al of S to its preferred single location. As an
aternative, we consider remapping al of 5 to the distribution of one of its neighbors, so as to make the
unionof 5 and that neighbor static. Define adj(.5') to be those nodes outside of 5 with one or more neighbors
ins.

Lemma 3 (Adjacent Vertex) Let S C V. If

(worst(S) — 3~ minC,) + weight(5, §) — maxweight(:5) < mincut(s), (1)
veES

then S isO.S

Proof: Let S bedynamicunder somemap 2, and let » beasin the hypotheses. Remap all nodesin 5 to the
distribution of node ». The node costs can increase to the worst static cost of .5, thusincreasing by no more
than thefirst term of theinequality 1; the edgesfrom .5 except those touching » may now incur redistribution
costs. By the hypothesis, these added costs are at |east recompensed by the absence of redistribution aong
theedgesinternal to 5. O

Note that although the construction in the proof guarantees that S U {v} is static after the relabeling,
we cannot conclude that .5 U {v} is O.S., since we claimed a gain of mincut(.5) after relabeling a map for
which S is dynamic. The following reformulation alows usto conclude that S U {v} isO.S.

Lemma4 (Border) Let 5 C V. If

(worst(.S') — Z minC,,) 4+ weight(.S, §) — maxweight(,5) < mincut(S U {v}), (2)
vES

then S U {v} isO.S

Nodes that do elementwise computation often do not prefer any distribution to any other, aslong as al
the distributionsin D balance the load (number of elements per processor).

Definition 2 (Apathy) A set of nodes, 5, isapatheticif range(v) = 0O, for all v € 5.

For aset S of apathetic nodes, worst(5) = >, cs minC',, so thefirst term of inequalities 1 and 2 vanish.

When S isan apathetic singleton set. Lemma4 holdswhen one of the edges touching the node outwei ghs
the sum of all others. In thissimplified form, thislemmais useful for identifying single nodes that should
be merged with a heavily connected neighbor into an O.S. subset.

4 Locating subsets

The lemmas developed in the preceding section verify that a subset of nodes is O.S,, but do not reved
how to find candidate subsets. It is clearly impractical to consider all possible subsets of V', so we develop
heuristicsto help locate subsets with the potentia to be O.S.

Lemmas?2, 3and 4 compare static coststo dynamic costs. Static distributionsmust tolerate redistribution
communication on edges leaving the subsets, while the dynamic distributions only incur the min-cut cost
on edges internal to the set. In order for a subset to pass any of these tests, it must be highly connected
internally (leading to a large min-cut value), with low-weight connections to nodes outside of the subset.
Using this observation, we construct the connected components of the subgraph obtained by deleting from
F dl edges whose wieght is less than or equal to some specified threshold, ¢. The mincut of any such
componenet istherefore not less than ¢, while the weight of each external edgeislessthan ¢.

We examine a set of thresholds, T', which is generated by histogramming the edge weights of the graph
and dividing the histogram into buckets. The minimum vaue in each bucket becomes a threshold valuein

the set T'. To use this agorithm, we work through the thresholdsin T from heaviest to lightest. We apply
the O.S. teststo each connected component at the current threshold.

This heuristic is effective because of the way in which the edge weights of the ADG are calculated.
Recall that the ADG incorporates the effects of control flow into its weight calculation by multiplying the
weight of an edge by its estimated trip count. In the ADG, nodes corresponding to operations within loops
are connected by high weight edges, and values are communicated into and out of loops by low weight
edges (because they are traversed only once). The strategy above tends to find connected components
encompassing the operations inside the bodies of loops. The buckets tend to correspond to different levels
in loop nests.

The complexity of this subset finding agorithm is proportiona to the number of edges, |£|, and
the number of thresholds, |7'|. The histogramming phase of the algorithm can be performed in time
proportional to | /|, and connected componentscan befound intimet = O(| F|) by using depth-first search.
The enumeration of all subsets using this technique can be performed in¢ = O(|T| | £|) time.

4.1 A dight modification

The procedure above locates subsets based only on edge weights, but it also beneficial to incorporate cost
table information into the heuristic. If welook at the components of the static and dynamic costs due to the
cost table entires, we note that we would like to minimize the following difference:

AS)=min» C(d,v)— minC'(d,v).
()= qip 3. Cd.v) = 3 pipc(d, v
Elsewhere, we have called this quantity the “dissension” of a set of nodeg[2]. A set has adissension of O if
all nodes agree on the best distributon.

We initially tried modifying the subset sel ection procedure to find subsets with adissention of 0, but this
strict criterion did not work well in practice. We also tried heuristicsfor find subsets having low dissension;

these approaches are still under investigation.

5 Implementing the O.S. testsand the contraction operation

This section suggests data structures and algorithms for implementing the tests of the preceding section.
While none of the algorithms presented is difficult to implement, a naive implementation of the tests could
lead to poor running times. In particular, dense representations of the matrices C' and W are inappropriate
not only because of the waste of storage that would occur, but because suitable graph traversals are not
supported. Sparse matrix a gorithms are necessary because of the sparse structure of the ADG. Contraction
operations maintain sparsity as well.

5.1 Datastructures

The matrices C' and W are stored as sparse matrices. An element in a matrix is arecord structure storing
its row, column, and value, and pointers threading it into two doubly-linked lists: alist of elementsin the
same row, and another list of elementsin the same column. For each matrix, two vectors of pointers record
the first element in each row and column. The elements of the lists are unordered.

Finding a particular matrix el ement in thisdata structure requires potentially searching through an entire
row or column list. However, our algorithms do not require finding individual elements quickly, but rather

depend on a data structure that supports efficient traversal s of various types. The main operations required
are thefollowing.

insert: Given apointer to an matrix element, insert it into the appropriate row and column lists. This may
be accomplished in O(1) time.

delete: Given a pointer to an matrix element, delete it from both of itslists. This may be accomplished in
O(1)time.

neighbors: Enumerate the neighbors of a given node, ». These may be enumerated by iterating through
therow and column lists of » in the weighted adjacency matrix, .

A set of nodes ' isrepresented in asimplelinked list structure so that its nodes may be enumerated. Our
algorithms also require two mark vectors, caled mark and border, each of length |V|. These two vectors
are cleared once at the beginning of the program. Some of the O.S. tests will set and clear marks in these
vectors, but none will be required to touch the entire vector.

Our agorithmsuse a Sparse Accumulator (SPA) to add sparsevectors[4]. A sparse vector isasequence
of <i ndex, val ue> pairs, wherethelargest possibleindex issomevaue N. The SPA maintains3 internal
vectors of length N calledaccum f | ags and el t s. At program startup time, these vectors are allocated
and cleared. The vector accum holds the values of al elements of a sparse vector, el t s isused as a
stack that records the indices of nonzero elementsin accum and f | ags, a boolean vector, is set if the
corresponding element has been pushed onto el t s. A SPA is used to compute the sum of several sparse
vectorsin time proportional to the number of nontrivial arithmetic operations actually performed.

5.2 Contracting nodes

The node contraction operation replaces a set of nodes, .5, with a single node s in a reduced graph. The
node cost vector C's of the new node is the sum of the node costvectors of its elements, and the weight of
each edgeincident to 5 isthe sum of the weights of all edges between the adjacent node and elementsof 5.
Precisely, thisiswritten as

C(d,s):ZC(d,v),W(s,v): Z Wi(v,w), W(v,s)= Z W(w,v).

vES vESwES vESWES

Our technique contracts S by adding the sparse vectors that encode the edge weight and adjacency
informationfor thenodesin 5. Merging thecost tableentriesfor the nodesreguires adding the corresponding
columnsof C'. Thus, the cost table entries for a set can be computedin O(|.5] - | D|) time.

Merging the adjacency table entries requires merging both the row and column listsfor the nodes of 5.
A row or column is a sparse vector, and so we may use a SPA to implement the merger. In the row merge
phase, add each element of the .5 row listsinto the SPA in unit time per element. Enumerate the elements
of the SPA, creating a new matrix element for each and insert it into its row and column listsin unit time.
Clear the SPA when done. Column contraction proceeds in the same manner.

Define degree(v) as the number of nodes adjacent to node v in the graph, and let n = 3~ . 5 degree(v).
Thetotal running time of the contraction of a set of nodesis O(|S| - |D| + n).

53 Seriestest

Theseriestest iseasy toimplement. Determineif anodeisaseries node by traversing itsadjacency list. If it
has two or fewer neighbors, record the edges and the weights. Computethe range of the node by examining
its| D| cost table entries. The seriestest can be applied all nodesin O(|V| - | D]) time.

We will show later that the series test is effective at reducing the size of the graph. Because it is so
simpleto implement, this test should always be used.

54 Apathetictest

We only apply this test to single nodes, even though it is defined for sets. Determine if anode is apathetic
by examining each of its | D| cost table entries. If the node is apathetic, then visit its neighbors, keeping
arunning sum, w, of the weights of al edges encountered, and recording the heaviest edge, maxweight.
If maxweight > (w — maxweight), then merge the node with its most heavily connected neighbor. The
apathetic test can be applied to all nodesintime O(|V| - | D| 4 | E|) time.

5.5 Dynamic cost

Therest of the tests require computing the dynamic cost of aset of nodes, 5. Clearly, the sum of theminima
of the node costs can be computed in O(|5] - | D) time. The difficult part is computing the min-cut value.
There are two options: use an easily obtained lower bound on the min-cut, or computeit exactly.

If 5" is connected, the mincut(.5) is not less than than the minimum weight edgein 5. There are at most
|.5|? edges and we may find the lightest one by examining all edges internal to S. To be precise, we first
enumerate 5 setting mark[v] for each » in .5, and then look at al edges connected to verticesin 5. Any
whose other endpoint is marked in mark isan internal edge. We must also clear mark when we are done.
The running time of this computationis O(]5|?).

In the second case, we compute the global min-cut of the set exactly, using an algorithm of Goldberg
and Tarjan which runsin O(|5]%) time[5]. In practice, when using this option, we only invoke the min-cut
procedure when the size of the set is smaller than some predefined value — because the running time of the
min-cut procedure becomes unnaceptable for large sets.

In summary, an estimate of the dynamic cost of a set of nodes may be found in O(|S| - |D| + |5]?), or
O(|S]-|D| + |S|*) time. In estimating the time of the following tests, we will simply write dyn(9) asthe
running time for finding the dynamic cost of a set of nodes.

5.6 Best gtatictest

The static cost of a set of nodes is computed in O(|S5| - | D|) time by first creating the cost vector for the
set of nodes and then finding the minimum value. Computing the weight of edges leaving 5 requires first
setting mark[v] for each » € S and then traversing al edges adjacent to verticesin 5. This test may be
implemented in O(|.S| - | D] 4 >°,cs degree(v) 4+ dyn(S5)) time.

5.7 Border outsidetest

Theworst static cost of aset of nodesis computed as easily as computing the best static cost, and the weight
of all the edges leaving 5 can be computed as before. Thistest is different in that al vertices externa to
S must be visited in turn. When computing the weight of edges external to .5, set border[v] for any edge

10

encountered connecting .5 to an external node v. If border[v] was not set when encountered, then add v
to the set of border nodes called B. (The marks may be cleared by traversing B at the end of the Border
Outside test.) For each external border node, compute the weight that connects it to S' using the mark
vector to determine nodes in and out of S in O(degree(v)) time for each border node. The running time
of thistest is O(].5] - | D] + Y- ,es degree(v) 4+ >°,c g degree(v) + dyn(5)). This test is not much more
expensive than the Best Static test if B isnot too big.

5.8 Border insdetest

The Border Inside test is similar to the Border Outside test except that for each node v in the border we
must compute worst(S — {v}) and minC,,. This may be done in the following way to make the test run
in the same time as the previous one. Initialy, instead of computing worst(.5'), record the cost vector for
the set, C's. Find the border nodes as before. Now, as each border node is visited, make use of the fact
that worst(S — {v}) = max(Cs — C,) and compute both this value and minC,, in O(|D]) time. The
rest of the implementation of the test is the same as the Border Outside test and can be implemented in

O(IS]- D] + e degree(v) + 3=, ¢ 5 degree(v) + dyn($)) time

6 Experiments

We now present an experimenta study of the effectiveness of the contraction operations devel oped earlier.
The process of locating subsets and verifying that they are O.S. is heuristic; such a study is therefore
mandated, and we view the data below as preliminary, pending better tools and alarger base of experimental
programs.

Using program analysis tools we have developed earlier [3], we constructed the distribution graphs
for seven test programs and applied various combinations of the contraction operations. The contraction
operations are sensitiveto the adjacency structure of the graph as well as values of the cost entries. For this
reason, it isimportant to understand how the test cases were generated. We begin by describing the example
programs and how the cost values were calculated. We then discuss contraction strategies and examine the
results of these strategies.

6.1 Theexampleprograms

We chose seven example programs that represent typical scientific applications. A brief description of each
of thesevenfollows. In addition, Table 1 describes propertiesof the cost and adjacency tablesfor each of the
programs. Each of the graphsis quite sparse. With the exception of Bl ock LU, each program was analyzed
with arelatively small number of distributions. Because BlockLU has many different feature sizes, alarge
number of distributions are generated by our automatic system.

ADI : A two-dimensional aternating-direction implicit (ADI) algorithm. Thisalgorithm uses cyclic reduc-
tion to solve tridiagonal systems.

Bl ockLU: A blocked agorithmfor LU factorization of adense matrix.

Er | e: A three-dimensional aternating-directionimplicit (ADI) algorithm. Thisdiffers from the one above
in that it uses Gaussian elimination to solve the recurrences.

LU The LU factorization on a dense matrix.

11

Table 1: Properties of the example program graphs. Each is quite sparse. In general, the number of
distributionsused in the analysis of each program is relatively small, with the exception of Bl ockLU.

\ Properties of the Programs |

Program VI B[] [P
AD| 232 | 308 12
Bl ockLU 108 | 131 41
Erle 666 | 845 7
LU 21 25 12
Shal | ow 445 | 545 3
Tred 105 | 124 9
TwoZone 335 | 411 12

Shal | ow. A benchmark weather prediction program; finite-difference approximation of the the shallow
water equations.

Tr ed: Reduction of a dense matrix to tridiagonal form using Householder transformations.

TwoZone: Solution of Poisson’s equationin an L shaped domain by Schwartz alternating procedure, using
aJOR (Jacobi Over-Relaxation Method) for the subdomain solver.

6.2 Cost table construction

In Section 2, we differentiated between three communication patterns: all-to-all personalized communica-
tion (AAPC), offset communication (shift), and reduction/replication communication. When analyzing a
program, we estimate the time of an elementwise operation to be proportional to the amount of data on the
most heavily loaded processor. We estimate the time of a communication operation to be proportional to
the maximum amount of data sent or received by any one processor, with the constant of proportionality
determined by thetype of operation. The three constantsare p (for AAPC), o (for reduction/replication) and
v (for shift). (The namesrecall the now ancient and disappearing Connection Machinejargon: router, scan,
NEWS). High-level operationsin HPF give rise to one of these three types of low-level communication.
Table 2 shows the correspondance between high-level and low-level communication operations.

In general, itisimpossibleto predict how varying the parameters, p, o, and v, will affect the contraction
operations. Even the interaction between this model of communication and the cost values generated is
quite complex. Realignment costs are incorporated into the node cost table, while redistribution costs
affect adjacency information. Varying the parameters by the same factor changes the relationship between
elementwise computation and communication. Varying the parameter p can affect values in both, while
varying ¢ or v can only affect values in the cost table. Because of these complex interactions, we ran tests
of the contraction operations for a number of values of the parameters to see how the results changed.

6.3 Contraction operation strategies

The contraction operations may be applied individually, or in combinations. In the discussion of the
combinations of contraction operations we will use a shorthand. The character “a’ means an application

12

Table 2: Mapping of high level HPF operations to low-level communication types. Each of the three
low-level operations is modeled as requiring time proportiona to the amount of data communicated, with
the constant of proportionality as shown.

\ Coefficients of Proportionality \

High-Level Low-Leve
Operation Communication Type | Constant
Redistribute AAPC p
Stride Realign AAPC p
AxisRedlign AAPC p
Offset Realign shift v
Replication Realign broadcast o
Subscript AAPC p
Reduction fan-in o

of the Apathetic test, an “s’ the Series test. The character “S’ stands for the Best Static test, and “B”
for the Border tests. Each of the last two tests are parameterized by the subset selection method used,
“cc” or “ccc’, and the method of estimating the min-cut. The “cc” subsets are connected components of
edge-weight thresholded subgraphs. The “ccc” data employ a heuristic designed to improve the dissention
of these subgraphs by removing additional edges before finding the connected components. The keyword
“min” means the minimum weight edge in the subset was used as a bound, and an integer P means that an
exact min-cut was computed for subsets of size lessthan P.

6.4 Reaults

For each of the seven programs, we generated test data assuming a 64 processor target using three sets of
values for the communi cation parameters as shown below.

Casel p:l c=1 vr=1
Case2 p=10 |o=1 |v=1
Case3 p=100 =10 |rv =1

Case 1 reflects a target architecture where communication costs as much as computation. Thereis no
such machine widely available today, but such a machine would tolerate a lot of redistribution, prefering
dynamic distributionsover static ones. Thus, this case should thwart many of our contraction operations.

Case 2 reflects a case where communication is only slightly expensive. Scans and shifts are still very
inexpensive. Case 3 isthe most realistic model of current machines. Shift communication is very cheap,
but any general AAPC communicationisquite expensive. We would expect both of these casesto enourage
static solutionsto the distribution problem, and thus expect our contraction operations to do well.

Tables 3, 4 and 5 show the results of the contraction experimentsfor the three different cases. The size
of the origina program is shown at the top of each column, and the results of applying nineteen different
contraction combinations below. The combinations are divided into groups. The first group includes
only the single-vertex tests (“a’ and “s’). The next group shows the subset tests (*S’ and “B”) alone.
The next groups show the “S’ or “B” tests preceded by the “as’ combination. It is clear from the data

13

Table 3: The size of the contracted graphs with the communication parameters of Casel. With p set low,
we expect to see graphs that prefer dynamic distributions, thus it should be difficult to prove any that any
subgraphs are O.S. Many of the test graphs are contracted significantly.

\ Contraction ResultsforCase 1: p=1,0=1,vr=1 \

method ADl | Block | Erle | LU | Shal | Tred | TwoZ
ORIGINAL 232 108 666 | 21 445 105 335
S 82 41 295 | 5 125 32 150
a 220 84 548 | 16 339 77 310
as 82 41 280 | 5 125 32 150
asas 81 39 285 | 5 125 29 150
S(cc,min) 232 57 555 | 3 445 80 73
S(cce,min) 232 84 552 | 21 441 105 319
B(cc,min) 224 84 555 | 13 445 80 273
B(ccc,min) 224 72 529 | 11 425 79 317
asS(cc,min) 82 17 253 | 2 22 23 2
asS(cc,25) 42 10 253 | 2 22 8 2
asS(cc,50) 42 10 253 | 2 22 8 2
asS(ccc,min) 82 29 253 | 4 125 29 74
asB(cc,min) 74 27 253 | 4 37 23 105
asB(cc,25) 74 24 253 | 2 37 23 74
asB(cc,50) 74 24 253 | 2 37 23 74
asB(ccc,min) 74 30 253 3 125 23 105
asB(ccc,25) 72 27 253 3 114 21 102
asB(ccc,50) 72 27 253 | 3 114 21 74
asS(cc,min)B(cc,min) 72 17 253 2 22 23 2

that the combination that nearly always achieves the best contraction of all those tried is the “asS(cc,50)”
combination. The “asS(cc,min)” combination also fared well many of the times, but occasionally the true
min-cut values were critical to obtaining further contraction.

Thecontraction programsthat involveonly the Apathetic and Series contraction operations (“a’ and*“s’)
are actually very effective considering just how inexpensive they are to implement. Recall that these tests
examine only the neighbors of single nodes. These two contraction operations should always be applied
first, as they are enabling contractions for the more powerful Best Static and Border contractions. Notice
that in most of the test cases, the Best Static or Border tests al one are ineffective, while pre-contracting with
the Apathetic and Series tests hel ps them considerably. Also notice that repeating the Apathetic and Series
tests (*asas’) is not worthwhile.

The overal percentage of reduction achieved by the “asS(cc,50)” combination is shown in Table 6.
Initially, we did not expect to be able to contract the graphs very much for Casel because redistribution is
fairly inexpensivein thiscase. With low edge-weights, we did not expect to find many O.S. subgraphs. The
results show that, on the contrary, the tests are effective even when p issmall.

In most of thetrias, we used the Best Static and Border tests in a mutually exclusive manner. Thefina
case chains the two together. In almost all of the trids, we observe the the results produced by the Border

14

Table 4: The size of the contracted graphs with the communication parameters of Case2.

Contraction Resultsfor Casel: p = 10,0 =1, v =1

method ADlI | Block | Erle | LU | Shal
ORIGINAL 232 108 666 | 21 445
S 68 35 283 | 5 125
a 220 84 548 | 16 339
as 68 35 277 | 5 125
asas 67 33 273 | 5 125
S(ce,min) 232 65 555 | 3 445
S(cee,min) 232 84 552 | 21 441
B(cc,min) 232 62 555 | 9 445
B(ccc,min) 226 54 529 | 7 425
asS(cc,min) 68 20 46| 2 22
asS(cc,25) 68 2 46| 2 22
asS(cc,50) 68 2 21| 2 22
asS(ccc,min) 68 24 241 | 4 125
asB(cc,min) 68 19 241 | 2 22
asB(cc,25) 68 12 241 | 2 22
asB(cc,50) 68 12 241 | 2 22
asB(ccc,min) 66 20 241 3 125
asB(ccc,25) 66 11 235 3 114
asB(ccc,50) 66 11 235 3 114
asS(cc,min)B(cc,min) 68 19 46| 2 22

15

Tr ed
105
32
77
32
28
16
105
80
81
8

8

8
29
23
23
23
21
21
21
8

TwoZ
335
144
310
144
144

73
319
153
319

NN

70
37
37
37
70
70
70

Table 5: The size of the contracted graphs with the communication parameters of Case3.

\ Contraction Resultsfor Case 1. p = 100,0 = 10,v = 1

method ADl | Block | Erle | LU | Shal | Tred | TwoZ
ORIGINAL 232 108 666 | 21 445 105 335
S 68 35 283 | 5 125 32 144
a 200 84 548 | 16 339 77 310
as 68 35 277 | 5 125 32 144
asas 67 33 273 | 5 125 28 144
S(cc,min) 232 87 555 | 3 445 16 73
S(cce,min) 232 90 552 | 21 441 105 335
B(cc,min) 232 81 555 | 3 445 80 73
B(ccc,min) 226 60 529 | 20 421 73 335
asS(cc,min) 5 24 241 | 5 22 8 2
asS(cc,25) 5 3 235 | 2 22 8 2
asS(cc,50) 5 3 235 | 2 22 8 2
asS(ccc,min) 68 28 241 | 4 125 29 144
asB(cc,min) 16 18 241 | 2 22 23 2
asB(ccc,min) 66 18 241 3 125 21 144
asB(ccc,25) 64 14 241 | 32 114 21 136
asB(ccc,50) 64 14 241 | 32 114 21 136
asB(cc,25) 16 3 241 | 2 22 8 2
asB(cc,50) 16 3 241 | 2 22 8 2
asS(cc,min)B(cc,min) 5 18 241 | 2 22 8 2

Table 6: The amount of contraction as a percentage of the total size for the combination “asS(cc,50).” This
particular combination proved the most effective overal.

\ Percentage Contraction using asS(cc,50) \

ADI [Block [Erle | LU | Shal [Tred | TwoZ |
Casel [82% | 91% | 62% | 90% | 95% | 92% | 99%
Case2 | 71% | 98% | 95% | 90% | 95% | 92% | 99%
Case3 | 98% | 97% | 65% | 90% | 95% | 92% | 99%

16

tests are worse than those produced by the Best Static test. Thisis not surprising, because the Border tests
involve theworst static value which is generally aloose bound. What is surprising isthat in some cases the
Border tests do quite well.

7 Conclusions

When we began formulating algorithms for solving the distribution problem, we originadly felt that so-
phisticated optimization techniques would be needed. We now believe that contraction operations can
dramatically reduce the size of a distribution problem without losing information. With effective con-
traction operations, problem sizes become so small that less powerful optimization strategies may suffice.
Indeed, some problems become small enough that it may be possibleto find optimal solutions exactly.

Someissuesthat remain open arethese. Should onerelax the requirement that the contraction operations
remain |ossless— contraction operations may be accepted for subgraphsthat are not necessarily O.S. What
isthe tradeoff, if thisis done, between compiletime and run-time? Isit better to do a heuristic optimization
of a big but exact distribution problem or an exact optimization of a small but approximate problem? We
also need to reexamine our subset selection procedure. It is interesting whether, in the few cases in which
the contracted graph remains large, the reason is that we haven't found the right subsets to test, or our
lemmas are not powerful enought to detect that the setswe select O.S,, or simply that there aren’t any more
O.S. setsleft to be found.

References

[1] R.Bixby, K.Kennedy, and U. Kremer. Automatic datalayout using 0-1 integer programming. Technical
Report CRPC-TR93349-S, Center for Research on Parallel Computation, Rice University, Houston, TX,
November 1993.

[2] S.Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Array distributionin data-parallel programs.
In K. Pinga, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of the Seventh
Annual Workshop on Languages and Compilers for Parallel Computing, number 892 in Lecture Notes
in Computer Science, pages 76-91, Ithaca, NY, August 1994. Springer-Verlag. Also availableasRIACS
Technical Report 94.09.

[3] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Modeling data-parallel programs with the
alignment-distribution graph. Journal of Programming Languages, 2:227-258, 1994. Special issue on
compiling and run-time issues for distributed address space machines.

[4] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: Design and implementation.
SAM J. Matrix Anal. Appl., 13(1):333-356, January 1992.

[5] A.V.Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. ACM, 35(4):921—
940, October 1988.

[6] M. Gupta Automatic Data Partitioningon Distributed Memory Multicomputers. PhD thesis, University
of Illinois a Urbana-Champaign, Urbana, IL, Sept. 1992. Available as technical reports UILU-ENG-
92-2237 and CRHC-92-19.

17

[7] P.HoughandT.J. Sheffler. A performance analysisof collectivecommunicationonthe CM-5. Excalibur
project meeting note.

[8] S. Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD thesis, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 1991. Available as Technical
Report CMU-CS-91-121.

18

