
Towards heterogeneous formal specifications

Gilles Bernot1 and Sophie Coudert1 and Pascale Le Gall1

L.a.M.I., Université d’Évry, Cours Monseigneur Roméro, 91025 Evry Cedex, France

{bernot,coudert,legall}@lami.univ-evry.fr

Abstract. We believe that big software systems could be more easily formally specified if several

specification approaches were allowed within a single system specification. We propose a notion of

heterogeneous framework where the specifier can choose a dedicated specification framework for

each specification module. We show how the resulting heterogeneous modular specifications can get

semantics, and how modular proofs can still be performed on these specifications. Our contribution

is mainly focussed on a sort of interoperability between heterogeneous specification modules and

we retrieve, as much as possible, classical notions of “meta-formalisms,” modularity for structured

specifications, or inference systems, as they are well known in the algebraic specification community.

With this respect, our work can be regarded as an attempt to unify frameworks, by accepting and

formalizing heterogeneity.

Keywords: heterogeneous specifications, modularity, formal specifications, logical frameworks, in-

ference systems, algebraic specifications, theorem proving.

Introduction

The huge size of software systems requires more and more rigorous approaches for their design, mainte-

nance, reuse, etc. It is in particular especially important to take care of the specification methods and

techniques for such systems. Formal specifications are more and more often used for critical parts of

such systems, and to face the complexity and the variety of the requirements to be specified, several

specification languages or dialects will probably be used in the future, each of them being dedicated

to specific areas (nuclear plants, public transportation, telecommunications, hardware, etc.) Unfortu-

nately, the wide variety of academic formal specification languages is rather understood as a handicap

for formal specifications instead of a flexibility advantage. People need to know how to compare formal

specification languages. For this reason, great efforts are devoted to unifying frameworks. Some of these

efforts are made via “meta-formalisms,” following the institution approach [GB84], where specification

formalisms can be compared via some kind of institution morphisms. The institution-like approaches

have the advantage to keep the flexibility of “tuning” a specification framework according to the project

under development [Mes89] [AC92] [SS92] [CM93] [EGR94] [CR94] [Wol95]. Other recent efforts tend to

propose a unique common framework, as simple as possible, containing only the indispensable aspects

(e.g., within the ESPRIT Basic Research Working Group COMPASS or the IFIP Working Group on



Foundations of Systems Specification). A common framework has the advantage to provide a pragmatic

way to mix several existing specification languages together, or at least to identify their intersection.

Heterogeneity inside a specification is not addressed by these unifying frameworks. The explosive

growth of wide systems induces a cooperation of several subsystems which have been a priori made

to fulfill very heterogeneous needs. They have been specified and developed according to heterogeneous

specification and programming languages. Thus, it becomes very convenient to choose a dedicated spec-

ification framework for each component of a system, in a similar way than programming languages are

chosen at the present time according to the component under development (and the skills of the man-

power). In this article, we define heterogeneous specifications where each specified module can have its

own underlying specification framework. Owing to this granularity the flexibility is maximal, since the

specification language has not to be the same for all components of a huge system.

To define a heterogeneous framework for heterogeneous specifications, we have carefully avoided the

approach which consists in embedding the whole specification into a big logic that would be a sort of

“union” of all the logics appearing in the specification modules. It would have produced a framework

far too rich, complex, and possibly inconsistent. Our choice has been to privilege the top level module

of a structured specification. The semantics of a specification are made of models in the sense of the

framework of the top level module, and the expressible sentences about the specification belong to this

framework as well. Nevertheless it remains possible to prove sentences by using lemmas issued from

the imported frameworks, and proved within them. Such an approach reduces to one the number of

specification frameworks to understand in order to reuse a software part: it is sufficient to understand

the top level module specification framework. For reusability purposes, such an approach could as well

simplify the management of a library of heterogeneously specified softwares; it suffices to identify the top

level framework.

We have also tried, as much as possible, to follow classical ideas from the algebraic specification

community for usual (homogeneous) modular specifications. Our contribution is mainly focussed on a

sort of interoperability between formal specifications, at the proof level via a heterogeneous inference

bridge, and at the semantic level via extraction functors.

In the first section, we define the notion of homogeneous framework, which is slightly weakened with

respect to general logics [Mes89] in order to directly accept inference relations containing structural in-

duction principles. In the second section, we define a notion of heterogeneous framework which allows to

properly define heterogeneous specifications, their semantics, and an associated heterogeneous inference

system. Then, we show how some previous works on institution-like frameworks can be reused in order

to build heterogeneous frameworks for free; lastly we provide a toy example of heterogeneous specifica-

tion, and develop a typical example of heterogeneous proof which delegates the proof of a lemma to a

heterogeneously imported module.



1 Homogeneous frameworks

Let Set and Cat respectively denote the category of sets1 and the category of categories [ML71] [BW90].

We call “homogeneous framework” a slightly weakened notion of general logic [Mes89].

Definition 1 A homogeneous framework is a quintuple (Sig, sen,mod,⊢, |=) where:

– Sig is a category whose objects are called signatures

– sen is a (covariant) functor from Sig to Set associating to each signature a set of sentences

– mod is a contravariant functor from Sig to Cat associating to each signature a category of models

– ⊢, called inference system, is a |Sig|-indexed family such that for each signature Σ , ⊢Σ is a binary

relation included in P(sen(Σ)) × sen(Σ)

– |=, called satisfaction relation, is a |Sig|-indexed family such that for each signature Σ, |=Σ is a

binary relation included in mod(Σ) × sen(Σ)

and the following properties are satisfied:

– ⊢ is reflexive, monotonic and transitive, i.e., respectively

• ∀Σ ∈ Sig, ∀ϕ ∈ sen(Σ), {ϕ} ⊢Σ ϕ

• ∀Σ ∈ Sig, ∀Γ ⊆ sen(Σ), ∀Γ ′ ⊆ sen(Σ), ∀ϕ ∈ sen(Σ), Γ ⊢Σ ϕ and Γ ⊆ Γ ′ =⇒ Γ ′ ⊢Σ ϕ

• ∀Σ ∈ Sig, ∀Γ ⊆ sen(Σ), ∀Γ ′ ⊆ sen(Σ), ∀ϕ ∈ sen(Σ), Γ ⊢Σ Γ ′ and2 Γ ∪ Γ ′ ⊢Σ ϕ =⇒ Γ ⊢Σ ϕ

– (weak) ⊢-translation: for any isomorphism between two signatures σ : Σ → Σ′ , any Γ ⊆ sen(Σ) and

any ϕ ∈ sen(Σ), Γ ⊢Σ ϕ if and only if sen(σ)(Γ ) ⊢Σ′ sen(σ)(ϕ)

– (weak) satisfaction condition: for any isomorphism between two signatures σ : Σ → Σ′ , any M ′ ∈

mod(Σ′) and any ϕ ∈ sen(Σ), M ′ |=Σ′ sen(σ)(ϕ) if and only if mod(σ)(M ′) |=Σ ϕ

– soundness: for any Γ ⊆ sen(Σ) and any ϕ ∈ sen(Σ), if Γ ⊢Σ ϕ then3

∀M ∈ mod(Σ), (M |=Σ Γ ) =⇒ (M |=Σ ϕ)

In the remainder of this article, by notation abuse, sen(σ) will still be denoted σ, and mod(σ) will often

be denoted Uσ by analogy with the usual notation for “the forgetful functor.”

Homogeneous frameworks are logics as defined by Meseguer in [Mes89] except that the ⊢-translation

and the satisfaction condition are restricted to signature isomorphisms only. It means that properties are

preserved by renaming of operations and variables (since these notions are hidden behind signatures and

sentences). Our motivation for such a weakening is:

1 with total functions as morphisms

2 Γ ⊢Σ Γ ′ means ∀ψ ∈ Γ ′, Γ ⊢Σ ψ

3 M |=Σ Γ means ∀ψ ∈ Γ, M |=Σ ψ



– Without these restrictions to isomorphisms, it would not be possible to consider inference systems

with structural induction. If we consider for example a (first order) signature morphism Σ1 → Σ2

which is not surjective, then a proof by structural induction on Σ1 has no reason to remain valid

in Σ2. Moreover, in such a case, the functor mod should concern only finitely generated models and

similarly, the satisfaction condition is not always satisfied.

– Of course, to solve such situations, it is often argued that it is possible to tune the notions of signature,

sentence or model to fulfill the definition of general logic. We do not encourage such modifications of

homogeneous frameworks. Indeed, the more the homogeneous frameworks are tuned in order to fit a

unifying presentation of frameworks, the more the relationships between heterogeneous specification

modules are difficult to establish and the more their meaning become obscure (see e.g., partial-to-

total translation in Section 3.2). It is also often argued that induction and finitely generated models

consideration belong to a specification language level and has not to be captured directly in the logic.

In computer science, the proof of non-trivial properties requires structural induction. Thus, we want

to take into account the fundamental theoretical problems raised by structural induction.

However, to deal with the lack of satisfaction condition, we give the following definition which for-

malizes usual encapsulation principles of programming languages. It will be used in Section 2.2 to define

semantics of heterogeneous specifications (Definition 6).

Definition 2 A homogeneous framework (Sig, sen,mod,⊢, |=) being given, let δ : Σimp → Σ be a sig-

nature morphism and Import a subcategory of mod(Σimp). A functor F : Import → mod(Σ) is said

δ-encapsulated if and only if

∀ϕ ∈ sen(Σimp), ∀M ∈ Import, M |=Σimp
ϕ ⇐⇒ F (M) |=Σ δ(ϕ) .

Most of the time (e.g., [BB91] [BEPP87] [NOS95]), instead of δ-encapsulated functors, authors consider

functors such that Uδ ◦ F = Id and the δ-encapsulation results from the satisfaction condition (see

Section 3.1).

Definition 3 A homogeneous framework (Sig, sen,mod,⊢, |=) being given:

– A (flat) presentation is a tuple P = (Σ,Γ ) such that Σ is a signature and Γ ⊆ sen(Σ). The elements

of Γ are often called the axioms of P . We define presentation morphisms σ : (Σ,Γ ) → (Σ′, Γ ′)

as signature isomorphisms σ : Σ → Σ′ such that Γ ′ ⊢Σ′ σ(Γ ). Let Pres denote the category of

presentations, and sign : Pres→ Sig denote the forgetful functor.

– The semantics of presentations is by definition the contravariant functor Mod from Pres to Cat such

that Mod(Σ,Γ ) is the full subcategory of mod(Σ) whose objects satisfy Γ with respect to |= .4

4 Mod is actually a functor owing to the ⊢-translation and the satisfaction condition.



– a specification module is a tuple △P = (δ,△Γ ) such that δ : Σimp → Σ is a signature morphism and

△Γ ⊆ sen(Σ). The signature Σimp is called the imported signature of the module.

– in the homogeneous case, structured specifications can be recursively defined as follows: any presen-

tation P ∈ Pres is a structured specification and its flattened signature is sign(P ); if SP imp is a

structured specification whose flattened signature is Σimp , and △P = (δ : Σimp → Σ , △Γ ) is a speci-

fication module, then they form a structured specification denoted SP = SP imp + △P , whose flattened

signature is Σ.

Intuitively, in most cases, △Γ contains sentences specifying only the new operations introduced by the

signature morphism δ (belonging to Σ \ δ(Σimp)). Our structured specifications are defined in a similar

way as [NOS95] [BEPP87] for simple enrichment. Let us note that usually, authors define multiple import

of modules as a simple extension of the simple import defined above. They simply use unions of modules

which are rather easy to define in an homogeneous framework (provided that Sig has pushouts, or that

specifications have amalgamation [EGR94].

2 Heterogeneous frameworks

2.1 Definitions

Intuitively, we define a heterogeneous framework in order to provide a family of “bridges” between

homogeneous frameworks. Let a specification module, written according to a homogeneous framework

o, import another module, written according to a homogeneous framework i. We need to know how to

transpose signatures from i to o, how to extract models from i to o and how to heterogeneously infer

sentences from i to o. This is defined as follows.

Definition 4 A heterogeneous framework is a quadruple (B, Tr, Ext,
) where:

– B is a set of homogeneous frameworks (Definition 1) whose elements are called basic frameworks

– Tr is a family indexed by a subset D of B × B, such that for each (i, o) in D, Tro
i is a functor

from Sigi to Sigo , called signature transposition functor (from the input framework i to the output

framework o)

– Ext is a family, also indexed by D, such that Extoi is a natural transformation from the functor modi

to the functor modo ◦ Tr
o
i , each Extoi,Σ : modi(Σ) → modo(Tr

o
i (Σ)) (for Σ ∈ Sigi) is called model

extraction functor

– 
 is a family indexed by the set {(i, o, Σ) | (i, o) ∈ D and Σ ∈ Sigi}, such that 

o
i,Σ is a binary

relation included in P(seni(Σ)) × seno(Tr
o
i (Σ)), called heterogeneous inference bridge

and the following properties are satisfied:



– the domain D contains the diagonal {(b, b) | b ∈ B}

– ∀b ∈ B, Trb
b = IdSigb

– ∀b ∈ B, Extbb = Idmodb

– diagonal reflexivity: for any b ∈ B, any Σ ∈ Sigb , and any Γ ⊆ senb(Σ), (Γ 

b
b,Σ ϕ ⇐⇒ ϕ ∈ Γ )

– 
 is monotonic

– 
-translation: for any (i, o) ∈ D, any isomorphism σ : Σ → Σ′ in Sigi , any Γ ⊆ seni(Σ), and any

ϕ ∈ seno(Tr
o
i (Σ)) , Γ 


o
i,Σ ϕ if and only if σ(Γ ) 


o
i,Σ′ Tr

o
i (σ)(ϕ)

– heterogeneous soundness: for any (i, o) ∈ D, for any Γ ⊆ seni(Σ), for any ϕ ∈ seno(Tr
o
i (Σ)), if

Γ 

o
i,Σ ϕ then for all M ∈ modi(Σ), we have [M |=i Γ =⇒ Extoi,Σ(M) |=o ϕ]

Since we want an inference bridge as elementary as possible, we generally prefer for 
 to be a recursive

set. Expressing this constraint is not easy [Mes89] [SS95].

Transitivity would be meaningless for 
 because a sentence according to the framework o cannot be

introduced back in the framework i in general. 
 should be understood as an unique inference step (a

“bridge”) in the heterogeneous proof process. However, the whole heterogeneous proof process (Defini-

tion 7) will be transitive.

The syntax of structured specifications composed of modules from different frameworks can be defined

as follows.

Definition 5 A heterogeneous framework (B, Tr, Ext,
) being given, the set Spec of all heterogeneous

structured specifications is recursively defined as follows:

– Any presentation (Σ,Γ ) ∈ Preso for some basic framework o ∈ B is a heterogeneous structured

specification. Its flattened signature is Σ (which belongs to the basic framework o).

– If SPι is a heterogeneous structured specification whose flattened signature Σι belongs to some basic

framework i ∈ B, and if △P = (δ : Σimp → Σ , △Γ ) is a specification module belonging to some

basic framework o ∈ B such that (i, o) ∈ D and Tro
i (Σι) = Σimp, then SPι and △P form a structured

specification denoted SP = SPι + △P , whose flattened signature is Σ (which belongs to the basic

framework o).

Moreover, with the previous notations,

– △P is called the top level, or leading module of SP ,

– o is called the leading basic framework of SP ,

– and we extend sign to Spec by sign(SP ) = Σ (the flattened signature).



2.2 Heterogeneous semantics

In Definition 6 below, we follow an idea similar to [BB91] in order to give modular semantics to our

heterogeneous structured specifications. The semantics of a structured specification SP is supposed to

represent a set of “acceptable programs” for SP . We assume moreover that the modularity of the consid-

ered programs matches the structure of SP . Then, the semantics of a program module can be represented

by a δ-encapsulated functor. As in [BB91], if the semantics of a program module is correct with respect

to the corresponding specification module △P , then it means that necessarily, it is independent of the

chosen implementation of the imported module.

Definition 6 The modular semantics of a heterogeneous structured specification SP , denoted Het(SP ),

is the category recursively defined as follows:

– If SP is reduced to a homogeneous presentation P ∈ Preso, then5 Het(SP ) = Modo(P )

– If SP = SPι + △P , where the leading basic framework of SPι is i and the leading module △P = (δ :

Σimp → Σ , △Γ ) belongs to the basic framework o, let F be the class of all δ-encapsulated functors F

from Extoi,Σι
(Het(SPι)) to Modo(Σ,△Γ ), then Het(SP ) is the class of all F (Extoi,Σι

(M)) such that

M belongs to Het(SPι).

Let us notice that Het(SP ) is included in modo(sign(SP )). Thus, the basic framework of the top module

of SP “hides” all the other imported modules. We choose this approach in order to avoid the “complexity

explosion” of semantics carrying more or less the union of the frameworks appearing in the specification.

From a methodological point of view, our approach has the advantage to allow the user of a heterogeneous

specification to only take care about one formalism, the leading basic formalism. This will facilitate reuse

purposes and the management of heterogeneous specification libraries.

Remark The class of functors {F ◦ Extoi,Σι |Het(SPι)
: Het(SPι) → Het(SP ) | F ∈ F } is called “the

semantics of the module △P over SPι.” Notice that F can be empty, in which case Het(SP ) is also empty

and the structured specification SP is said inconsistent.

2.3 Heterogeneous proofs

Definition 7 A heterogeneous framework (B, Tr, Ext,
) being given, the corresponding heterogeneous

inference system is the least binary relation � ⊆ Spec ×
∐

b∈B

senb(Sigb) such that, for any

SP ∈ Spec (with leading framework o):

5 In [BB91] the authors prefer to restrict the semantics of basic cases to initial or minimal models only. It would

not be difficult to follow a similar approach here, however the heterogeneous dimension of our approach allows

to have dedicated basic frameworks in B in order to reach such features.



– � is compatible with ⊢o : when SP is of the form SPι + (δ , △Γ ) (resp. (Σ,Γ )), for any ϕ ∈

seno(sign(SP )) if △Γ ⊢o ϕ (resp. Γ ⊢o ϕ) then SP � ϕ .

– � is compatible with 
 : when SP is of the form SPι + (δ , △Γ ), for any Γ ′ ⊆ seni(sign(SPι)), and

for any ϕ ∈ seno(Tr
o
i (sign(SPι))), if SPι � Γ ′ and Γ ′



o
i ϕ then SP � δ(ϕ) .

– � is transitive: when SP is of the form SP = SPι + (δ , △Γ ), for any Γ ′ ⊆ seno(sign(SP )), and for

any ϕ ∈ seno(sign(SP )), if SP � Γ ′ and (SPι + (δ , △Γ ∪ Γ ′)) � ϕ then SP � ϕ.

Notice that SP � ϕ implies that the leading basic framework of SP is the framework of ϕ , and the

flattened signature of SP is the underlying signature of ϕ. The leading basic framework given by the top

level module masks all the subspecification frameworks. Properties inherited from subspecifications are

filtered by the leading basic framework. These properties recursively come up through the specification

structure.

To prove from SP a sentence ϕ by means of our heterogeneous proof process (SP � ϕ), we have to

find a set of lemmas Γo (possibly empty) which, added to the axioms of the top level module, infers ϕ in

the leading basic framework o (via ⊢o). Then for each lemma ψ in Γo, we look for a set of lemmas Γi in

the leading basic framework of the direct subspecification such that Γi 

o
i ψ. Then we recursively prove

each sentence of Γi in the same way.

Theorem 8 For every heterogeneous framework, the corresponding heterogeneous inference system is

sound. This means that for any heterogeneous structured specification SP and for any sentence ϕ belonging

to the leading basic framework o of SP , we have:

SP � ϕ =⇒ (∀M ∈ Het(SP ), M |=o ϕ)

Proof: By induction on the proofs. If the last proof step comes from the first property of Definition 7

(compatibility with ⊢o), then SP � ϕ comes from △Γ ⊢o ϕ (resp. Γ ⊢o ϕ). Since ⊢o is sound and

Het(SP ) ⊆ Modo(Σ,△Γ ) (resp. Het(SP ) ⊆ Modo(Σ,Γ )) we have Het(SP ) |=o ϕ. For a step using the

compatibility with 
, the heterogeneous soundness of 
 and the δ-encapsulation property ensure the

soundness of �. For a � transitivity step, SP � ϕ comes from SP � Γ ′ and (SPι + (δ,△Γ ∪ Γ ′)) � ϕ

with SP = SPι + (δ : Σι → Σ,△Γ ).

Let F = {F : Extoi,Σι
(Het(SPι)) →Modo(Σ,△Γ ) | F is a δ-encapsulated functor }

let F ′ = {F : Extoi,Σι
(Het(SPι)) → Modo(Σ,△Γ ∪ Γ ′) | F is a δ-encapsulated functor }

by induction hypothesis, SP � Γ ′ is sound, then ∀F ∈ F , ∀M ∈ F (Extoi,Σι
(Het(SPι))), M |=Σ Γ ′, so we

have F = F ′, and then Het(SPι+(δ,△Γ∪Γ ′)) = Het(SP ). By induction hypothesis, (SPι+(δ,△Γ∪Γ ′)) |=Σ

ϕ. It results that SP |=Σ ϕ. 2

The heterogeneous soundness property ensures that properties inherited via the heterogeneous in-

ference bridge are also transmitted through the model extraction. Conversely, we can define a property



of “local heterogeneous completeness” which ensures that each sentence preserved by model extraction

can be inferred via the heterogeneous bridge [Cou95]. Unfortunately, when all the homogeneous inference

systems ⊢ are complete, this local heterogeneous completeness is not sufficient to ensure the completeness

of the heterogeneous inference system � (except if the specification contains at most one heterogeneous

bridge).

3 Examples

3.1 Homogeneous modular semantics

A specification where all the modules are expressed in a unique basic framework b obviously corresponds to

a structured specification in the homogeneous framework b as defined in Definition 1. Our heterogeneous

framework gives modular semantics for such homogeneous structured specifications.

Of course, the resulting semantics for such homogeneous specifications meet the classical requirements

for modular design of software [BB91], [NOS95]. All the authors share a common principle expressing that

a module preserves the import part. More precisely, the semantics of a module is such that the application

of the forgetful functor to any model of the global specification gives a model of the subspecification.

If the underlying homogeneous framework is an institution, then the satisfaction condition and this

semantic conservativity property ensures the δ-encapsulation. This allows to perform structured proofs

accordingly to the structure of the specification (as we do in Section 7). As seen in Section 1, our definition

of homogeneous framework admits institutions as a particular case.

3.2 Using maps between formalisms

To face the multiplicity of specification formalisms, many previous works contributed to give an unifying

presentation of these formalisms. They abstract details which are specific to each specification formalism.

For example, institutions, pre-institutions, specification frameworks or general logics are such “meta-

formalisms.” They are used to characterize some general properties of specification formalisms and to

relate different specification formalisms. These relations are given by means of some kinds of translations

between two formalisms. Their purpose is to be able either to compare their expressive power or to take

benefit, for the second formalism, of results or tools already available in the first formalism (e.g., a theorem

prover). For this aim, they characterize different kinds of translation between formalisms defined according

to their underlying meta-formalism. Depending on the context, these translations are called morphisms,

transformations, simulations or maps. They share some common properties. First, these translations are

expressed in term of natural transformation in order to ensure a certain compatibility with the signature

category. They also impose an equivalence between the two satisfaction relations involving models and

sentences corresponding each other by the translation.



This provides means to combine two specification formalisms, but it does not really correspond to our

notion of heterogeneousness since they do not look for integrating heterogeneous specification modules

inside a unique global specification. Nevertheless, if we choose two formalisms related by a translation,

it gives us examples for free of tuples (i, o) ∈ D for our heterogeneous framework (even if it may need

some adaptations). Intuitively, their satisfaction conditions are very close to our heterogeneous soundness

(Definition 4). We sketch below how to make use of their works, provided that, from a technical point of

view, the considered specification formalisms fit our homogeneous framework definition6 :

– Our first example concerns institutions and institution morphisms defined in [GB84]. (It could also be

relevant for semi-institution morphisms as in [ST88], provided that we add a translation of sentences.)

Let I = (Sign, sen,mod, |=) and I ′ = (Sign′, sen′,mod′, |=′) two institutions and an institution mor-

phism µ : I → I′. By definition, µ consists of a functor µSign : Sign → Sign′, a natural family of

functions µsenΣ : sen′(µSign(Σ)) → sen(Σ) and a natural family of functors µmodΣ : mod(Σ) →

mod′(µSig(Σ)) such that:

∀Σ ∈ Sign, ∀ϕ′ ∈ sen′(Σ), ∀M ∈ mod(Σ),M |=Σ µsenΣ(ϕ′) ⇐⇒ µmodΣ(M) |=µSig(Σ) ϕ
′

It suffices to let TrI
′

I = µSign, ExtI
′

I,Σ = µmodΣ and 

I

′

I,Σ is defined by: ∀ϕ′ ∈ sen′(µSign(Σ)), ∀Γ ⊆

P(sen(Σ)), (µsenΣ(ϕ′) ∈ Γ ⇔ Γ 

I

′

I,Σ ϕ′). With these definitions, the heterogeneous soundness

condition is obviously satisfied.

From a technical point of view, such uses of institution morphisms prove to be very suitable for our

purpose because they directly give the property of heterogeneous soundness.

– The second example concerns institutions and simulations defined in [AC92]. Let us consider again

two institutions I and I ′ and a simulation µ : I → I′. By definition, µ consists of a functor µSign :

Sign → Sign′, a natural family of functions µsenΣ : sen(Σ) → sen′(µSign(Σ)) and a natural family

of partial representative7 functors µmodΣ : mod′(µSign(Σ)) → mod(Σ) such that: ∀Σ ∈ Sign, ∀ϕ ∈

sen(Σ), ∀M ′ ∈ mod′(µSign(Σ)), µmodΣ(M ′) |=Σ ϕ ⇐⇒ M ′ |=µSig(Σ) µsenΣ(ϕ). It suffices to let

TrI
′

I = µSign, to choose ExtI
′

I,Σ in such a way that µmodΣ ◦ExtI
′

I,Σ = Idmod(Σ) (it is possible thanks

to the surjectivity condition on µmodΣ) and 

I

′

I,Σ is defined by: ∀ϕ ∈ sen(Σ), ∀Γ ⊆ sen(Σ), (ϕ ∈

Γ ⇐⇒ Γ 

I

′

I,Σ µsenΣ(ϕ)). As for the previous case, the heterogeneous soundness condition still holds.

– An example very similar is the one of logics and maps of logics defined in [Mes89]. Let us consider two

logics L = (Sign, sen,mod,⊢, |=) and L′ = (Sign′, sen′,mod′,⊢′, |=′) and a map of logics µ : L → L′.

This map is built from a functor µTho
: Tho → Th′o where Tho denotes the category whose objects are

theories (Σ,Γ ) with Γ ⊂ sen(Σ) and morphisms σ : (Σ,Γ ) → (Ξ,∆) define a signature morphism

σ : Σ → Ξ and are axiom-preserving (σ(Γ ) ⊆ ∆). The map µ also comprises two natural families

µsen(Σ,Γ ) : sen((Σ,Γ )) → sen′(µTho
((Σ,Γ ))) and µmod(Σ,Γ ) : mod′(µTho

((Σ,Γ ))) → mod((Σ,Γ ))

6 if necessary, by taking the satisfaction relation for defining the inference system as in the example of institutions

7 It means surjective both on the objects and the arrows



verifying that the functor µTho
is µsen-sensible8. Moreover, with the notation µTho

((Σ, ∅)) = (Σ′, Γ ′
Σ),

the two following properties are satisfied : for any Γ ⊆ sen(Σ), and for any ϕ ∈ sen(Σ), Γ ⊢Σ ϕ =⇒

µsenΣ(Γ ) ∪ Γ ′
Σ ⊢′

Σ′ µsenΣ(ϕ) and for any model M ′ in mod′((Σ′, Γ ′
Σ)), M ′ |=Σ′ µsenΣ(ϕ) ⇐⇒

µmod(Σ,∅)(M
′) |=Σ ϕ. If we assume that the functors µmod(Σ,∅) are representative, we can define

heterogeneous use as above with simulations : it suffices to let TrL
′

L (Σ) = sign′(Tho((Σ, ∅))), to

choose ExtL
′

L,Σ in such a way that µmod(Σ,∅) ◦ Ext
L

′

L,Σ = Idmod(Σ) and 

L

′

L,Σ is defined by: ∀ϕ ∈

sen′(Σ′), ∀Γ ⊆ sen(Σ)((ϕ ∈ µsenΣ(Γ ) ∨ ϕ ∈ Γ ′
Σ) ⇐⇒ Γ 


L
′

L,Σ ϕ). Once again, the heterogeneous

correction condition holds.

– The last example concerns pre-institutions and pre-institutions transformations defined in [SS92]. Let

I = (Sign, sen,mod, |=) and I ′ = (Sign′, sen′,mod′, |=′) two pre-institutions and a pre-institution

transformation µ : I → I′. By definition, µ consists of a functor µSign : Sign → Sign′, a fam-

ily of natural functions µsenΣ : P(sen(Σ)) → P(sen′(µSig(Σ))) and a family of natural functions

µmodΣ : mod(Σ) → P(mod′(µSig(Σ))) (µmodΣ(M) being nonempty) such that: ∀Σ ∈ Sign, ∀Γ ⊆

sen(Σ), ∀M ∈ mod(Σ),M |=Σ Γ ⇐⇒ (∀M ′ ∈ µmodΣ(M),M ′ |=µSig(Σ) µsenΣ(Γ )). It suffices to

let TrI
′

I = µSign, to choose when it is possible ExtI
′

I,Σ(M) among µmodΣ(M) in such a way that

ExtI
′

I defines a functor and to define 

I

′

I,Σ by: ∀Σ ∈ Sign, ∀Γ ⊆ sen(Σ), ∀M ∈ mod(Σ), ∀ϕ′ ∈

sen(µSig(Σ)), (ϕ′ ∈ µsenΣ(Γ ) ⇔ Γ 

I

′

I,Σ ϕ′). Once again, the heterogeneous soundness condition is

obviously satisfied.

Using examples of the translations mentioned above and adapting them with the translation schemes

developed above, we inherit numerous examples for our heterogeneous framework. However, these exam-

ples are not all as intuitive as each other. One should be aware of some “semantic shift” introduced by

heterogeneity.

– The first example which can be brought up for our purpose is the one of the heterogeneous use of first

order logic with equality FOEQ by equational logic EQ defined by means of institution morphism

(this example is given in [GB84]). Intuitively, this case is convenient for us because this heterogeneous

use just amounts to forget extra-informations. Thanks to this heterogeneous use, one can benefit in a

somehow low-level specification module of properties inherited from high-level specification module.

– Another example which clearly exhibits what we call “semantic shift,” is the one of heterogeneous

use of partial algebras with predicates (PAP) by total algebras with predicates (T AP) defined by

means of simulations (this example is given in [AC92]). The principle is well-known and consists in

introducing a special constant denoted ⊥s per sort s and a particular predicate Ds. The extracted

total algebras are such that the predicate Ds exactly characterizes the definition domain for the sort

s, the value of ⊥s being the only one undefined. When translating sentences of PAP , the predicates

Ds are used to reduce the scope of sentences to the defined values.

8 It means that their natural transformations µsen(Σ,Γ ) only depend on the signatures . They are now denoted

by µsenΣ .



Let us remind that our purpose when defining heterogeneous modular semantics is to encapsulate

the imported specification by the higher level module in order to only filter properties expressible in

the leading formalism. Here, such an ulterior heterogeneous use would consider ⊥s and Ds as any

constant or predicate, forgetting the intuition which has motivated their introduction. In particular,

there is no obligation to continue to propagate bottom values. Thus, the specifiers of the higher level

module have to explicitely manage the bottom values.

As a conclusion, we share with all these works on meta-formalisms a common technical background and

thus, we take advantage of their numerous results. However, before extracting a result from these works

for our purpose, we should look at the accordance with the intuition of what heterogeneous modularity

should be.

3.3 An example of heterogeneous proof

Let us consider a simple example where B = {E ,O} and D = B2, E being the classical first order logic

with equality FOEQ [EM85], (E for short), and O being the simple theory of equational observational

data types with sort observation (for O, a signature is a triple (S, F,Obs) such that Obs ⊆ S, see e.g.,

[BBK94]).

For the tuple (E ,O), we can define TrOC ((S, F )) = (S, F, S), which meets the intuition that all imported

sorts defined in E can be considered as observable. Then, the model extraction is the identity and the

heterogeneous bridge is defined by “ Γ 

O
C ϕ if and only if ϕ ∈ Γ ∩ senO(Σ) ,” which makes sense

because the set of the O-sentences is included in the one of the E-sentences. It just amounts to relate the

equality predicates symbols of the two formalisms. Intuitively, this heterogeneous bridge is sound because

the semantics of the equality for the observable sorts is the same as in E .

Conversely, for the tuple (O, E), we can define TrEO((S, F,Obs)) = (S, F ). The heterogeneous bridge

can be defined by “ Γ 

C
O ϕ if and only if ϕ ∈ Γ ”. The model extraction is a little bit more complex. The

identity would not suffice because values which are different but observationally equal have to become

actually equal with respect to E . The solution is to quotient the imported observational model with the

observational equivalence, so that for all observational model M , ExtEO(M) = M/≈O
. This is well defined

because ≈O is a congruence [BHW95] and the quotient as extraction ensures that the heterogeneous

bridge is sound.

Now, let us consider the specification SP which consists of a Stack module according to E , which

imports a Set module according to O. Booleans and elements are supposed to be specified in sub-

specifications (according to E or O indifferently).



Module: Set

Framework: O

Use: Elem

with δ the inclusion of ΣElem in ΣSet

Sorts: set

Observable: elem, bool

Operations:

∅ : → set

ins : elem set→ set

∈ : elem elem→ bool

Axioms △ΓSet:

x ∈ ∅ = false

x ∈ (ins y X) = (eq x y) or (y ∈ X)

where x, y : elem,X : set

Module: Stack

Framework: E

Use: Set with δ the inclusion of ΣSet in ΣStacks

Sorts: stack

Operations:

empty : → stack

push : set stack → stack

. . .

monopush : set stack → stack

Axioms △ΓStack:

. . .

X = Y ⇒ monopush(X, push(Y, P )) = push(Y, P )

X 6= Y ⇒ monopush(X, push(Y, P )) = push(X, push(Y, P ))

where X,Y : set, P : stack

Let us prove the sentence ϕ from the specification Stack :

(ϕ) monopush(ins(a, ins(b, ∅)), push(ins(b, ins(a, ∅)), empty) = push(ins(b, ins(a, ∅)), empty)

From the before last axiom of Stack, it suffices to prove the sentence ψ :

(ψ) ins(a, ins(b, ∅)) = ins(b, ins(a, ∅))

Via the heterogeneous bridge 

E
O, it suffices to prove △ΓSet ⊢O ψ. The only operation which allows to

distinguish sets is the membership operation “∈” and it is easy to prove ψ by context induction (see

[Hen91]).

This example of heterogeneous proof is an illustration that our heterogeneous proof system is built in

such a way that the proof of lemmas concerning imported data types are delegated to the proof systems

of the subspecifications. Moreover, this example shows that besides the compatibility between model

extraction and provability, we endeavour to give a solution which cope with the intuition.

Conclusion

We have proposed a definition of heterogeneous framework which is, roughly speaking, a family of “ho-

mogeneous frameworks” together with relationships that allow to define heterogeneous structured speci-

fications. In a heterogeneous specification, each module can be written according to its own homogeneous

framework. Moreover, the heterogeneous specification inherits the formalism of its top level module. This

approach limits the number of “visible” formalisms and avoids using the union of all frameworks ap-

pearing in the specification. We also give a heterogeneous proof principle where properties inherited from



imported specifications can be translated as lemmas in order to prove sentences in the top level formalism.

Lastly, a small typical example has been developed.

Our approach is clearly a nice way to unify numerous specification formalisms. Moreover, this uni-

fication faithfully preserves all the specificities of each formalism. The relationships between formalisms

remain as simple as possible in a heterogeneous framework because we combine them only two by two.

It allows a local solving of difficulties, with minimal loss of information from a module to another one.

Nevertheless, our approach is only a first proposal for heterogeneity within specifications. Some im-

provements can be studied:

– To only consider heterogeneous soundness is not sufficient. A notion of heterogeneous completeness

is missing. It is not difficult to define a notion of “local heterogeneous completeness” (which ensures

that 

o
i is as powerful as Extoi ). Unfortunately, this local completeness is not sufficient to ensure the

completeness of � in general. We will steadily work on this problem.

– In the homogeneous case, multiple imports in a module are rather easily defined as an extension of

the single import, using pushouts of specifications. Pushouts of specifications which do not belong to

the same homogeneous formalism are more complicated to apprehend, thus multiple imports (where

the Tro
i are taken into account) have to be studied in more details.

– Our weakening of the notion of general logic (by restricting ⊢-translation and the satisfaction condition

to signature isomorphisms only) is rather ad hoc (in order to capture proofs with structural induction).

It is not directly the purpose of our work, however we would like to find a better solution, without

distorting the meaning of Tr, Ext and 
.

– Lastly, we are looking for a good definition of a category of heterogeneous structured signatures SigB

(e.g., similar to [DR94]), as well as senB and |=B, in order to turn (SigB, senB, Het,�, |=B) into a

homogeneous framework (Definition 1) itself. But it is indeed a rather esthetic consideration for the

time being.

Acknowledgments: We would like to thank Marc Aiguier for a proofreading of the draft version of this

article. This work has been partly supported by CEC under ESPRIT-III WG6112 COMPASS, and by

the French “GDR de programmation.”

References

[AC92] E. Astesiano and M. Cerioli. Relationships between logical frameworks. In LNCS, editor, Recent Trends

in Data Type Specification, volume 655, pages 101–126, Dourdan, 1992.

[BB91] G. Bernot and M. Bidoit. Proving the correctness of algebraically specified software modularity and

observability issues. In Proc. of AMAST-2, Second Conference of Algebraic Methodology and Software

Technology, May 1991. Iowa City, Iowa, USA.



[BBK94] G. Bernot, M. Bidoit, and T. Knapik. Observational approaches to algebraic specifications: A compar-

ative study. Acta Informatica, 31:651–671, 1994.

[BEPP87] E.K. Blum, H Ehrig, and F. Parisi-Pressicce. Algebraic specification of modules and their basic inter-

connections. Journal of Computer Systems Science, 34:293–339, 1987.

[BHW95] M. Bidoit, R. Hennicker, and M. Wirsing. Behavioural and abstractor specifications. Science of Com-

puter Programming, 25:149–186, 1995.

[BW90] M. Barr and C. Wells. Category Theory for Computer Science. Prentice Hall, 1990.

[CM93] M. Cerioli and J. Meseguer. Can I borrow your logic ? In Proc. Int. Mathematical Foundations of

Computer Science, MFC’93, Gdansk, pages 342–351, 1993.

[Cou95] S. Coudert. Vers une sémantique des spécifications hétérogènes. Université d’Evry, Rapport de DEA,

1995.

[CR94] M. Cerioli and G. Reggio. Institutions for very abstract specifications. In LNCS, editor, Recent Trends

in Data Type Specification, Caldes de Malavella, volume 785, pages 113–127, 1994.

[DR94] E. David and C. Roques. An institution for modular specifications. Proc. of the 10th British Colloquium

on Theoretical Computer Science, Bristol, 1994.

[EGR94] H. Ehrig and M. Grosse-Rhode. Functorial theory of parameterized specifications in a general speci-

fication framework. Theoretical Computer Science, pages 221–266, 1994. Elsevier Science Pub. B.V.

(North-Holland).

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Equations and initial semantics,

volume 6. Springer-Verlag,EATCS Monographs on Theoretical Computer Science, 1985.

[GB84] J.A. Goguen and R.M. Burstall. Introducing institutions. In Springer-Verlag LNCS 164, editor, Proc.

of the Workshop on Logics of Programming, pages 221–256, 1984.

[Hen91] R. Hennicker. Context induction: a proof principle for behavioural abstractions and algebraic imple-

mentations. Formal Aspects of Computing, 3(4):326–345, 1991.

[Mes89] J. Meseguer. General logics. In North-Holland, editor, Proc. Logic. Colloquium ’87, Amsterdam, 1989.

[ML71] S. Mac Lane. Categories for the working mathematician, volume 5 of Graduate texts in mathematics.

Springer-Verlag, 1971.

[NOS95] M. Navarro, F. Orejas, and A. Sanchez. On the correctness of modular systems. Theoretical Computer

Science, 140:139–177, 1995.

[SS92] A. Salibra and G. Scollo. A soft stairway to institutions. In LNCS, editor, Recent Trends in Data Type

Specification, volume 655, pages 320–329, Dourdan, 1992.

[SS95] A. Sernadas and C. Sernadas. Theory spaces. Technical report, IST, Lisboa, 1995.

[ST88] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic specifications:

Implementations revisited. Acta Informatica, 25:233–281, 1988.

[Wol95] U. Wolter. Institutional frames. In LNCS, editor, Recent Trends in Data Type Specification, volume

906, pages 469–482, 1995.


