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Abstract. In this paper we propose a process algebra, CCSG, in which
we can approximately analyze processes by neglecting unimportant dis-
tant actions. Although many kinds of process algebra have already been
proposed, there is a common problem that the number of feasible action
sequences explosively increases with the number of concurrent processes.
Therefore, an approximative approach is useful for large systems.
We assume that each action has a grade which represents the importance.
In CCSG, processes can be distributed in a space, and grades of observed
actions decrease with distance. Hence observations of a system depend
on the positions of observers. In this paper we give shift-(s) equivalence
to relate observations at different positions, and give level-〈r〉 equivalence
to relate an approximative observation and the complete observation.

1 Introduction

Concurrent processes are more complex than sequential processes, because ac-
tions of concurrent processes can be independently performed and sometimes
synchronize with each other. Process algebra is a mathematical tool to analyze
concurrent processes. Actions of processes are described as (process) expressions
in a process algebra, then equality between the actions of two processes can be
checked by rewriting their expressions according to algebraic laws of the process
algebra. A real problem of analysis of concurrent processes is that the number
of feasible action sequences explosively increases by interleaving of actions [1].

We propose a process algebra CCSG (a Calculus of Communicating Systems
with Graded spatial actions) to approximately analyze processes. In CCSG each
action has a grade which represents the importance and a position where the
action occurs, thus unimportant distant actions can be neglected by observers.

Distributed processes are connected through routers with loss of grades. Each
router consists of a name a and a loss r, then has the form a〈r〉. Grades of actions
observed through a router a〈r〉 decrease by the loss r. Routers are connected in
a star structure as shown in Fig.1(a). Branches represent routers and nodes rep-
resent processes. Routers can be hierarchically connected as shown in Fig.1(b).

CCSG is an extension of CCS [2]. CCS is a well known fundamental process
algebra. A new combinator @ called Route combinator is introduced in CCSG
as compared with CCS. For example, the system of Fig.1(a) is described as S0

S0 ≡ P0|(P1@a1〈6〉)|(P2@a2〈4〉)|(P3@a3〈1〉)



P1
P3

P2

P0

a1 6

a3 1

a2 4

(a) Star Structure (b) Hierarchical star structure

Fig. 1. Connection examples of routers

by an observer standing at the position of P0. ≡ represents syntactic identity
and | is a composition combinator. Notice that observations depend on positions
of observers. For example, the system of Fig.1(a) is also described as S2 and S3

S2 ≡ P2|((P0|(P1@a1〈6〉)|(P3@a3〈1〉))@a2〈4〉)
S3 ≡ P3|((P0|(P1@a1〈6〉)|(P2@a2〈4〉))@a3〈1〉)

by observers standing at the positions of P2 and P3, respectively.
We give shift-(s) equivalence ≺∼(s) to relate processes observed at different

positions, where s is a parameter which represents the difference between the
positions. Namely s is the route from the position of the left-side observer to the
position of the right-side observer. The route between two points is a sequence of
routers between them. For example, S2 and S3 are shift-(a2〈4〉a3〈1〉) equivalent,
S2

≺∼(a2〈4〉a3〈1〉) S3, because the route from P2 to P3 is (a2〈4〉a3〈1〉). Particularly
≺∼(ε) is identical with strong equivalence in [2], where ε is the empty sequence.

An action of CCSG consists of a label α, a grade r, and a route s, then has the
form α〈r〉@s. This @ is not the combinator over processes previously introduced.
We use the same symbol @ for actions and processes, because their roles are the
same and they can be distinguished by grammar. α〈r〉@s represents that an
action named α with the grade r occurs at the position pointed to by the route
s. The grade r is a real number. Positive grades are assigned to important actions
and negative grades are assigned to unimportant actions. s is the route from the
position where the action occurs to the position of the observer. The empty
route is sometimes omitted, and thus α〈r〉 is used for representing α〈r〉@ε. For
example, in Fig.1(a), an action α with a grade 7 which occurs at P1 is observed
as the action α〈7〉@(a1〈6〉a2〈4〉) by an observer at P2.

The total sum of losses of routers between two points is called the loss distance
between them. For example, the loss distance between the positions of P1 and
P2 is (6+4 =) 10. It is important that the grade of α〈7〉@(a1〈6〉a2〈4〉) is actually
observed as (7− (6+ 4) =) − 3. This decreased grade −3 by the loss distance is
called the actual grade of α〈7〉@(a1〈6〉a2〈4〉).

In CCSG the following condition of synchronization is very important.

Two actions can synchronize only if the sum of their grades
is not less than the loss distance between them.

(Condition 1)



For example, a graded action α〈9〉 which occurs at P1 can synchronize with
a graded action α〈3〉 which occurs at P2, because the sum (9 + 3 =) 12 of their
grades is greater than the loss distance (6 + 4 =) 10 between P1 and P2.

It is possible to approximately analyze processes by neglecting low actual
graded actions in CCSG. We give a relation called level-〈r〉 equivalence =〈r〉
for such approximative analysis. r is a parameter which represents a level of
similarity. Level-〈r〉 equivalence bases on the following level-〈r〉 observation.

Actions which have lower actual grades (at the position of
the observer) than −r, can not be observed. (Assumption 1)

Intuitively, r represents the radius of the observable area in level-〈r〉 observation.
Particularly level-〈∞〉 equivalence =〈∞〉 corresponds to observation congruence
= defined in [2]. For example, the following relations hold.

(α〈1〉@a〈4〉).P =〈2〉 τ.P, (α〈1〉@a〈2〉).P �=〈2〉τ.P,

(α〈1〉@a〈4〉).P is a process which can perform the action (α〈1〉@a〈4〉), and there-
after behaves like the process P . τ is an internal action which can not be ob-
served. The action (α〈1〉@a〈4〉) need not be observed in level-〈2〉 observation,
because its actual grade (1−4 =) −3 is less than the minus level, thus −3 < −2.

An important property is that level-〈r〉 equivalence is preserved by Compo-
sition combinator |. Therefore we can check level-〈r〉 equivalence part by part.

The outline of this paper is as follows: In Section 2, we define the syntax
and the semantics of CCSG. In Section 3, shift-(s) equivalence and level-〈r〉
equivalence are defined. Then, we give a sound and complete axiom system for
level-〈r〉 equivalence of finite sequential processes. In Section 4, an example of
approximative analysis in CCSG is shown. In Section 5, we discuss space process
algebra already proposed. In Section 6, we conclude this paper.

2 Definition of CCSG

In Subsection 2.1, various sets used in CCSG are given. In Subsection 2.2, three
operators over routes are defined, and their properties are shown. In Subsection
2.3 and 2.4, the syntax and the semantics of CCSG are defined, respectively.

2.1 Actions of CCSG

We assume that an infinite set of names N is given. The set of routers Ω, ranged
over by ω, is given as the Cartesian product {a〈r〉 : a ∈ N , r ∈ R+} of the set
of names N and the set of non-negative real numbers R+. Two routers a1〈r1〉
and a2〈r2〉 are not distinct if a1 = a2 and r1 = r2. We assume that:

All routers connected to a node are distinct from each other. (Assumption 2)

As shown in Fig.2, if P2 and P4 are connected to P0 through two indistinct
routers a2〈4〉, then it is interpreted that P2 and P4 are positioned in the same
place. Namely, the route between P2 and P4 in Fig.2 is not (a2〈4〉a2〈4〉) but
ε. Thus any route between two points is expressed with no adjacent indistinct
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Fig. 2. The interpretation of indistinct connections

routers. Therefore the set of routes Ψ can be defined as {s ∈ Ω∗|No-adjacent(s)},
where Ω∗ is the set of finite router sequences, and No-adjacent(s) expresses that
s does not have two adjacent routers. For example, (a2〈4〉a2〈4〉) /∈ Ψ .

The set of co-names N is given as {a : a ∈ N}, where the overbar represents
a bijection such that a = a for all a ∈ N . Then the union of N and N is called
the set of label A(= N ∪N ) ranged over by α. The set of observable actions Act
is the Cartesian product {α〈r〉@s : α ∈ A, r ∈ R, s ∈ Ψ} of A, the set of real
numbers R, and Ψ . Finally the set of actions Actτ , ranged over by µ, is given as
Act ∪ {τ}, where τ is called an internal action.

The sets given in this subsection are summarized in Table 1.

Table 1. The sets used in CCSG

Sets Elements Variables Sets Elements Variables

N name a, a′, a1, · · · Ω router ω, ω′, ω1, · · ·
N co-name a, a′, a1, · · · Ψ route s, s′, s1, · · ·
R real number r, r′, r1, · · · Act observable action ν, ν′, ν1, · · ·
A label α, α′, α1, · · · Actτ action µ,µ′, µ1, · · ·

2.2 Operators over Routes

In Fig.1(a), the route s12 from P1 to P2 is (a1〈6〉a2〈4〉) and the route s23 from
P2 to P3 is (a2〈4〉a3〈1〉). In this case, the sum of s12 and s23 is expected to be
the route (a1〈6〉a3〈1〉) from P1 to P3 by considering Assumption 2. The sum of
routes is not a simple concatenation of two routes such as (a1〈6〉a2〈4〉a2〈4〉a3〈1〉).

In this subsection, three operators over routes are defined, then their prop-
erties are shown. One of them is Sum operator ◦. The sum of two routes s1 and
s2 is a route produced by connecting the terminal point of s1 to the initial point
of s2, and it is denoted by (s1 ◦ s2). The initial point of (s1 ◦ s2) is the initial
point of s1 and the terminal point of (s1 ◦ s2) is the terminal point of s2.

Definition 2.1 Sum operator ◦ : Ψ × Ψ → Ψ is inductively defined by

s1 ◦ s2 =
{
s′1 ◦ s′2 (s1 = s′1ω, s2 = ωs′2)
s1s2 (otherwise) ��

We explain how to calculate the sum of routes by using Fig.3. Each ωi is a
router and each si is a route such as s1=ω1ω2ω3ω4, s2=ω4ω3ω5, and s3=ω1ω2ω5.
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Fig. 3. An example of calculation of routes

In this case s3 is the sum route of s1 and s2 as follows:
s1 ◦ s2 = ω1ω2ω3ω4 ◦ ω4ω3ω5 = ω1ω2ω3 ◦ ω3ω5 = ω1ω2 ◦ ω5 = ω1ω2ω5 = s3
The next operator is Reverse operator rev to reverse the direction of a route.

Definition 2.2 Reverse operator rev : Ψ → Ψ is inductively defined by

rev(s) =



rev(s2)rev(s1) (s = s1s2)
ω (s = ω)
ε (s = ε) ��

The last operator is Difference operator �. The difference of two routes s1
and s2 is a route produced by connecting the terminal point of s1 to the terminal
point of s2, and it is denoted by (s1 � s2). The initial point of (s1 � s2) is the
initial point of s1 and the terminal point of (s1 � s2) is the initial point of s2.
Difference operator is defined by using Sum and Reverse operators.

Definition 2.3 Difference operator � : Ψ × Ψ → Ψ is defined by
s1 � s2 = s1 ◦ rev(s2) ��

For example, s1 is the difference route of s3 and s2 in Fig.3 as follows:
s3 � s2 = s3 ◦ rev(s2) = ω1ω2ω5 ◦ ω5ω3ω4 = ω1ω2 ◦ ω3ω4 = ω1ω2ω3ω4 = s1

It is needed to evaluate the loss distance of a route to check whether Condi-
tion 1 is satisfied or not. The function π is given to evaluate the loss distance.

Definition 2.4 The function π : Ψ →R+ is defined by

π(s) =



π(s1) + π(s2) (s = s1s2)
r (s = a〈r〉)
0 (s = ε) ��

It is often needed to evaluate the loss distance between the two terminal
points of two routes whose initial points are the same. For example, the loss
distance between A and B is evaluated by π(s3 � s2) in Fig.3.

Calculus of routes is similar to calculus of vectors. Some equations of routes
are shown in Proposition 2.1. The proofs are omitted because of lack of space.

Proposition 2.1 For any s, si ∈ Ψ , the following equations hold.
(1) s ◦ ε = ε ◦ s = s
(2) s � s = ε
(3) (s1 ◦ s2) ◦ s3 = s1 ◦ (s2 ◦ s3)
(4) (s1 � s2) � s3 = s1 � (s3 ◦ s2)
(5) (s1 ◦ s2) � s3 = s1 ◦ (s2 � s3)

(6) (s1 ◦ s2) � s3 = s1 � (s3 � s2)
(7) s1 � s2 = (s1 ◦ s) � (s2 ◦ s)
(8) s1 ◦ s2 = s3 iff s1 = s3 � s2
(9) π(s1 ◦ s2) ≥ |π(s1)− π(s2)|
(10) π(s1 ◦ s2) ≤ π(s1) + π(s2) ��



2.3 Syntax of CCSG

In process algebra, actions of processes are described as process expressions. We
introduce a set of Variables X ranged over byX and a set of Constants K ranged
over by A. We define the set of process expressions E ranged over by E,F, · · ·.

Definition 2.5 The set of process expressions E is the smallest set including
the following expressions:

X : Variable (X ∈ X ) E|F : Composition
A : Constant (A ∈ K) E[f ] : Relabelling (f : a relabelling function)
0 : Inaction E\L〈r〉(s) : Restriction (r ∈ R, s ∈ Ψ,L ⊆ A)

µ.E : Prefix (µ ∈ Actτ ) E@s : Route (s ∈ Ψ)
E + F : Choice

where E and F are already in E. ��

The relabelling function f is a function from A to A such that f (α) = f(α). We
practically extend f over Actτ by decreeing that f (α〈r〉@s) = f (α)〈r〉@s and
f (τ ) = τ . Notice that names of routers can not be changed by Relabelling.

A process is a process expression with no Variables. The set of processes
is denoted by P and is ranged over by P,Q,R, · · ·. A Constant is a process
whose meaning is given by a defining equation. In fact, we assume that for every
Constant A ∈ K, there is a defining equation of the form A

def= P , where P ∈ P .
We informally explain roles of each combinator and relations of positions of

an expression and subexpressions as follows:

– µ.E can perform the action µ, and thereafter behaves like E. µ.E and E
are positioned at the same place. If µ = α〈r〉@s, then the graded action α〈r〉
occurs the route s away from E.

– E+F represents a choice between E and F . The choice is made by an action
of E or F . E + F , E, and F are positioned at the same place.

– E|F represents a concurrent composition of E and F . E|F , E, and F are
positioned at the same place.

– E[f ] behaves like E except that actions of E are relabelled by f . E[f ] and
E are positioned at the same place.

– E\L〈r〉(s) locally restricts actions in the restriction area decided by r and s. s
is the route from the center of the restriction area to E. r is the restriction
power at the center, and the restriction power decreases with loss distance.
Thus, the actual restriction power for an action which occurs the loss distance
r′ away from the center, is (r − r′). If the absolute value of the grade of the
action is less than the actual restriction power and the label of the action
is included in L, then the action can not occur. We will explain this local
restriction at the end of Subsection 2.4 by using an example. E\L〈r〉(s) and E
are positioned at the same place.

– E@s behaves like E, but E@s is the route s away from E.

To avoid too many parentheses, combinators have binding power in the fol-
lowing order: {Restriction, Relabelling, Route} >Prefix>Composition>Choice.
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Fig. 4. The operational semantics

2.4 Semantics of CCSG

The semantics is given by the labelled transition system (E,Actτ ,{
µ−→:µ∈Actτ}).

E
µ−→E′ indicates that E may perform µ and thereafter behaves like E′.

Definition 2.6 The transition relation
µ−→ over process expressions is the small-

est relation satisfying the inference rules in Fig.4. Each rule is read as follows:
if the transition relation(s) above the line are inferred and the side condition(s)
are satisfied, then the transition relation below the line can be also inferred. ��

The five rules, Rou1,2, Com3, Res1,2, are different from the rules for CCS.
For Rou1, the action α〈r〉 occurs the route s1 away from E. Therefore the

action occurs the route (s1 ◦ s2) away from E@s2.
Com3 infers a synchronization of two actions with complementary labels.

The side condition represents Condition 1. Namely, the sum (r1 + r2) of their
grades is not less than the loss distance π(s1 � s2) between their positions.

The side condition (|r1| > r2 − π(s1 � s2)) of Res1 means that the action
(α〈r1〉@s1) with the grade r1, whose absolute value |r1| is greater than the actual
restriction power (r2 − π(s1 � s2)) for the action, is not restricted even though
the label α of the action is included in L. π(s1 � s2) is the loss distance between
the center of the restriction area and the position where the action occurs. We
explain this local restriction by using the following example.

SY S ≡ (P@s1)\{α}
〈7〉(s2)

, P ≡ (α〈5〉@ε).0



where s1 = a2〈1〉a1〈4〉 and s2 = a3〈2〉a1〈4〉. The process P is the route s1 away
from SY S, and SY S locally restricts α. The route from the center of the re-
striction area to SY S is s2, and the restriction power at the center is 7. Then
the loss distance between the action and the center is evaluated as follows:
π(s1 �s2)=π(s1 ◦ rev(s2))=π((a2〈1〉a1〈4〉) ◦ (a1〈4〉a3〈2〉))=π(a2〈1〉a3〈2〉)=3

Thus the action α〈5〉 is not restricted, because the actual restriction power for
the action is (7− 3 =) 4.

3 Equality in CCSG

In Subsection 3.1, we define shift-(s) equivalence ≺∼(s), introduced in Section 1. In
Subsection 3.2, weak level-〈r〉 equivalence ≈〈r〉 is defined before level-〈r〉 equiv-
alence =〈r〉, because level-〈r〉 equivalence is defined based on weak level-〈r〉 e-
quivalence. In Subsection 3.3, we define level-〈r〉 equivalence, which is the largest
equivalence relation preserved by Choice + and included in ≈〈r〉. In Subsection
3.4, we give a sound and complete axiom system for level-〈r〉 equivalence of fi-
nite sequential processes. In Subsection 3.5, we discuss a strong version of weak
level-〈r〉 equivalence, where the number of transitions by τ must be matched.

3.1 Shift-(s) Equivalence
We define shift-(s) equivalence by using shift-(s) bisimulations, in order to cancel
the difference s between positions of two observers.

Definition 3.1 Let s ∈ Ψ . A binary relation S ⊆ P × P over processes is a
shift-(s) bisimulation if (P,Q) ∈ S implies, for all α〈r〉@s′ ∈ Act, that

(i) whenever P
α〈r〉@s′

−−−−→P ′ then, for some Q′, Q
α〈r〉@(s′◦s)
−−−−−−−−→Q′ and (P ′, Q′)∈S,

(ii) whenever P τ−→ P ′ then, for some Q′, Q
τ−→ Q′ and (P ′,Q′) ∈ S ,

(iii) whenever Q
α〈r〉@s′

−−−−→Q′ then, for some P ′, P
α〈r〉@(s′�s)
−−−−−−−−→P ′ and (P ′, Q′)∈S,

(iv) whenever Q τ−→ Q′ then, for some P ′, P
τ−→ P ′ and (P ′, Q′) ∈ S. ��

Definition 3.2 P and Q are shift-(s) equivalent, written P ≺∼(s)Q, if (P,Q)∈S
for some shift-(s) bisimulation S. ��

Although shift-(s) equivalence is not an equivalence relation, parameterized
reflexive, symmetric, and transitive laws hold as shown in Proposition 3.1.

Proposition 3.1 (1) P ≺∼(ε) P

(2) If P ≺∼(s) Q, then Q
≺∼(rev(s)) P

(3) If P ≺∼(s1) Q and Q ≺∼(s2) R, then P
≺∼(s1◦s2) R ��

Therefore the total union of ≺∼(s) over s ∈ Ψ is an equivalence relation.

The differences of shift-(s) equivalence ≺∼(s) from strong equivalence ∼ are
only (s′◦s) and (s′�s) in (i) and (iii) of Definition 3.1. Thus shift-(ε) equivalence
≺∼(ε) is strong equivalence, because (s′ ◦ ε = s′ � ε = s′). We also conventionally

use the symbol ∼ for ≺∼(ε). The following equations for Route @ hold.



Proposition 3.2 (1) ((α〈r〉@s).P )@s′ ∼ (α〈r〉@(s ◦ s′)).(P@s′)
(2) (P1|P2)@s ∼ (P1@s)|(P2@s)
(3) (P@s1)@s2 ∼ P@(s1 ◦ s2) ��

For (1), the action α〈r〉 occurs the route s away from P . Thus α〈r〉 is the route
(s ◦ s′) away from P@s′, because P@s′ is the route s′ away from P . For (2), the
route between P1 and P2 of the left-side is clearly ε. And the route between P1

and P2 of the right-side is also ε by Assumption 2.
The following proposition shows properties of shift-(s) equivalence very well.

Proposition 3.3 (1) If P ≺∼(s) Q, then P
≺∼(s◦s′) Q@s′

(2) If P ≺∼(s) Q, then P@rev(s′)
≺∼(s′◦s) Q ��

Shift-(s) equivalence is preserved by Composition combinator | as follows.

Proposition 3.4 If Pi
≺∼(s) Qi (i ∈ {1, 2}), then P1|P2

≺∼(s) Q1|Q2. ��

3.2 Weak Level-〈r〉 Equivalence
In this subsection, weak level-〈r〉 equivalence is defined based on Assumption 1.

First we give the sequential transition relations. The set Act∗τ , ranged over
by t, t′, · · ·, is the set of action sequences including the empty sequence ε, and if
E

µ1−→ · · · µn−→ E′ for some t = µ1 · · ·µn ∈ Act∗τ , then we write E t−→ E′.
Secondly, we define a (single) threshold function to neglect unobservable

actions which have lower actual grades than −r, considering Assumption 1.

Definition 3.3 The single threshold function φ : Act∗τ×R → Act∗ is defined by

φ(t, r) =



φ(t1, r)φ(t2, r) (t = t1t2, t1 �= ε, t2 �= ε)
a〈r′〉@s (t = a〈r′〉@s, r′ − π(s) ≥ −r)
ε (otherwise) ��

It is important to notice that too high graded actions are ambiguous, because
they can synchronize with unobservable actions. More exactly, in level-〈r〉 ob-
servation, if an action occurs the route s away from the observer and has higher
grades than (r − π(s)), then it is ambiguous, because observable level decreases
with loss distance. Thus we define a double threshold function as follows:

Definition 3.4 The double threshold function θ : Act∗τ ×R → Act∗is defined by

θ(t, r) =



θ(t1, r)θ(t2, r) (t = t1t2, t1 �= ε, t2 �= ε)
a〈r′〉@s (t = a〈r′〉@s, |r′| ≤ r − π(s))
ε (otherwise) ��

For example, the following applications show properties of φ and θ very well.
φ(α〈−2〉@ε, 1) = ε, φ(α〈0〉@ε, 1) = α〈0〉@ε, φ(α〈2〉@ε, 1) = α〈2〉@ε
θ(α〈−2〉@ε, 1) = ε, θ(α〈0〉@ε, 1) = α〈0〉@ε, θ(α〈2〉@ε,1) = ε

In level-〈1〉 observation, (α〈−2〉@ε) is unobservable since (−2 < −1), and
(α〈2〉@ε) is ambiguous since (2 > 1).

We define the new labelled transition system (E, Act∗τ , {
t=⇒〈r〉: t ∈ Act∗τ}) for

any r ∈ R, in which the transition relations t=⇒〈r〉 implicitly includes transitions
through unobservable actions and ambiguous actions in level-〈r〉 observation.



Definition 3.5 Let r ∈ R. If θ(t, r) = ε and E t−→ E′ for some t ∈ Act∗τ , then
E

ε=⇒〈r〉 E
′ (also written E =⇒〈r〉 E

′). If E =⇒〈r〉
µ1−→=⇒〈r〉 · · · =⇒〈r〉

µn−→=⇒〈r〉

E′ for some t = µ1 · · ·µn ∈ Act∗τ , then E
t=⇒〈r〉 E

′. ��

We define weak level-〈r〉 equivalence by using level-〈r〉 bisimulations.

Definition 3.6 Let r ∈ R. A binary relation S ⊆ P × P over processes is a
level-〈r〉 bisimulation if (P,Q) ∈ S implies, for all µ ∈ Actτ , that
(i) whenever P

µ−→ P ′ then, for some Q′, Q
φ(µ,r)

========⇒〈r〉Q
′, and (P ′,Q′) ∈ S ,

(ii) whenever Q
µ−→ Q′ then, for some P ′, P

φ(µ,r)
========⇒〈r〉P

′, and (P ′, Q′) ∈ S.��

Definition 3.7 P and Q are weakly level-〈r〉 equivalent, written P ≈〈r〉 Q, if
(P,Q) ∈ S for some level-〈r〉 bisimulation S. ��

Notice that φ is used on =⇒〈r〉 in Definition 3.6, because ambiguous actions
can be observed. Proposition 3.5 shows the basic properties of ≈〈r〉.

Proposition 3.5 (1) ≈〈r〉 is an equivalence relation.
(2) If r ≥ r′, then ≈〈r〉 ⊆ ≈〈r′〉. ��

If the level is high enough that no action is neglected, then unobservable actions
are only τ . Particularly ≈〈∞〉 corresponds to weak equivalence ≈ defined in [2].
≈〈r〉 is preserved by Composition combinator |, and conditionally preserved

by Restriction combinator\ as shown in Proposition 3.6.

Proposition 3.6 Let P1 ≈〈r〉 P2. Then
(1) P1|Q ≈〈r〉 P2|Q
(2) P1\L〈r′〉(s′) ≈〈r〉 P2\L〈r′〉(s′) if r′ + π(s′) ≤ r
(3) P1@s′ ≈〈r′〉 P2@s′ if r′ + π(s′) ≤ r ��

Intuitively the condition of (2) shows that the restriction area, inside the circle
whose center is π(s′) away from the observer and whose radius is r′, must not
be overlapped on the unobservable area, outside the circle whose radius is r.

3.3 Level-〈r〉 Equivalence

Weak level-〈r〉 equivalence ≈〈r〉 is not preserved by Choice combinator + like
weak equivalence ≈. In this subsection, we define a relation called level-〈r〉 e-
quivalence preserved by +. First, a binary relation over actions is defined.

Definition 3.8 Let r ∈ R. Level-〈r〉 substitution ≥〈r〉(⊂ Actτ × Actτ ) is a
binary relation over actions defined by
≥〈r〉 = {(µ, µ) : µ ∈ Actτ} ∪ {(µ,µ′) : µ, µ′ ∈ Actτ , φ(µ, r) = θ(µ′, r) = ε} ��

(µ ≥〈r〉 µ
′) implies that µ′ can be substituted for µ in level-〈r〉 observation. For

example the following relations show properties of ≥〈r〉.
τ ≥〈1〉 (α〈−2〉@ε), (α〈−2〉@ε) ≥〈1〉 τ, τ ≥〈1〉 (α〈2〉@ε), (α〈2〉@ε) �≥〈1〉τ



In level-〈1〉 observation, (α〈−2〉@ε) is unobservable and (α〈2〉@ε) is ambigu-
ous. Unobservable actions correspond to internal actions τ , while ambiguous
actions do not correspond to τ . Ambiguous actions can be substituted for inter-
nal actions, but internal actions can not be substituted for ambiguous actions.

Then we define level-〈r〉 equivalence.
Definition 3.9 Let r ∈ R. P and Q are level-〈r〉 equivalent, written P =〈r〉 Q,
if for all µ ∈ Actτ , that
(i) whenever P µ−→P ′ then, for some (Q′, µ′), Q µ′

=⇒〈r〉Q
′,P ′≈〈r〉Q

′,µ ≥〈r〉µ
′,

(ii) whenever Q
µ−→Q′ then, for some (P ′, µ′), P

µ′

=⇒〈r〉P
′,P ′≈〈r〉Q

′,µ ≥〈r〉µ
′��

For =〈r〉, each initial action must be matched by a substitutive action unlike
≈〈r〉. Particularly =〈∞〉 corresponds to observation congruence. Proposition 3.7
show that =〈r〉 is the largest relation preserved by + and included in ≈〈r〉.

Proposition 3.7 (A characterization of =〈r〉)
1. If P1 =〈r〉 P2, then P1 + R =〈r〉 P2 +R, for any R.
2. Let Q ⊆≈〈r〉 such that (P1 +R,P2 +R) ∈ Q for any R, if (P1, P2) ∈ Q.

Then if (P1, P2) ∈ Q and L(P1) ∪ L(P2) �= A 1, then P1 =〈r〉 P2.

Proof We show only a proof of 2. We choose that R is A def= (a0〈r0〉@ε).A such
as a0 /∈ L(P1)∪L(P2) and r0 ≥ −r. Let P1

µ−→ P ′. By Choice1, P1+A
µ−→ P ′.

Since P1 + A ≈〈r〉 P2 +A, for some Q′, P2 + A
φ(µ,r)

========⇒〈r〉 Q
′ and P ′ ≈〈r〉 Q

′.
If µ is (a1〈r1〉@s1) such as (r1 ≥ π(s1)−r), then φ(a1〈r1〉@s1, r) = a1〈r1〉@s1.

In this case, we easily obtain that P2
µ

=⇒〈r〉 Q
′, P ′ ≈〈r〉 Q

′, and µ ≥〈r〉 µ.
Otherwise, φ(µ, r) = ε. Therefore, P2 + A =⇒〈r〉 Q

′. Now we show that
Q′ �≡P2 + A by inconsistency. Suppose that Q′ ≡ P2 + A. In this case Q′ has
(a0〈r0〉@ε)-derivations, because φ(a0〈r0〉@ε, r) = a0〈r0〉@ε since r0 ≥ −r. Thus
P ′ must also have (a0〈r0〉@ε)-derivations, since P ′ ≈〈r〉 Q

′, but it is impossible,

because a0 /∈ L(P ′) ⊆ L(P ). Hence Q′ �≡P2 + A, namely, P2 + A
µ′

=⇒〈r〉 Q
′ for

some µ′ such as θ(µ′, r) = ε. This transition must be caused by P2, because P ′

has no (a0〈r0〉@ε)-derivation. Hence P2
µ′

=⇒〈r〉 Q
′ and µ ≥〈r〉 µ

′, since φ(µ, r) =
ε = θ(µ′, r). ��
≈〈r〉 is not a congruence relation, because it is not always preserved by Re-

striction and Route combinators. Proposition 3.6 for ≈〈r〉 also holds for =〈r〉.

3.4 Axiom System A〈r〉
In order to compare level-〈r〉 equivalence =〈r〉 and observation congruence =,
we give an axiom system A〈r〉 for finite sequential processes which consist only
of Inaction ‘0’, Prefix ‘.’, and Choice ‘+’. The set of finite sequential processes
is denoted by Pseq(⊂ P), and is ranged over by P,Q, · · ·.

=〈r〉 is a congruence relation for Pseq, because it is preserved by Prefix and
Choice combinators. A sound and complete axiom system A∞ for observation
congruence of Pseq has already been given in [2] as follows.
1 L(P ) is the set of labels of all actions which P can perform in the future.



Definition 3.10 We write A∞ $ P = Q if the equality of two processes P
and Q can be proven by equational reasoning from the axiom system A∞, which
consists of the following equations:
M1 P1 + P2 = P2 + P1

M2 (P1 + P2) + P3 = P1 + (P2 + P3)
M3 P = P + P
M4 P = P + 0

T1 µ.τ.P = µ.P
T2 P + τ.P = τ.P
T3 µ.(P + τ.Q) + µ.Q = µ.(P + τ.Q)

��
Theorem 3.8 Let P,Q ∈ Pseq. Then P = Q iff A∞ $ P = Q. ��

We define an axiom system A〈r〉 for any r ∈ R as follows.

Definition 3.11 Let r ∈ R. We write A〈r〉 $ P = Q if the equality of two
processes P and Q can be proven by equational reasoning from the axiom system
A〈r〉, which consists of the equations in A∞ and the following equations:

A1〈r〉 (α〈r′〉@s).P = τ.P if r′ < −(r − π(s))
A2〈r〉 (α〈r′〉@s).P = (α〈r′〉@s).P + τ.P if r′ > r − π(s) ��

A1〈r〉 and A2〈r〉 are equations for unobservable actions and ambiguous actions,
respectively. We define a standard form to prove completeness of A〈r〉.
Definition 3.12 P is a level-〈r〉 standard form, or is in level-〈r〉 standard form,
if 2 (i) P ≡

∑m
i=1 µi.Pi where each Pi is also in level-〈r〉 standard form,

(ii) P
a〈r′〉@s

�−−−−→ such as r′ < −(r − π(s)),

(iii) whenever P
a〈r′〉@s

−−−−→ P ′ such as r′ > r − π(s), then P τ−→ P ′. ��
(ii) means that all unobservable actions except τ can not occur. (iii) means that
all ambiguous actions must be bypassed through τ .

Proposition 3.9 strengthens relations between processes.

Proposition 3.9 Let P and Q be in level-〈r〉 standard form. Then,
P ≈〈r〉 Q implies P ≈ Q, and P =〈r〉 Q implies P = Q.

Proof (Key points) Let P be in level-〈r〉 standard form. It is important to prove
that if P

µ−→ P ′ and θ(µ, r) = ε then P τ−→ P ′. θ(µ, r) = ε implies µ = τ or
µ = (α〈r′〉@s′) such as |r′| > π(s′)− r. Then, P τ−→ P ′ is easily obtained by the
conditions (ii) and (iii) of level-〈r〉 standard form. ��

Lemma 3.10 is used for the proof of completeness of A〈r〉 for =〈r〉 of Pseq.

Lemma 3.10 For any P ∈ Pseq, there is a level-〈r〉 standard form P ′ of equal
depth, such that A〈r〉 $ P = P ′.
Proof (ii) and (iii) are satisfied by A1〈r〉 and A2〈r〉, respectively. ��

Finally we give Theorem 3.11 which shows that A〈r〉 is sound and complete
for level-〈r〉 equivalence of finite sequential processes.
Theorem 3.11 Let P,Q ∈ Pseq. Then P =〈r〉 Q iff A〈r〉 $ P = Q.
Proof (⇐) A level-〈r〉 bisimulation for each equation can be found.

(⇒) By Lemma 3.10, Proposition 3.9, and Theorem 3.8. ��
2 If m ≥ 1, then

∑m

i=1
Pi is the short notation of P1 + P2 + · · ·+ Pm, otherwise it is 0.
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Fig. 5. A communicating system with deadlocks

3.5 Strong Level-〈r〉 Equivalence
In [2] strong equivalence ∼ is considered before weak equivalence ≈, because ∼
is simpler than ≈. In this subsection we discuss a strong version ∼〈r〉 of ≈〈r〉.

Strong level-〈r〉 bisimulation may be defined by using the condition that
(i) whenever P

µ−→P ′ then, for some (Q′, µ′), Q
µ′

−→Q′, (P ′,Q′)∈S, µ ≥〈r〉 µ
′,

instead of (i) in Definition 3.6, and (ii) is symmetric. P ∼〈r〉 Q implies P ≈〈r〉 Q,
and a sound and complete axiom system for ∼〈r〉 of Pseq is given from M1-M4,
A1〈r〉, A2〈r〉. Unfortunately, ∼〈r〉 is not preserved by Composition |. For exam-
ple, consider the following three processes: P1 ≡ α〈−2〉.0, P2 ≡ τ.0, P3 ≡ α〈2〉.0.
P1 and P2 are strongly level-〈1〉 equivalent, because α〈−2〉 is unobservable, but
P1|P3 and P2|P3 are not strongly level-〈1〉 equivalent, because P1|P3 can reach a
stop process through an internal action τ by Com3, while P2|P3 can not do so.

4 An Example of Approximative Analysis

We show an example of approximative analysis in CCSG by using the system in
Fig.5. DG and DC are databases of government and corporations, respectively.
UE and UM are interfaces of the national laboratory ETL and the corporation
MEC, respectively. They are connected through the four routers as shown in
Fig.5. This system is described by an observer at JP as follows:

SY S
def= ((GO@go〈4〉)|(CO@co〈4〉))\L〈18〉(ε)

L = {lk1, lk2, ul1, ul2}
GO

def= DG|(UE@etl〈3〉)
CO

def= DC|(UM@mec〈3〉)
We assume that locks are needed for access to databases, and each interface trys
to lock the near database at first and another one after that, when it accepts
the action aci. Each component process is described as follows:

UE
def= ac1.lk1〈3〉.lk2〈11〉.su1.ul2〈11〉.ul1〈3〉.UE

UM
def= ac2.lk2〈3〉.lk1〈11〉.su2.ul1〈11〉.ul2〈3〉.UM

DG
def= lk1.ul1.DG

DC
def= lk2.ul2.DC

where the empty route ε and the zero grade 〈0〉 are omitted. sui is used to inform
success of locking. The grades of ac and su are set to 0, because they are local
at their interfaces. lk and ul are used for locking and unlocking, respectively. lk
and ul of interfaces have grades high enough to synchronize with databases. For
example, the grade 11 of lk2〈11〉 is the loss distance between UE and DC. These
lk and ul are restricted from environment. The restriction power 18 of SY S is
the minimal to restrict lki〈11〉 and uli〈11〉 the loss distance 7 away from JP.

In order to understand the behavior of SY S, we give the sequential process
SP which is observation congruent to SY S, written SY S = SP , as follows:



SP
def= ac1@s1.R1 + ac2@s2.R2, s1 = etl〈3〉go〈4〉, s2 = mec〈3〉co〈4〉

R1
def= τ.(τ.(su1@s1.SP + ac2@s2.su1@s1.R2) + ac2@s2.O12) + ac2@s2.O

R2
def= τ.(τ.(su2@s2.SP + ac1@s1.su2@s2.R1) + ac1@s1.O21) + ac1@s1.O

O
def= τ.O12 + τ.O21, O12

def= τ.su1@s1.R2 + τ.0, O21
def= τ.su2@s2.R1 + τ.0

SP explicitly shows that SY S has deadlocks. Although SP has useful informa-
tion, but it is somewhat complex even for the simple example SY S.

We often stay in ETL and are interested only in the situation near ETL.
Thus actions of UM are unobservable. First, the position of the observer is
shifted from JP to ETL by SY S ≺∼(s) SY S@s, where s is the route (go〈4〉etl〈3〉)
from JP to ETL. Let SPETL

def= ac1.(τ.su1.SPET L + τ.0), then the equation
SY S

≺∼(s) SY S@s =〈r〉 τ.SPETL ≈〈r〉 SPETL

holds, where r is less than 14 which is the loss distance between ETL and MEC.
The τ of τ.SPETL is needed for matching unobservable actions in MEC. SPETL

shows that SY S may fall to a deadlock after ac1 while it never falls just after su1.

5 Related Work

Several process algebras considering space have already been proposed, for ex-
ample [3, 4, 5] as extensions of CCS and [7] as an extension of ACP [6].

An advantage of [7] is that time and space are integrated. For example, the
possibility of communication between distributed processes can be checked by
considering the velocity of communication. The main purpose of CCSG is ap-
proximative analysis, while [7] is not interested in such analysis. Although CCSG
has no notion of time yet, we are interested in introducing the notion of time [8] to
CCSG. The velocity of communication may be expressed by routers with delay.

In [3, 4, 5], equality of processes is checked by considering locations of actions.
For example, P1 ≡ (α1.0|α2.0) and P2 ≡ (α1.α2.0 + α2.α1.0) are not location
equivalent [3], because the locations of α1 and α2 are independent of each other
in P1, while they are dependent in P2, as shown in the location transitions:

P1

α1
−−−−−−−−−−→

u1 (u1 :: 0)|(α2.0)
α2

−−−−−−−−−−→
u2 (u1 :: 0)|(u2 :: 0),

P2

α1
−−−−−−−−−−→

u1 u1 :: α2.0
α2

−−−−−−−−−−→
u1u2 u1u2 :: 0.

where u of
α

−−−−→
u represents the location of α. In the transitions of P2, the loca-

tion u1u2 of α2 depends on u1 of α1. Location transitions automatically assign
locations. Thus, concurrent processes are distinct from sequential processes.

In CCSG positions of actions are explicitly described, and concurrent process-
es are not always distinct from sequential processes. For example, the following
processes P ′

1 and P ′
2 are level-〈∞〉 equivalent (i.e. observation congruent).

P ′
1 ≡ (α1.0)@s1|(α2.0)@s2, P ′

2 ≡ (α1@s1).(α2@s2).0 + (α2@s2).(α1@s1).0

It is not recommended to apply location transitions into CCSG, because loca-
tions automatically assigned to actions by location transitions may be inconsis-
tent with the explicitly described positions. The purpose of location equivalence
is different from ours. We introduce the positions for estimating the loss distance.



6 Conclusion
We have proposed CCSG by introducing grades and routes to CCS. The grades
represent the importance of actions and the routes point to positions where
actions occur. An advantage of CCSG is to approximately analyze systems under
assumption that unimportant distant actions can not be observed. We have given
an approximative equivalence relation called level-〈r〉 equivalence. The difference
of level-〈r〉 equivalence from observation congruence is shown by A1〈r〉 and
A2〈r〉 in the axiom system A〈r〉.

The most interesting and urgent future work is to modify the connection of
routers to graph structure from the hierarchical star structure.

MBone [11] is known as a communication style where a value assigned to each
message restricts the receivable area of the message. In MBone each router has
a threshold, and messages with values less than the threshold can not pass the
router. Although CCSG hsa a similar communication style to MBone, CCSG has
point-to-point communication, while MBone has broadcast communication. CB-
S [9] and CCB [10] have already been proposed as process algebra with broadcast
communication. We want to extend CCSG with broadcast communication.
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