
Efficient Distribution Analysis via Graph Contraction

Thomas J. Sheffler � Robert Schreiber � William Pugh y John R. Gilbert z
Siddhartha Chatterjee x

Abstract

Alignment and distribution of data by an optimizing compiler is a dream of both manufacturers and
users of parallel computers. The distribution problem has been formulated as an NP-complete graph
optimization problem. The graphs arising in applications are large, and the optimization problem does
not lend itself to traditional heuristic optimization techniques. In this paper, we improve some earlier
results on methods that use graph contraction to reduce the size of a distribution problem. We report
on an experiment using seven example programs that show these contraction operations to be effective
in practice; we obtain from 60 to 99 percent reductions in problem size, the larger number being more
typical, without loss of solution quality.

1 Introduction

Programmers expect that array parallel languages such as High-Performance Fortran (HPF) will provide
high performance on distributed memory parallel computers, if they pay careful attention to the distribution
of arrays to the available processors. Currently, array distribution must be performed by a programmer, who
then annotates a program with distribution directives. This difficult task is further complicated by the fact
that the optimal distribution for a program is dependent on the target machine. In the interest of simplifying
the task of the programmer and enhancing the portability of array parallel programs, distribution should be
handled by the compiler.

Unfortunately, distribution is a difficult combinatorial optimization problem [1]. Heuristic algorithms
can be effective for small programs. However, for very large programs or very detailed analyses (employing
inter-procedural analysis, for example) these algorithms may become less effective or unacceptably slow.

In this paper, we show how to reduce the size of a distribution problem. We recall the formulation [1, 2]
of the distribution problem as a graph labeling problem, then show how parts of the graph may be eliminated
through graph contraction operations. The contraction operations are based on identifying program regions
(the nodes of a subgraph) that may be performed under the same distribution. Once identified, we collapse
these regions into a single node that captures all of the information present in the original problem. Our
contraction operations are lossless: they do not diminish the quality of solutions that may be found.�Research Institute for Advanced Computer Science, Mail Stop T27A-1, NASA Ames Research Center, Moffett Field, CA
94035-1000. (sheffler@riacs.edu, schreiber@riacs.edu). The work of this author was supported by the NAS
Systems Division via Contract NAS 2-13721 between NASA and the Universities Space Research Association (USRA).yDepartment of Computer Science, University of Maryland, College Park MD 20742. pugh@cs.umd.eduzXerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304-1314. gilbert@parc.xerox.com.
Copyright c
1993, 1994 by Xerox Corporation. All rights reserved.xDepartment of Computer Science, University of North Carolina, Chapel Hill, NC 27599-3175. sc@cs.unc.edu

1

We examine different strategies for applying the contraction operations and evaluate their relative merit.
Initial experiments conducted with example programs show that these contraction operations are effective
in practice. It is possible, moreover, that stronger contraction operations could further reduce problem sizes
to the point where they could be solved exactly.

2 The graph model

A data-parallel program may be modeled as a directed graph (V;E). Each node v 2 V of the graph
corresponds to an array operation in the program. An operation consumes one or more arrays, and produces
one or more arrays as a result. A directed edge (v; w) 2 E connects a definition of an array object in array
operation v to a use by operation w.

In our representation, there are also three special node types. A fanout node produces copies of an array
with many uses; a branch node produces copies of an array with mutually exclusive uses, and a merge node
combines mutually exclusive definitions of an array value (usually due to branches to a particular point in a
program).

A weight labels each edge; it is (an estimate of) the number of elements in the array represented by the
edge multiplied by an estimated trip-count of the edge in an execution of the program. In this way, the
weight incorporates information about control flow.

Alignment is specified for the head and tail of each edge, giving the alignment of an array at its definition
and use. Distribution must also be given for each node, specifying the distribution that is applied to each
of the arrays involved in the node computation. The graph, along with these labels, is called an Alignment
Distribution Graph (ADG) [3].

We allow the same mappings as HPF: an array is aligned to a template, which is distributed over the
available processors. A template is an abstract array used as a target in alignment directives. An alignment
is specified by four separate components. These are axis, stride, offset, and replication. Axis alignment
determines the correspondence of array axes to template axes. Stride alignment specifies the factor by which
the array is stretched across the template. Offset is a vector specifying the distance of an array from the
origin of the template, and replication specifies certain axes of the template over which an array might be
copied.

An example of alignment and distribution as specified in an HPF program follows. The first two
directives declare the template and describe the alignment of the array. The third and fourth lines together
describe the distribution. The PROCESSORS directive describes the allocation of arrays to the axes of the
template, while the DISTRIBUTE directive specifies how the template is divided over the processors. In
this case, the BLOCK directive says that the first dimension of the template is distributed in blocks of 25 over
4 processors, and the CYCLIC directive specifies that the second dimension is distributed in blocks of
10 over 8 processors. Since the extent of the template is 200 in the second dimension, the blocks will wrap
around the processors.

real :: A(100,100)

!HPF$ TEMPLATE T(100,200)
!HPF$ ALIGN A(i,j) WITH T(i,j+100)
!HPF$ PROCESSORS P(4, 8)
!HPF$ DISTRIBUTE T(BLOCK, CYCLIC(10)) ONTO P

2

The alignment of an array object may change between its definition and use (as represented by the tail and
head of an edge in the graph model). A change in alignment effectively changes the data mapping of an array
and results in realignment communication. The type of communication needed to implement the realignment
is determined by the component of an alignment that changes. Axis or stride realignment requires all-to-all
personalized communication (AAPC), offset realignment requires shift communication, and replication
realignment requires a spread (broadcast) communication operation. In general, redistribution requires
AAPC.

In our model, each node in the graph is assigned a distribution. If an edge connects two nodes with
different distributions, then the array carried by the edge is redistributed between its definition at the tail of
the edge and its use at the head.

We choose to perform distribution analysis after alignment analysis. In our system, we first optimize axis
and stride alignment, then replication alignment, followed by shift alignment. The order of the optimizations
is motivated by the relative costs of the communication required by these types of realignment. It might
be possible to find a better alignment if distribution information were known, but distribution analysis is
difficult without some model of realignment communication costs. Consider the following example code
fragment.

integer, parameter :: N = 1000
real a(N), left(N-2), right(N-2), cl, cr
t1 = cl * a(1:N-2)
t2 = cr * a(3:N)
a(2:N-1) = a(2:N-1) + t1 + t2

In our system, we would perform alignment first. The axis and stride alignments chosen here cause no
realignment, but there is offset realignment in this typical finite-difference stencil computation. Because
of the necessary offset realignment, which comes to light in the alignment optimization phase, we would
prefer to give the arrays a block rather that a cyclic distribution, since this reduces data traffic when shift
communication if performed. It would be difficult to determine this fact about distribution without having
established alignment information first.

2.1 Modeling redistribution cost

The Alignment-Distribution Graph (ADG) G = (V;E) may be used to model the effects of distribution
decisions. Our system first finds a set D of candidate distributions. Node costs are recorded in a matrix, C,
and edge costs are recorded in a matrix, W . Entry C(d; v) estimates the time required to perform operationv 2 V under distribution d 2 D. Realignment costs are also incorporated in this model by adding an
estimate of the cost of performing the realignment, if any, on directed edge (u; v), for each distributiond, into the cost entry C(d; u). Each edge, (u; v) 2 E, has an associated weight, W (u; v), which is an
estimate of the time required to redistribute the array value communicated along the edge. Even though
this single weight is a simplistic measure of redistribution (since it is insensitive to the actual starting and
ending layouts) experiments have shown that this discrete metric accurately reflects the cost of performing
a redistribution step [7].

We seek to give each ADG node a distribution in D, i.e., we seek a mapping m : V ! D. For a
particular distribution map, the cost of performing the computation of the graph is the sum over the nodes of
the cost of performing their computation in the given distribution, plus the sum of the weights of all edges

3

whose endpoints have different distributions:

cost(m) = Xv2V C(m(v); v)+ X(u;v)2E; m(u)6=m(v)W (u; v):
The goal of distribution analysis is to map each node to a distribution so that this cost is minimized.

The model’s node cost component is trivially minimized by mapping each node to its distribution of
smallest node cost; this can result in many edges carrying redistribution communication. Edge costs may
be avoided entirely by mapping every node to some one distribution, the best of these being the distribution
that minimizes the sum of the node costs. The optimal solution typically lies at neither of these extremes.
The centrifugal tendencies toward reducing node costs (by labeling nodes independently) and eliminating
edge costs (by labeling nodes identically) are what make the problem difficult. Bixby, et al. [1] in fact show
that this formulation of the distribution problem is NP-complete.

2.2 The set of distributions

A distributiond 2 D specifies both the deployment of processors to the axes of the template and the blocking
factor with which each axis is distributed to the processors (in a cyclic fashion). Our analysis requires a
set D of candidate distributions.1 The set may be specified by a programmer, or may be generated by a
compiler as it analyzes the program. We adopt the latter approach.

The generation of a set of distributions requires care. The achieved cost is in general reduced by allowing
a larger set of candidate distributions. But the running time of our optimization algorithms is sensitive to
the size of D. We have previously shown how to select candidate distributions and how to limit their
number [2].

2.3 Static and dynamic mappings

We introduce two terms to describe a distribution map for a subset of ADG nodes S. Let m be a given
distribution map. Then S is static under m if m maps each element of S to the same distribution; S is
dynamic under m otherwise. We say that the map m is static if V is static under m. Since all nodes in a
static subset have the same distribution, no edges in a static subset carry redistribution costs and the cost of
a static distribution is completely determined by the node costs.

The way in which we attempt to reduce the size of the graph is to identify optimally static (O.S.)
subgraphs of the distribution graph.

Definition 1 (Optimally Static) A subsetS � V , is optimally static if for any mapm : V ! D there exists
a mapm0 such thatm0 andm take identical values on V �S, S is static under m0 and cost(m0) � cost(m).
(Note the difference between this and the following definition: S is weakly optimally static if there is a
minimum cost distribution map m under which S is static. The strong definition allows one to identify a
family of disjoint O.S. subsets and collapse them simultaneously, the latter does not.)

Our overall plan for finding a distribution map m is this. We first determine a collection of subsets
that we require to be static under m. This partially determines m. Then, for these subsets, we can ignore
internal edges and aggregate them into a single "super" node whose node cost is the sum of the node costs

1This approach differentiates our strategy from others. For example, Wholey employed a search strategy to determine the
optimal distribution for a program [8], and Gupta used heuristic methods to determine distribution parameters [6].

4

of its elements, thus reducing the size of the graph. Clearly, any O.S. subset should be so contracted, as
this does not increase the cost of the best distribution that can be found. The remainder of the paper will be
concerned with finding O.S. subsets.

Graph contraction based on O.S. subsets requires first finding a candidate subset and then testing whether
it is O.S. The next section develops a theory of O.S. subsets. A later section discusses heuristic strategies
for finding candidate subsets.

3 Node amalgamation for the distribution problem.

An understanding of properties of the distribution graph allows us to develop theorems that describe how
subsets of nodes can be collapsed or amalgamated into super nodes, without changing the problem in an
essential way. In this manner, we will reduce the size of the ADG as a first step in distribution analysis.

3.1 Definitions

Each cost matrix entry, C(d; v), gives an estimate of the time required to perform the computation of nodev under distribution d. It is convenient to speak of the cost table of a node, which is simply the column of
entries pertaining to the node, denoted Cv. We extend this term to sets of nodes, S, where the cost table of
a subset is simply the vector sum of the columns of the nodes in S, denoted CS . Thus, CS(d) is the cost of
performing all of the operations of S in distribution d.

Recall that a set of nodes S is O.S. if some optimal program distribution assigns the same distribution
to all nodes in S. We may also speak of a static cost of a set of nodes, which is simply the cost of the set
of nodes if they were to be placed at the same distribution. Because the cost table CS gives the cost of the
subset for each candidate distribution, we may obviously select the smallest value. The static cost of a set
of nodes S is

static(S) = minfCS(d) j d 2 Dg:
We will also occasionally be interested in the worst static cost that a set could incur:

worst(S) = maxfCS(d) j d 2 Dg:
The difference between the maximum and minimum cost of a single node is called the range of the

node.
range(v) = maxD Cv(d)� minD Cv(d):

Let a subset S � V be given. We shall use a simple lower bound on the cost of a distribution map
under which S is dynamic. Such a distribution map could potentially assign every element of S to its
minimum cost distribution; or it could avoid redistribution costs on edges leaving S at the expense of some
redistribution cost internally (assuming that S is connected). In either case, a dynamic solution dividesS into
at least two partitions with different distributions, and every edge crossing the partition carries redistribution
communication. This redistribution cost is at least as great as the weighted minimum-cut (min-cut) of the
undirected subgraph induced by S. Thus, for a distribution map m such that S is dynamic under m,

dynamic(S) �Xv2S minCv + mincut(S)
is a lower bound on cost(m).

5

Many of our proofs require consideration of the edges crossing from one set S to another set T . Define
the function weight(S; T) as follows:

weight(S; T) = Xv2S;w2TW (v; w) +W (w; v):
Thus, weight(S; S̄) is the sum of the weights of all edges entering or leaving S. We will also need a function
that determines the maximum weight with which a set is attached to any particular neighbor.

maxweight(S) = maxv 62S weight(S; fvg):
3.2 Optimally static subsets

We present a number of tests that may be used to verify that a subset of nodes is O.S. Each of the lemmas
below gives an explicit construction showing, for a class of subsets S, how a map with dynamic S can be
modified on S to make S static and not increase the cost. A following section discusses the implementation
of the tests and the expected running time of each.

Lemma 1 (Accretion) [2] Let S be O.S. and assume v =2 S. If

weight(fvg; S̄) + range(v) � weight(fvg; S)
then S [fvg is O.S.

Proof: Any map may, by assumption, be modified on S to make S static without increasing its cost.
Now consider a map in which S is static with distribution d and v has a different distribution d0. Changing
the distribution of node v to d reduces the cost of the mapping by w(v; S) and raises it by at mostw(v; S̄) + range(v). By the hypotheses, this change also does not increase the cost. Hence S [fvg is O.S.2
Corollary 1 (Series) Given a node y with only two distinct neighbors, x and z, the set S = fx; yg is O.S.
if W (y; z) + range(y) � W (x; y).
Proof: Since any singleton node is an O.S. subset, the corollary follows immediately from Lemma 1. 2

This trivial corollary of Lemma 1 turns out to be very useful in practice: it identifies pairs of nodes that
should be merged. In particular, unary operations representing SPREAD and REDUCE functions often have
small ranges and have input and output edges of very different weights. Elementwise unary operations may
have zero range with equal weights on their two incident edges.

Lemma 2 (Min-cut) [2] A set S is O.S. if static(S) + weight(S; S̄) � dynamic(S).
Proof: Assume that S is dynamic under a given distribution map. If the inequality holds, then the cost of
this map is not increased by assigning S to its best static distribution, incurring the static node cost as well
as potential redistribution on all edges leaving S. 2

The strategy of the previous lemma was to remap all of S to its preferred single location. As an
alternative, we consider remapping all of S to the distribution of one of its neighbors, so as to make the
union of S and that neighbor static. Define adj(S) to be those nodes outside of S with one or more neighbors
in S.

6

Lemma 3 (Adjacent Vertex) Let S � V . If(worst(S)�Xv2S minCv) + weight(S; S̄)� maxweight(S) � mincut(S); (1)
then S is O.S.

Proof: Let S be dynamic under some map m, and let v be as in the hypotheses. Remap all nodes inS to the
distribution of node v. The node costs can increase to the worst static cost of S, thus increasing by no more
than the first term of the inequality 1; the edges from S except those touching v may now incur redistribution
costs. By the hypothesis, these added costs are at least recompensed by the absence of redistribution along
the edges internal to S. 2

Note that although the construction in the proof guarantees that S [fvg is static after the relabeling,
we cannot conclude that S [fvg is O.S., since we claimed a gain of mincut(S) after relabeling a map for
which S is dynamic. The following reformulation allows us to conclude that S [fvg is O.S.

Lemma 4 (Border) Let S � V . If(worst(S)�Xv2S minCv) + weight(S; S̄)� maxweight(S) � mincut(S [fvg); (2)
then S [fvg is O.S.

Nodes that do elementwise computation often do not prefer any distribution to any other, as long as all
the distributions in D balance the load (number of elements per processor).

Definition 2 (Apathy) A set of nodes, S, is apathetic if range(v) = 0, for all v 2 S.

For a set S of apathetic nodes, worst(S) =Pv2S minCv, so the first term of inequalities 1 and 2 vanish.
WhenS is an apathetic singleton set. Lemma 4 holds when one of the edges touching the node outweighs

the sum of all others. In this simplified form, this lemma is useful for identifying single nodes that should
be merged with a heavily connected neighbor into an O.S. subset.

4 Locating subsets

The lemmas developed in the preceding section verify that a subset of nodes is O.S., but do not reveal
how to find candidate subsets. It is clearly impractical to consider all possible subsets of V , so we develop
heuristics to help locate subsets with the potential to be O.S.

Lemmas 2, 3 and 4 compare static costs to dynamic costs. Static distributions must tolerate redistribution
communication on edges leaving the subsets, while the dynamic distributions only incur the min-cut cost
on edges internal to the set. In order for a subset to pass any of these tests, it must be highly connected
internally (leading to a large min-cut value), with low-weight connections to nodes outside of the subset.
Using this observation, we construct the connected components of the subgraph obtained by deleting fromE all edges whose wieght is less than or equal to some specified threshold, t. The mincut of any such
componenet is therefore not less than t, while the weight of each external edge is less than t.

We examine a set of thresholds, T , which is generated by histogramming the edge weights of the graph
and dividing the histogram into buckets. The minimum value in each bucket becomes a threshold value in

7

the set T . To use this algorithm, we work through the thresholds in T from heaviest to lightest. We apply
the O.S. tests to each connected component at the current threshold.

This heuristic is effective because of the way in which the edge weights of the ADG are calculated.
Recall that the ADG incorporates the effects of control flow into its weight calculation by multiplying the
weight of an edge by its estimated trip count. In the ADG, nodes corresponding to operations within loops
are connected by high weight edges, and values are communicated into and out of loops by low weight
edges (because they are traversed only once). The strategy above tends to find connected components
encompassing the operations inside the bodies of loops. The buckets tend to correspond to different levels
in loop nests.

The complexity of this subset finding algorithm is proportional to the number of edges, jEj, and
the number of thresholds, jT j. The histogramming phase of the algorithm can be performed in time
proportional to jEj, and connected components can be found in time t = O(jEj) by using depth-first search.
The enumeration of all subsets using this technique can be performed in t = O(jT j jEj) time.

4.1 A slight modification

The procedure above locates subsets based only on edge weights, but it also beneficial to incorporate cost
table information into the heuristic. If we look at the components of the static and dynamic costs due to the
cost table entires, we note that we would like to minimize the following difference:

∆(S) = mind2DXv2SC(d; v)�Xv2S mind2DC(d; v):
Elsewhere, we have called this quantity the “dissension” of a set of nodes[2]. A set has a dissension of 0 if
all nodes agree on the best distributon.

We initially tried modifying the subset selection procedure to find subsets with a dissention of 0, but this
strict criterion did not work well in practice. We also tried heuristics for find subsets having low dissension;
these approaches are still under investigation.

5 Implementing the O.S. tests and the contraction operation

This section suggests data structures and algorithms for implementing the tests of the preceding section.
While none of the algorithms presented is difficult to implement, a naive implementation of the tests could
lead to poor running times. In particular, dense representations of the matrices C and W are inappropriate
not only because of the waste of storage that would occur, but because suitable graph traversals are not
supported. Sparse matrix algorithms are necessary because of the sparse structure of the ADG. Contraction
operations maintain sparsity as well.

5.1 Data structures

The matrices C and W are stored as sparse matrices. An element in a matrix is a record structure storing
its row, column, and value, and pointers threading it into two doubly-linked lists: a list of elements in the
same row, and another list of elements in the same column. For each matrix, two vectors of pointers record
the first element in each row and column. The elements of the lists are unordered.

Finding a particular matrix element in this data structure requires potentially searching through an entire
row or column list. However, our algorithms do not require finding individual elements quickly, but rather

8

depend on a data structure that supports efficient traversals of various types. The main operations required
are the following.

insert: Given a pointer to an matrix element, insert it into the appropriate row and column lists. This may
be accomplished in O(1) time.

delete: Given a pointer to an matrix element, delete it from both of its lists. This may be accomplished inO(1) time.

neighbors: Enumerate the neighbors of a given node, v. These may be enumerated by iterating through
the row and column lists of v in the weighted adjacency matrix, W .

A set of nodes S is represented in a simple linked list structure so that its nodes may be enumerated. Our
algorithms also require two mark vectors, called mark and border, each of length jV j. These two vectors
are cleared once at the beginning of the program. Some of the O.S. tests will set and clear marks in these
vectors, but none will be required to touch the entire vector.

Our algorithms use a Sparse Accumulator (SPA) to add sparse vectors [4]. A sparse vector is a sequence
of <index,value> pairs, where the largest possible index is some value N . The SPA maintains 3 internal
vectors of length N called accum, flags and elts. At program startup time, these vectors are allocated
and cleared. The vector accum holds the values of all elements of a sparse vector, elts is used as a
stack that records the indices of nonzero elements in accum, and flags, a boolean vector, is set if the
corresponding element has been pushed onto elts. A SPA is used to compute the sum of several sparse
vectors in time proportional to the number of nontrivial arithmetic operations actually performed.

5.2 Contracting nodes

The node contraction operation replaces a set of nodes, S, with a single node s in a reduced graph. The
node cost vector CS of the new node is the sum of the node costvectors of its elements, and the weight of
each edge incident to S is the sum of the weights of all edges between the adjacent node and elements of S.
Precisely, this is written asC(d; s) =Xv2S C(d; v);W(s; v) = Xv2S;w 62SW (v; w);W (v; s) = Xv2S;w 62SW (w; v):

Our technique contracts S by adding the sparse vectors that encode the edge weight and adjacency
information for the nodes inS. Merging the cost table entries for the nodes requires adding the corresponding
columns of C. Thus, the cost table entries for a set can be computed in O(jSj � jDj) time.

Merging the adjacency table entries requires merging both the row and column lists for the nodes of S.
A row or column is a sparse vector, and so we may use a SPA to implement the merger. In the row merge
phase, add each element of the S row lists into the SPA in unit time per element. Enumerate the elements
of the SPA, creating a new matrix element for each and insert it into its row and column lists in unit time.
Clear the SPA when done. Column contraction proceeds in the same manner.

Define degree(v) as the number of nodes adjacent to node v in the graph, and let n =Pv2S degree(v).
The total running time of the contraction of a set of nodes is O(jSj � jDj+ n).

9

5.3 Series test

The series test is easy to implement. Determine if a node is a series node by traversing its adjacency list. If it
has two or fewer neighbors, record the edges and the weights. Compute the range of the node by examining
its jDj cost table entries. The series test can be applied all nodes in O(jV j � jDj) time.

We will show later that the series test is effective at reducing the size of the graph. Because it is so
simple to implement, this test should always be used.

5.4 Apathetic test

We only apply this test to single nodes, even though it is defined for sets. Determine if a node is apathetic
by examining each of its jDj cost table entries. If the node is apathetic, then visit its neighbors, keeping
a running sum, w, of the weights of all edges encountered, and recording the heaviest edge, maxweight.
If maxweight � (w � maxweight), then merge the node with its most heavily connected neighbor. The
apathetic test can be applied to all nodes in time O(jV j � jDj+ jEj) time.

5.5 Dynamic cost

The rest of the tests require computing the dynamic cost of a set of nodes, S. Clearly, the sum of the minima
of the node costs can be computed in O(jSj � jDj) time. The difficult part is computing the min-cut value.
There are two options: use an easily obtained lower bound on the min-cut, or compute it exactly.

If S is connected, the mincut(S) is not less than than the minimum weight edge in S. There are at mostjSj2 edges and we may find the lightest one by examining all edges internal to S. To be precise, we first
enumerate S setting mark[v] for each v in S, and then look at all edges connected to vertices in S. Any
whose other endpoint is marked in mark is an internal edge. We must also clear mark when we are done.
The running time of this computation is O(jSj2).

In the second case, we compute the global min-cut of the set exactly, using an algorithm of Goldberg
and Tarjan which runs in O(jSj4) time [5]. In practice, when using this option, we only invoke the min-cut
procedure when the size of the set is smaller than some predefined value – because the running time of the
min-cut procedure becomes unnaceptable for large sets.

In summary, an estimate of the dynamic cost of a set of nodes may be found in O(jSj � jDj+ jSj2), orO(jSj � jDj+ jSj4) time. In estimating the time of the following tests, we will simply write dyn(S) as the
running time for finding the dynamic cost of a set of nodes.

5.6 Best static test

The static cost of a set of nodes is computed in O(jSj � jDj) time by first creating the cost vector for the
set of nodes and then finding the minimum value. Computing the weight of edges leaving S requires first
setting mark[v] for each v 2 S and then traversing all edges adjacent to vertices in S. This test may be
implemented in O(jSj � jDj+Pv2S degree(v) + dyn(S)) time.

5.7 Border outside test

The worst static cost of a set of nodes is computed as easily as computing the best static cost, and the weight
of all the edges leaving S can be computed as before. This test is different in that all vertices external toS must be visited in turn. When computing the weight of edges external to S, set border[v] for any edge

10

encountered connecting S to an external node v. If border[v] was not set when encountered, then add v
to the set of border nodes called B. (The marks may be cleared by traversing B at the end of the Border
Outside test.) For each external border node, compute the weight that connects it to S using the mark
vector to determine nodes in and out of S in O(degree(v)) time for each border node. The running time
of this test is O(jSj � jDj +Pv2S degree(v) +Pv2B degree(v) + dyn(S)). This test is not much more
expensive than the Best Static test if B is not too big.

5.8 Border inside test

The Border Inside test is similar to the Border Outside test except that for each node v in the border we
must compute worst(S � fvg) and minCv. This may be done in the following way to make the test run
in the same time as the previous one. Initially, instead of computing worst(S), record the cost vector for
the set, CS . Find the border nodes as before. Now, as each border node is visited, make use of the fact
that worst(S � fvg) = max(CS � Cv) and compute both this value and minCv in O(jDj) time. The
rest of the implementation of the test is the same as the Border Outside test and can be implemented inO(jSj � jDj+Pv2S degree(v) +Pv2B degree(v) + dyn(S)) time.

6 Experiments

We now present an experimental study of the effectiveness of the contraction operations developed earlier.
The process of locating subsets and verifying that they are O.S. is heuristic; such a study is therefore
mandated, and we view the data below as preliminary, pending better tools and a larger base of experimental
programs.

Using program analysis tools we have developed earlier [3], we constructed the distribution graphs
for seven test programs and applied various combinations of the contraction operations. The contraction
operations are sensitive to the adjacency structure of the graph as well as values of the cost entries. For this
reason, it is important to understand how the test cases were generated. We begin by describing the example
programs and how the cost values were calculated. We then discuss contraction strategies and examine the
results of these strategies.

6.1 The example programs

We chose seven example programs that represent typical scientific applications. A brief description of each
of the seven follows. In addition, Table 1 describes properties of the cost and adjacency tables for each of the
programs. Each of the graphs is quite sparse. With the exception of BlockLU, each program was analyzed
with a relatively small number of distributions. Because BlockLU has many different feature sizes, a large
number of distributions are generated by our automatic system.

ADI: A two-dimensional alternating-direction implicit (ADI) algorithm. This algorithm uses cyclic reduc-
tion to solve tridiagonal systems.

BlockLU: A blocked algorithm for LU factorization of a dense matrix.

Erle: A three-dimensional alternating-direction implicit (ADI) algorithm. This differs from the one above
in that it uses Gaussian elimination to solve the recurrences.

LU: The LU factorization on a dense matrix.

11

Table 1: Properties of the example program graphs. Each is quite sparse. In general, the number of
distributions used in the analysis of each program is relatively small, with the exception of BlockLU.

Properties of the Programs

Program jV j jEj jDj
ADI 232 308 12
BlockLU 108 131 41
Erle 666 845 7
LU 21 25 12
Shallow 445 545 3
Tred 105 124 9
TwoZone 335 411 12

Shallow: A benchmark weather prediction program; finite-difference approximation of the the shallow
water equations.

Tred: Reduction of a dense matrix to tridiagonal form using Householder transformations.

TwoZone: Solution of Poisson’s equation in an L shaped domain by Schwartz alternating procedure, using
a JOR (Jacobi Over-Relaxation Method) for the subdomain solver.

6.2 Cost table construction

In Section 2, we differentiated between three communication patterns: all-to-all personalized communica-
tion (AAPC), offset communication (shift), and reduction/replication communication. When analyzing a
program, we estimate the time of an elementwise operation to be proportional to the amount of data on the
most heavily loaded processor. We estimate the time of a communication operation to be proportional to
the maximum amount of data sent or received by any one processor, with the constant of proportionality
determined by the type of operation. The three constants are � (for AAPC), � (for reduction/replication) and� (for shift). (The names recall the now ancient and disappearing Connection Machine jargon: router, scan,
NEWS). High-level operations in HPF give rise to one of these three types of low-level communication.
Table 2 shows the correspondance between high-level and low-level communication operations.

In general, it is impossible to predict how varying the parameters, �, �, and �, will affect the contraction
operations. Even the interaction between this model of communication and the cost values generated is
quite complex. Realignment costs are incorporated into the node cost table, while redistribution costs
affect adjacency information. Varying the parameters by the same factor changes the relationship between
elementwise computation and communication. Varying the parameter � can affect values in both, while
varying � or � can only affect values in the cost table. Because of these complex interactions, we ran tests
of the contraction operations for a number of values of the parameters to see how the results changed.

6.3 Contraction operation strategies

The contraction operations may be applied individually, or in combinations. In the discussion of the
combinations of contraction operations we will use a shorthand. The character “a” means an application

12

Table 2: Mapping of high level HPF operations to low-level communication types. Each of the three
low-level operations is modeled as requiring time proportional to the amount of data communicated, with
the constant of proportionality as shown.

Coefficients of Proportionality

High-Level Low-Level
Operation Communication Type Constant

Redistribute AAPC �
Stride Realign AAPC �
Axis Realign AAPC �

Offset Realign shift �
Replication Realign broadcast �

Subscript AAPC �
Reduction fan-in �

of the Apathetic test, an “s” the Series test. The character “S” stands for the Best Static test, and “B”
for the Border tests. Each of the last two tests are parameterized by the subset selection method used,
“cc” or “ccc”, and the method of estimating the min-cut. The “cc” subsets are connected components of
edge-weight thresholded subgraphs. The “ccc” data employ a heuristic designed to improve the dissention
of these subgraphs by removing additional edges before finding the connected components. The keyword
“min” means the minimum weight edge in the subset was used as a bound, and an integer P means that an
exact min-cut was computed for subsets of size less than P .

6.4 Results

For each of the seven programs, we generated test data assuming a 64 processor target using three sets of
values for the communication parameters as shown below.

Case1 � = 1 � = 1 � = 1
Case2 � = 10 � = 1 � = 1
Case3 � = 100 � = 10 � = 1

Case 1 reflects a target architecture where communication costs as much as computation. There is no
such machine widely available today, but such a machine would tolerate a lot of redistribution, prefering
dynamic distributions over static ones. Thus, this case should thwart many of our contraction operations.

Case 2 reflects a case where communication is only slightly expensive. Scans and shifts are still very
inexpensive. Case 3 is the most realistic model of current machines. Shift communication is very cheap,
but any general AAPC communication is quite expensive. We would expect both of these cases to enourage
static solutions to the distribution problem, and thus expect our contraction operations to do well.

Tables 3, 4 and 5 show the results of the contraction experiments for the three different cases. The size
of the original program is shown at the top of each column, and the results of applying nineteen different
contraction combinations below. The combinations are divided into groups. The first group includes
only the single-vertex tests (“a” and “s”). The next group shows the subset tests (“S” and “B”) alone.
The next groups show the “S” or “B” tests preceded by the “as” combination. It is clear from the data

13

Table 3: The size of the contracted graphs with the communication parameters of Case1. With � set low,
we expect to see graphs that prefer dynamic distributions, thus it should be difficult to prove any that any
subgraphs are O.S. Many of the test graphs are contracted significantly.

Contraction Results for Case 1: � = 1; � = 1; � = 1

method ADI Block Erle LU Shal Tred TwoZ
ORIGINAL 232 108 666 21 445 105 335
s 82 41 295 5 125 32 150
a 220 84 548 16 339 77 310
as 82 41 289 5 125 32 150
asas 81 39 285 5 125 29 150
S(cc,min) 232 57 555 3 445 80 73
S(ccc,min) 232 84 552 21 441 105 319
B(cc,min) 224 84 555 13 445 80 273
B(ccc,min) 224 72 529 11 425 79 317
asS(cc,min) 82 17 253 2 22 23 2
asS(cc,25) 42 10 253 2 22 8 2
asS(cc,50) 42 10 253 2 22 8 2
asS(ccc,min) 82 29 253 4 125 29 74
asB(cc,min) 74 27 253 4 37 23 105
asB(cc,25) 74 24 253 2 37 23 74
asB(cc,50) 74 24 253 2 37 23 74
asB(ccc,min) 74 30 253 3 125 23 105
asB(ccc,25) 72 27 253 3 114 21 102
asB(ccc,50) 72 27 253 3 114 21 74
asS(cc,min)B(cc,min) 72 17 253 2 22 23 2

that the combination that nearly always achieves the best contraction of all those tried is the “asS(cc,50)”
combination. The “asS(cc,min)” combination also fared well many of the times, but occasionally the true
min-cut values were critical to obtaining further contraction.

The contraction programs that involve only the Apathetic and Series contraction operations (“a” and “s”)
are actually very effective considering just how inexpensive they are to implement. Recall that these tests
examine only the neighbors of single nodes. These two contraction operations should always be applied
first, as they are enabling contractions for the more powerful Best Static and Border contractions. Notice
that in most of the test cases, the Best Static or Border tests alone are ineffective, while pre-contracting with
the Apathetic and Series tests helps them considerably. Also notice that repeating the Apathetic and Series
tests (“asas”) is not worthwhile.

The overall percentage of reduction achieved by the “asS(cc,50)” combination is shown in Table 6.
Initially, we did not expect to be able to contract the graphs very much for Case1 because redistribution is
fairly inexpensive in this case. With low edge-weights, we did not expect to find many O.S. subgraphs. The
results show that, on the contrary, the tests are effective even when � is small.

In most of the trials, we used the Best Static and Border tests in a mutually exclusive manner. The final
case chains the two together. In almost all of the trials, we observe the the results produced by the Border

14

Table 4: The size of the contracted graphs with the communication parameters of Case2.

Contraction Results for Case 1: � = 10; � = 1; � = 1

method ADI Block Erle LU Shal Tred TwoZ
ORIGINAL 232 108 666 21 445 105 335
s 68 35 283 5 125 32 144
a 220 84 548 16 339 77 310
as 68 35 277 5 125 32 144
asas 67 33 273 5 125 28 144
S(cc,min) 232 65 555 3 445 16 73
S(ccc,min) 232 84 552 21 441 105 319
B(cc,min) 232 62 555 9 445 80 153
B(ccc,min) 226 54 529 7 425 81 319
asS(cc,min) 68 20 46 2 22 8 2
asS(cc,25) 68 2 46 2 22 8 2
asS(cc,50) 68 2 21 2 22 8 2
asS(ccc,min) 68 24 241 4 125 29 70
asB(cc,min) 68 19 241 2 22 23 37
asB(cc,25) 68 12 241 2 22 23 37
asB(cc,50) 68 12 241 2 22 23 37
asB(ccc,min) 66 20 241 3 125 21 70
asB(ccc,25) 66 11 235 3 114 21 70
asB(ccc,50) 66 11 235 3 114 21 70
asS(cc,min)B(cc,min) 68 19 46 2 22 8 2

15

Table 5: The size of the contracted graphs with the communication parameters of Case3.

Contraction Results for Case 1: � = 100; � = 10; � = 1

method ADI Block Erle LU Shal Tred TwoZ
ORIGINAL 232 108 666 21 445 105 335
s 68 35 283 5 125 32 144
a 200 84 548 16 339 77 310
as 68 35 277 5 125 32 144
asas 67 33 273 5 125 28 144
S(cc,min) 232 87 555 3 445 16 73
S(ccc,min) 232 90 552 21 441 105 335
B(cc,min) 232 81 555 3 445 80 73
B(ccc,min) 226 60 529 20 421 73 335
asS(cc,min) 5 24 241 5 22 8 2
asS(cc,25) 5 3 235 2 22 8 2
asS(cc,50) 5 3 235 2 22 8 2
asS(ccc,min) 68 28 241 4 125 29 144
asB(cc,min) 16 18 241 2 22 23 2
asB(ccc,min) 66 18 241 3 125 21 144
asB(ccc,25) 64 14 241 32 114 21 136
asB(ccc,50) 64 14 241 32 114 21 136
asB(cc,25) 16 3 241 2 22 8 2
asB(cc,50) 16 3 241 2 22 8 2
asS(cc,min)B(cc,min) 5 18 241 2 22 8 2

Table 6: The amount of contraction as a percentage of the total size for the combination “asS(cc,50).” This
particular combination proved the most effective overall.

Percentage Contraction using asS(cc,50)

ADI Block Erle LU Shal Tred TwoZ
Case1 82% 91% 62% 90% 95% 92% 99%
Case2 71% 98% 95% 90% 95% 92% 99%
Case3 98% 97% 65% 90% 95% 92% 99%

16

tests are worse than those produced by the Best Static test. This is not surprising, because the Border tests
involve the worst static value which is generally a loose bound. What is surprising is that in some cases the
Border tests do quite well.

7 Conclusions

When we began formulating algorithms for solving the distribution problem, we originally felt that so-
phisticated optimization techniques would be needed. We now believe that contraction operations can
dramatically reduce the size of a distribution problem without losing information. With effective con-
traction operations, problem sizes become so small that less powerful optimization strategies may suffice.
Indeed, some problems become small enough that it may be possible to find optimal solutions exactly.

Some issues that remain open are these. Should one relax the requirement that the contraction operations
remain lossless — contraction operations may be accepted for subgraphs that are not necessarily O.S. What
is the tradeoff, if this is done, between compile time and run-time? Is it better to do a heuristic optimization
of a big but exact distribution problem or an exact optimization of a small but approximate problem? We
also need to reexamine our subset selection procedure. It is interesting whether, in the few cases in which
the contracted graph remains large, the reason is that we haven’t found the right subsets to test, or our
lemmas are not powerful enought to detect that the sets we select O.S., or simply that there aren’t any more
O.S. sets left to be found.

References

[1] R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer programming. Technical
Report CRPC-TR93349-S, Center for Research on Parallel Computation, Rice University, Houston, TX,
November 1993.

[2] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Array distribution in data-parallel programs.
In K. Pingal, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of the Seventh
Annual Workshop on Languages and Compilers for Parallel Computing, number 892 in Lecture Notes
in Computer Science, pages 76–91, Ithaca, NY, August 1994. Springer-Verlag. Also available as RIACS
Technical Report 94.09.

[3] S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. J. Sheffler. Modeling data-parallel programs with the
alignment-distribution graph. Journal of Programming Languages, 2:227–258, 1994. Special issue on
compiling and run-time issues for distributed address space machines.

[4] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: Design and implementation.
SIAM J. Matrix Anal. Appl., 13(1):333–356, January 1992.

[5] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. ACM, 35(4):921–
940, October 1988.

[6] M. Gupta. Automatic Data Partitioning on Distributed Memory Multicomputers. PhD thesis, University
of Illinois at Urbana-Champaign, Urbana, IL, Sept. 1992. Available as technical reports UILU-ENG-
92-2237 and CRHC-92-19.

17

[7] P. Hough and T. J. Sheffler. A performance analysis of collective communication on the CM-5. Excalibur
project meeting note.

[8] S. Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers. PhD thesis, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 1991. Available as Technical
Report CMU-CS-91-121.

18

