
Extending ML with Semi-Explicit Higher-Order

Polymorphism

Jacques Garrigue

1

and Didier R�emy

2

1

Kyoto University Research Institute for Mathematical Sciences,

Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-01, Japan

2

INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

Abstract. We propose a modest conservative extension to ML that al-

lows semi-explicit higher-order polymorphism while preserving the essen-

tial properties of ML. In our proposal, the introduction of polymorphic

types remains fully explicit, that is, both the introduction and the exact

polymorphic type must be speci�ed. However, the elimination of poly-

morphic types is now semi-implicit: only the elimination itself must be

speci�ed as the polymorphic type is inferred. This extension is particu-

larly useful in Objective ML where polymorphism replaces subtyping.

Introduction

The success of the ML language is due to its combination of several attractive fea-

tures. Undoubtedly, the polymorphism of ML [2] |or polymorphism �a la ML|

with the type inference it allows, is a major advantage. The ML type system stays

in close correspondence with the rules of logic, following the Curry-Howard iso-

morphism between types and formulas, which provides a simple intuition, and a

strong type discipline. Simultaneously, type inference relieves the user from the

burden of writing types: an algorithm automatically checks whether the program

is well-typed and, if true, it returns a principal type.

Upon this simple system, many extensions have been proposed: polymor-

phic records, �rst-class continuations, �rst-class abstract datatypes, type-classes,

overloading, objects, etc. In all these extensions, type inference remains straight-

forward �rst-order uni�cation with toplevel polymorphism. This shows the ro-

bustness of ML-style type inference.

There are of course cases where one would like to have higher-order polymor-

phism, as in system F . ML allows for polymorphic de�nitions, but abstractions

can only be monomorphic. Traditionally, ML polymorphism is used for de�ni-

tions of higher-order functions such as folding or iteration over a parameterized

datatype. Some higher-order functionals require polymorphic functions as argu-

ments. These situations mostly appear in encodings, and cases that appear in

real programs can usually be solved by using functors of the module language.

This simple picture, which relies on a clear separation between data and func-

tions operating on data, has recently been invalidated by several extensions. For

instance, data and methods are packed together inside objects. This decreases

the need for polymorphism, since methods can be specialized to the piece of data

they are embedded with. However, data transformers such as folding functions

remain parametric in the type of the output. For instance, a function fold with

the ML type 8�; �: � list! (� ! �! �) ! �! � should become a method

for container objects, of type 8�: (� ! � ! �) ! � ! � where � is the type

of the elements of the container. The extension of ML with �rst-class abstract

types [6, 14] also requires �rst-class polymorphic functions: for instance, an ex-

pression such as �f: open x as y in f y can only be typed if the argument f is

polymorphic so that the abstract representation of y is not revealed outside the

scope of the open construct.

First-class polymorphic values have been proposed in [14, 9] following the

ideas developed by La�ufer & Odersky in [6]. After de-sugaring, these proposals

all reduce to the same idea of using explicit, mutually inverse introduction and

elimination functions to coerce higher-order types into basic, parameterized type

symbols and back. Therefore, they all su�er the same problem: types must be

written explicitly, both at the introduction and elimination of polymorphism.

Recent results on the undecidability of type inference for system F [16, 5,

11] also do not leave many hopes for �nding a good subset of system F that

signi�cantly extends ML, moreover with decidable type inference and principal

types. Previous attempts to accomplish this task were unsuccessful.

This is not the path we choose here. On the contrary, we do not infer higher-

order types and avoid higher-order uni�cation, undecidable in general. We also

maintain the simplicity of the ML type system, following the premise that an

extension of ML should not modify the ML polymorphism in its essence, even

an extension that actually increases the level of polymorphism.

The original insight of our work is that, although ML polymorphism allows

type inference, actual ML programs do already contain a lot of type information.

All constants, all constructors, and all previously de�ned functions have already

known types. This information only longs to be used appropriately.

In comparison to previous works, we remove the need for type annotations

at the elimination of polymorphism, using type inference to propagate explicit

type information between di�erent points of the program. In our proposal, it

becomes unnecessary to tag values of polymorphic types with type symbols. A

type annotation at the introduction of a polymorphic value is su�cient and can

be propagated to the elimination site (following the data-
ow view of programs).

This makes the handling of such values considerably easier, and reasonably prac-

tical for use in a programming language.

In a �rst section, we present our solution informally, and explain how it

simpli�es the use of higher-order types in ML. Then, we develop this approach

formally, proving all fundamental properties. In a third section, encodings are

provided, both for previous formulations of �rst-class polymorphism, and for sys-

tem F itself. In the next section, we present two extensions to the core language.

The �rst extension restricts polymorphism to values. The second one allows

a more comfortable syntax to manipulate objects with polymorphic methods.

Lastly, we compare with related works, and conclude. Proofs of main theorems

are given in appendix.

1 Informal approach

In this section we will present our solution informally. We �rst present a naive

straightforward proposal. We show that this solution needs to be restricted to

avoid higher-order uni�cation. Last, we describe a simple solution that allows

for complete type inference.

1.1 A naive solution

Naively, ML types can be easily extended with polymorphic types. A typical

program that cannot be typed in ML and could be typed in system F is �f: ff .

This expression is not very interesting for itself. However, a few variations are

su�cient to illustrate most aspects of type inference in the presence of higher-

order types. Useful examples can be found in section 4.2 in addition to those

suggested in the introduction.

Although �f: ff is not typable in ML, the expression let f = �x: x in f f

is. One can see let-de�nitions as a special syntax, combined with a special typing

rule, for the application (�f: ff) (�x: x). Let us exercise by replacing the Let

polymorphic binding by �rst-class polymorphism. The identity �x: x of type

� ! � has also type scheme 8�:� ! �. We shall write [�x: x : 8�:� ! �] for

the creation (or introduction) of the polymorphic value �x: x with type scheme

8�:� ! �. In order to avoid confusion with ML types, we explicitly coerce

8�:�! � to a regular ML type [8�:�! �], adding the type constructor []. We

call 8�:�! � a polymorphic type or a type scheme and [8�:�! �] a polytype.

Let f be the expression [�x: x : 8�:� ! �], which has type [8�:� ! �].

As any �rst-class value, f can be passed to other functions, be stored in data-

structures, etc. For instance (f; 1) is a pair of type ([8�:� ! �]� int). A

polymorphic function (e.g. a polymorphic value that is a function) cannot be

applied directly, since it is typed with a polytype, which is incompatible with an

arrow type. We must previously open (or eliminate) the polytype. We introduce

a new construct h i for that purpose. Hence, hfi is a function of type an instance

of the polymorphic type 8�:� ! �, i.e. � ! � for some type � . Its principal

type is �! �.

The raw expression �f: ff is not well typed. It should be passed a polymor-

phic value as argument, for instance, of type [8�:�! �]. Here, we shall introduce

polymorphism only by a type constraint on the argument: �f :8�:�! �: hfi f .

The �rst occurrence of f in the body is opened to eliminate polymorphism before

it is applied. The following de�nition of g is well-typed

g

4

= �f : [8�:�! �]: hfi f : [8�:�! �]! [8�:�! �]

So are the two following variants:

h

4

= �f : [8�:�! �]: hfi hfi : [8�:�! �]! �

0

! �

0

k

4

= �f : [8�:�! �]: [hfi hfi : 8�:�! �] : [8�:�! �]! [8�:�! �]

In h, the occurrence of f in the argument position is also opened, so the result

type is no longer a polytype. In k, polymorphism is lost as in h, then it is

recovered explicitly. Finally, we can apply g to f :

(�f : [8�:�! �]: hfi f) [�x: x : 8�:�! �] : [8�:�! �]

More interestingly, the following expression is also well-typed

(�g: g [�x: x : 8�:�! �]) (�f : [8�:�! �]: hfi f)

There is no term typable in ML that has the same erasure (untyped �-term) as

the above term. Note that no type annotation is needed on g since although g

has a polytype as result, it is never opened.

1.2 An obvious problem

The examples above mixed type-inference and type-checking (using type-annota-

tions). The obvious problem of type inference in the presence of higher-order

types remains to be solved: what happens when expressions of unknown type

are opened. Should the program �f: hfi f or simpler �x: hxi be typed?

The answer is clearly negative, since this would amount to inferring higher-

order types, which we choose to avoid here. We should keep all user-provided

polymorphism, but never guess polymorphism.

The attempt to forbid lambda abstraction of unspeci�ed type to be a poly-

type does not work. It would violate the assumption that polytypes are regular

ML types. Thus, if �x: x has type �! �, it should also have type [�]! [�] for

any polymorphic type �. Actually, it is important that �x: x has all these types.

For instance, both (�x: x) f and �x: f x should be typable and have the same

type as f .

When typing �f: hfi f , variable f is �rst given an unknown type �

0

. Guessing

8�:�! � for �

0

would be correct, but not principal. More subtle, the expression

�f: hfi (g f) may only be typed with [8�:� ! �] ! [8�:� ! �] and has a

principal derivation. However, we should also reject this program. Informally,

type inference would imply backtracking: f is �rst assumed of unknown type �

0

;

we cannot type hfi so we backtrack; typing the application g f forces f to be of

type [8�:� ! �], then hfi can be typed, and so on. This causes two problems.

Firstly, backtracking may lead to a combinatorial explosion of the search space,

and we would rather fail in every case where some inference order would fail.

More theoretically, constraints imported from other branches may disappear

whenever a reduction occurs on the expression containing them, making the

term untypable by lack of principality. We would loose the subject reduction

property.

1.3 A simple solution

The essence of our proposal is a simple mechanism based on uni�cation that

distinguishes polytypes that have been user-provided from those that have just

been guessed. Each occurrence of a polytype [�] is labeled with a label �. That

is, we write [�]

�

rather than [�]. Actually, we keep [�] as an abbreviation for

[�]

�

where � is an anonymous label, i.e. one that does not appear anywhere else.

Intuitively, labels indicate sharing of polytype nodes.

The elimination of polymorphism hai is possible whenever a can be typed

with [�]

�

where � does not appear anywhere else. Informally, we could just say

when a has polytype [�] (since � is anonymous). The intuition is that an anony-

mous label � ensures that the corresponding polytype does not appear anywhere

else and a fortiori does not appear as an hypothesis (i.e. in a negative occur-

rence, such as the context or the left hand-side of an arrow); thus, it must have

been user-provided.

For instance, in the expression �f: hfi f , the lambda-bound variable f can

be given the polytype [8�:�! �]

�

, with a monomorphic �; since all instances of

f will share the same label �, the label cannot be anonymous as required when

typing hfi. Indeed, the type of the variable f in hfi is a polytype only under

the assumption that the binding occurrence of f is typed with exactly the same

polytype.

On the contrary, when a polytype has been con�rmed, we want to propagate

it, following the de�nition order. We use polymorphism to generate new anony-

mous labels from older ones. We allow quanti�cation on anonymous labels, and

later instantiation of quanti�ed labels to new anonymous labels.

When typing the expression �f : [8�:�! �]: hfi f , the type assumption f :

8�:[8�:� ! �]

�

is added to the context in which hfi f is typed. Thus, variable

f has type [8�:� ! �]

�

1

with a di�erent, anonymous, label �

1

, and therefore

hfi is well-typed. For technical reasons we chose not to allow type annotation of

abstracted variables in our system, but instead �x: � : a can be seen as �x: let

x = (x : �) in a. Type annotation (: �) renames all �'s free in � into fresh ones.

2 Formal approach

We formalize our approach as a small extension to core ML.

2.1 The core language

Types We assume given two collections of type variables � 2 V , and labels � 2 E .

The syntax of types is:

� ::= � j � ! � j [�]

�

Monotypes

� ::= � j 8�:� Type schemes

& ::= � j 8�:& Generic schemes

� ::= � j � Variables

The construct [�]

�

is used to coerce a type scheme � to a monotype. We call

[�]

�

a weak polytype. The label � is used to keep track of sharing between weak

polytypes, or allow them to be usable polytypes, when it is quanti�ed as 8�:[�]

�

.

We do not quantify labels in �, since this would not add any power to the system

(it would be redundant with explicit type annotations).

Free type variables and free labels of a generic scheme, type scheme, or mono-

type & are written FV (&) and FL(&), and are de�ned as usual. In a type scheme

8�:& , 8 acts as a quanti�er, and the variable or label � is bound (i.e. not free)

in 8�:& . We consider type schemes equal by renaming of bound variables and

labels. As usual substitutions leave bound variables and labels unchanged. For

example (� ! [8�

0

:�

0

! �]

�

)f�=�g is � ! [8�

0

:�

0

! �]

�

provided �

0

is not free

in � . An instance of a type scheme 8��; ��:�

0

is �f��

0

; ��=��; ��g.

Expressions

a ::= x j �x: a j a a j let x = a in a

j [a : �] j hai j (a : �)

The �rst line corresponds exactly to core ML. We then introduce three new

constructs: introduction and elimination of �rst-class polymorphism and type

annotation.

Typing rules are given in �gure 1. All typing rules but the last three ones are

(Var)

x : & 2 A

A ` x : &

(Fun)

A� x : �

0

` a : �

A ` �x: a : �

0

! �

(App)

A ` a

1

: �

2

! �

1

A ` a

2

: �

2

A ` a

1

a

2

: �

1

(Gen-V)

A ` a : � � =2 FV (A)

A ` a : 8�:�

(Gen-E)

A ` a : & � =2 FL(A)

A ` a : 8�:&

(Inst-V)

A ` a : 8�:�

A ` a : �f�=�g

(Inst-E)

A ` a : 8�:&

A ` a : &f�

0

=�g

(Let)

A ` a

1

: & A� x : & ` a

2

: �

A ` let x = a

1

in a

2

: �

(Ann)

A ` a : �

1

(�

1

: � : �

2

)

A ` (a : �) : �

2

(Poly)

A ` a : �

1

(�

1

: � : �

2

)

A ` [a : �] : [�

2

]

�

(Use)

A ` a : 8�:[�]

�

A ` hai : �

Fig. 1. Typing rules

quite standard. Rules Ann and Poly use an auxiliary relation (: :). Given

a type scheme �, we write (�

1

: � : �

2

) if there exists a substitution � from

type variables to types and two substitutions �

1

and �

2

from labels to labels,

such that �

1

= �(�

1

(�)) and �

2

= �(�

2

(�)). The intuition is that if � is the

identity, then �

1

and �

2

are both equal to � except maybe in their labels. Indeed,

(�

1

(�) : � : �

2

(�)). If � does not contain any label, then (�

1

: � : �

2

) is equivalent

to �

1

and �

2

being the same generic instance of �. An important property of the

relation (: � :) is its stability by substitution. That is, if (�

1

: � : �

2

), then

(�(�

1

) : � : �(�

2

)) for any substitution �.

This relation is used to type explicit annotations. The construct (: �) could

have been replaced by a countable collection of primitives �x: (x : �) indexed

by � and given with principal type schemes 8��

1

; ��

2

; FV (�): �f��

1

=��g ! �f��

2

=��g

where ��

1

and ��

2

are di�erent renamings of the labels ��. That is, to type an

expression (a : �), let �

1

and �

2

be two copies of � where labels have been been

renamed, and � be a substitution such that a has type �(�

1

); then (a : �) has

type �(�

2

).

Rule Poly uses the same relation, except that types schemes replace types.

To type [a : �], let �

1

and �

2

be two copies of � where labels have been been

renamed; �nd a generic instance �

0

of the principal type scheme of a and a

substitution � such that �(�

0

) and �(�

1

) are equal, and return [�(�

2

)]

�

.

Last, rule Use says that polymorphism can be used only if the label of the

polytype does not occur anywhere else.

As an example, we have the following derivation, where � abbreviates 8�:�!

� and A is f : [�]

�

1

:

(Var)

A ` f : [�]

�

1

([�]

�

1

: [�]

�

: [�]

�

2

)

(Ann)

A ` (f : [�]

�

) : [�]

�

2

(Gen-E)

A ` (f : [�]

�

) : 8�

2

:[�]

�

2

(Use)

A ` hf : [�]

�

i : 8�:�! �

(Inst-V)

A ` hf : [�]

�

i : [�]

�

1

! [�]

�

1

.

.

.

(Var)

A ` f : [�]

�

1

(App)

A ` hf : [�]

�

i f : [�]

�

1

(Fun)

` �f: hf : [�]

�

i f : [�]

�

1

! [�]

�

1

2.2 Dynamic semantics

We give a call-by-value semantics for the core language. Values and evaluations

contexts are:

v ::= w j [v : �]

w ::= �x: a j (w : �

1

! �

2

)

E ::= fg j E a j v E j let x = E in a j [E : �] j (E : �) j hEi

One step is either a reduction of the form:

(�x: a) v

Fun

�! afv=xg

let x = v in a

Let

�! afv=xg

h[v : 8��:�]i

Use

�! (v : �)

(v

1

: �

2

! �

1

) v

2

Tfun

�! (v

1

(v

2

: �

2

) : �

1

)

([v : 8

�

�:�] : [�]

�

)

Tpol

�! [(v : �) : �]

(v : �)

Tvar

�! v

or an inner reduction obtained by induction:

a

1

r

�! a

2

Efa

1

g

r

�! Efa

2

g

Note that �, in rule Tvar, is really a variable and not a meta-variable. It is a

major di�erence with ML that type annotations are not just a means to restrict

principal types to instances. On the opposite, they allow better typings. Thus,

reduction must preserve type annotations as long as they provide useful typing

information. Indeed, while terms are only reduced by rules Fun, Let, and Use,

we need the rules Tfun and Tpol to maintain this type information. Rule Tvar

erases empty type information. Although types are preserved during reduction,

they do not actually participate in the reduction. In particular, it would be

immediate to de�ne an untyped reduction =) and a type-erasure E , and to

show that if a

1

�! a

2

, then (E(a

1

) =) E(a

2

)) or E(a

1

) and E(a

2

) are equal.

2.3 Type soundness

We could easily show that evaluation cannot go wrong by means of translation

in system F . Subject reduction is an intermediate result of a direct proof that is

neither required nor implied by type soundness. However, it is quite important

for itself, since it shows that each reduction step preserves typings, and thus that

the static semantics is tightly related to the dynamic semantics.

Subject reduction is not obviously preserved by extension to polytypes: the

new constructions allow more programs to be typed, but simultaneously the re-

duction of those expressions requires more programs to be typable. In particular,

subject reduction would not hold if we threw away type constraints too early

during reduction.

Both subject reduction and type inference are simpli�ed by restricting our-

selves to canonical derivations. A similar result existed for the original Damas-

Milner presentation of ML, but ML is now often presented in its syntax directed

form.

Canonical derivations are those where occurrences of rules Gen and Inst are

restricted as follows:

{ rule Gen only occurs as the last rule of the derivation or right above rule

Poly, Use, the left premise of rule Let, or another rule Gen.

{ rule Inst may only occur right after rule Tvar, rule Use, or another rule

Inst.

Lemma 1 (Canonical derivations). A valid typing judgment A ` a : � has a

canonical derivation.

Another classical result is the stability of typing judgments by substitution:

Lemma 2 (Stability). If A ` a : � , then for any substitution �, �(A) ` a : �(�).

It is important to notice that the substitution is not applied to the expression

a, in particular type constraints inside a are left unchanged: their free variables

must be understood as if they were closed by existential quanti�cation.

We de�ne a relation a

1

� a

2

between programs stating that all typings of a

1

are also typings of a

2

,i.e.

a

1

� a

2

4

= (8A; &; A ` a

1

: & =) A ` a

2

: &)

Theorem 1 (Subject reduction). Reduction preserves typings, i.e. if a

1

�!

a

2

, then a

1

� a

2

.

Subject reduction is not su�cient to prove type soundness, since the full relation

(every program has every type in any context) satis�es subject reduction but

does not preserve from type errors. It must be complemented by the following

result:

Theorem 2 (Canonical forms). Irreducible programs that are well-typed in

the empty environment are values.

Type soundness is a straightforward combination of the two previous theorems.

2.4 Type inference

First-order uni�cation on simple types must be extended to handle polytypes.

During uni�cation, a polytype is treated as a rigid skeleton corresponding to the

polymorphic part, on which hang simple types. We present both uni�cation and

type inference as solving uni�cation constraints following [4].

Uni�cation on simple types First, we remind uni�cation for simple types. In this

part we exclude polytypes from types � . A uni�cation problem is a formula U

de�ned by the following grammar.

U ::= ? j > j U ^ U j 9�:U j e Uni�cation problems

e ::= � j � _= e Multi-equations

The symbols > and ? are respectively the unsatis�able and trivial uni�cation

problems. We treat them as a unit and a zero for ^. That is U ^> and U ^? are

respective equal to U and ?. We also identify > with singleton multi-equations.

That is, we can always consider that uni�cation problems U contain at least

one multi-equation � _= e for each variable of U . A complex formula is the

conjunction of other formulas or the existential quanti�cation of another formula.

The symbol ^ is commutative and associative. The symbol 9 acts as a binder,

i.e. free variables of 9�:U are free variables of U except �. Bound variables

can freely be renamed. We identify 9�

1

: 9�

2

: U and 9�

2

: 9�

1

: U and simply

write 9�

1

; �

2

: U . The symbol _= is associative and commutative. Thats is, multi-

equations are in fact multi-sets of terms.

A substitution � is a solution of a multi-equation if it sends all terms of the

multi-equation to the same image. The substitution � satis�es a conjunction of

subproblems if it satis�es all subproblems; � is a solution of 9�:U if it can be

extended on � into a solution of U .

Two uni�cation problems are equivalent if they have the same set of solutions.

One can check that all previous structural equalities are indeed equivalences.

Given a uni�cation problem U , we de�ne the containment ordering �

U

as

the transitive closure of the immediate precedence ordering containing all pairs

� � �

0

such that there exists a multi-equation � _= � _= e in U where � is

a non-variable term that contains �

0

. A uni�cation problem is strict if �

U

is

strict. Remark that strictness is syntactic and is not preserved by equivalence.

The idea is that strictness detects cycles, only on fully merged and decomposed

uni�cation problems.

A problem is in solved form if it is either ? or >, or if it is strict and of the

form 9 ��:

V

i21::n

e

i

, merged and decomposed. In particular, multi-equations e

i

contain at most one non-variable term, and if i 6= j then e

i

and e

j

contain no

variable term in common. An explicit principal solution � can be read straight-

forwardly from a problem in solved form. We write U �

�

�

�> 9

�

�: � if � is a principal

solution of U and variables

�

� are not free in U , or by abuse of notation, if U is

unsatis�able and � is ?.

Occur-Check

if�

U

is not strict then

U �

�

�

�> ?

Merge

� _= e ^ � _= e

0

�

�

�

�> � _= e _= e

0

Absorb

� _= � _= e �

�

�

�> � _= e

Decompose

�

1

! �

2

_= �

0

1

! �

0

2

_= e �

�

�

�> �

1

! �

2

_= e ^ �

1

_= �

0

1

^ �

2

_= �

0

2

Fig. 2. First-order uni�cation of simple types

The uni�cation algorithm is given as a set of rewriting rules that preserve

equivalence in �gure 2. There are implicit context rules that allow to rewrite

complex formulas by rewriting any sub-formula. It is well-known that given

an arbitrary uni�cation problem, applying these rules always terminate with a

uni�cation problem in solved-formed. The rule Occur-Check rejects solutions

with recursive types. If it were omitted the algorithm would infer recursive types.

Uni�cation with polytypes We now allow polytypes [�]

�

. The rule Decompose

is naturally extended by adding a case for polytypes. Thus we have to extend

typing problems with equations between type schemes.

U ::= : : : j � _= �

Notice that these are not multi-equations, since a variable cannot be equated to

a polymorphic type scheme, and as a result equations involving type schemes

are never merged.

Decompose

[�]

�

_= [�

0

]

�

0

_= e �

�

�

�> [�]

�

_= e ^ � _= �

0

^ � _= �

0

Clash

[�]

�

_= � ! �

0

_= e

0

�

�

�

�> ?

Polytypes

if �� \ ��

0

= ; then

8��:� _= 8��

0

:�

0

�

�

�

�> 9 ��; ��

0

: � _= �

0

^ ��$ ��

0

Renaming-True

if �� = (�

i

)

i21::n+p

and ��

0

= (�

0

i

)

i21::n+q

then

9 ��; ��

0

: (�

i

_= �

0

i

)

i21::n

^ ��$ ��

0

�

�

�

�> >

Renaming-False

if � 2 �� and � =2 ��

0

[f�g then � _= � _= e ^ ��$ ��

0

�

�

�

�> ?

if � 2 �� \ FV (�) and � 6= � then �

0

_= � _= e ^ ��$ ��

0

�

�

�

�> ?

Fig. 3. First-order uni�cation of simple types with polytypes

A substitution � is solution of a polytype equation � _= �

0

if �(�) = �(�

0

),

where equality is the usual equality for type schemes in ML, i.e. it is taken

modulo reordering and renaming of universal variables, and removal of useless

universal variables. Clearly, 8��:� = 8��

0

:�

0

if and only if there exists a substitu-

tion � such that

1. �(�) = �(�

0

),

2. � j

�

�� and � j

�

��

0

are injective in �� [��

0

, and

3. no variable of �� [��

0

appears in � n (�� [��

0

).

We could have solved such uni�cation problems by �rst unifying � and �

0

and

then checking the constraints. However, this would force some unnecessary de-

pendence. Indeed, the condition 1 above can be treated as a uni�cation prob-

lem �. We introduce another kind of uni�cands �� $ ��

0

whose solutions are

substitutions satisfying the conditions 2 and 3. We consider �� and ��

0

as multi-

sets (i.e. the comma is associative and commutative). In order to avoid special

cases, we require that no variable is listed twice in the sequence ��; ��

0

(in par-

ticular �� \ ��

0

is empty). The symbols _= (in polytype equations) and $ are

commutative.

Rules for uni�cation with polytypes are those of �gure 2 plus those of �gure 3.

Rule Clash handles type incompatibilities. Rule Polytypes transforms poly-

type equations as described above. Rule Renaming-True allows to remove a

satis�able renaming constraints that became independent. On the opposite, rule

Renaming-False detects unsolvable renaming constraints. In the �rst case, a

solution � of ��$ ��

0

would identify a variable � of �� with another variable of ��

(thus � would not be injective) or with a term outside of �� [��

0

. In the second

case, the image of a variable �

0

would contain properly a variable � of ��, making

it leak into a wider environment (thus, violating condition 3).

It can be easily checked that if U is merged and decomposed, then for ev-

ery renaming constraint that remains either rule Renaming-True or -False

applies. Therefore, renaming constraints can always be eliminated.

Type inference For type inference, we extend atomic formulas with typing prob-

lems. A typing problem is a triple, written A . a : � , of an environment A, a

term a, and a type � . A solution of a typing problem A . a : � is a substitu-

tion � such that �(A) ` a : �(�). By lemma 2, the set of solutions of a typing

problem is stable under substitutions. Thus, typing problems can be treated as

uni�cation problems, following [13]. The rules for solving typing problems are

given in �gure 4. The generalization Gen (�;A) is, as usual, 8

�

�:� where

�

� are all

free variables and free labels of � that do not occur in A.

Theorem 3. Given a typing problem (A.a : �) there exists a principal solution,

which is computed by the set of rules described in �gures 2, 3 and 4.

2.5 Printing labels as sharing constraints

We propose here an alternative interface to the system, potentially enhancing

readability of types shown to the user. It is robust, and could also have been

used in the presentation of our type system.

Labels are used to trace the sharing of polytypes. Types could be restricted

so that two polytypes with the same label are necessarily equal. This was not

required in the present type system, although this property remains valid in all

types appearing in a principal derivation of a judgment for which the property

is already valid.

The grammar of types can be extended with a sharing construct

1

:

� ::= : : : j (� where � = �)

Using bindings, any type can always be written such that every label occurs

at most once, and thus can be omitted. In fact, in our presentation, sharing of

1

Alternatively, one could use the binding � as � as in Objective ML, although the

binding scope of as is less clear and harder to deal with, formally.

types is preserved during type inference. Sharing was just ignored when reading

principal solutions from uni�cands in solved form. The where construct allows

to read and print all sharing existing in the solved form. Actually, only sharing

involving polytypes needs to be printed, and other sharing could still be ignored

as before.

For instance, the expression �x: (x : [�]) has type [�] ! [�], since the two

polytypes have di�erent labels, but the expression �x: let y = (x : [�]) in x has

type (�! � where � = �).

3 Encodings

In this section, we give encodings in our language for both explicit polymorphism

through data-types, and system F . This last encoding is direct, and makes our

language an alternative to system F , which allows for more explicit type infor-

mation than ML, but also for more polymorphism.

Syntactic sugar

It is convenient to allow �x: � : a in expressions. We see such expressions as syn-

tactic sugar for �x: let x = (x : �) in a. The derived typing rule is:

(Poly-Fun)

A� (x : 8FL(�

2

) n FL(�

1

):�

2

) ` a : �

0

(�

1

: � : �

2

)

A ` �x: � : a : �

1

! �

0

The derived reduction is (�x: � : a) v

Fun

�! af(v : �)=xg.

Encoding polymorphic data-type

Previous works have used data types to provide explicit polymorphism [6, 14, 9].

Omitting other aspects that are irrelevant here, all these works amount to an

extension of ML with expressions of the form:

t ::= � j t! t j T �� Types

M ::= x jM M j �x:M j T M j T

�1

M Terms

j type T �� = � in e Type declarations

where T ranges over data type symbols. In expressions, T and T

�1

act as mu-

tually inverse introduction and elimination functions to coerce the higher-order

types � into the simple type T ��. For simplicity, we can assume without loss of

generality that every type symbol T occurs only once, and we write (���: �) for

the type symbol T associated with the de�nition type T �� = �.

The translation of types into types of our language is straightforward.

hh�ii = � hht! tii = hhtii ! hhtii hh(���: �) �� ii = [�f�=��g]

Note that all type schemes are translated as polytypes with anonymous labels.

We translate programs as follows.

hhxii = x hh�x: aii = �x: hhaii hha

1

a

2

ii = hhaii

1

hhaii

2

hh(���: �) Mii = [hhMii : �] hh(���: �)

�1

Mii = hM : [�]i

Indeed, the pattern h : [�]i amounts to the explicit elimination of polymorphism.

Since, in the translation, the elimination of polymorphism is always explicit, it

can easily be shown that the translation of a well-typed term is always well-

typed.

Encoding system F

La�ufer and Odersky have shown an encoding of system F into polymorphic data-

types [9]. This guarantees by composition that system F can be encoded into

semi-explicit polymorphism. We give here a direct encoding of system F , which

is much simpler than the encoding into polymorphic data-types.

The types and the terms of system F are

t ::= � j t! t j 8�:t Types

M ::= x jM M j �x: t:M j ��:M jM t Terms

The translation of types of system F into types of our language is again straight-

forward:

hh�ii = � hht! tii = hhtii ! hhtii hh8�:tii = [8�:hhtii]

The translation hh ii is extended to typing environments in an homomorphic

way. The translation of typing derivations of terms of system F into terms of

our language is given by the following inference rules:

x : t 2 A

A ` x : t) (x : hhtii)

A� (x : t) `M : t

0

) a

A ` �x: t:M : t! t

0

) �x: a

A `M : t

0

! t) a A ` e

0

: t

0

) a

0

A `M e

0

: t) a a

0

A `M : t) a � =2 FV (A)

A ` ��:M : 8�:t) [a : 8�:hhtii]

A `M : t

0

) a

A `M t : t

0

ft=�g) hai

Since the translation rules copy the typing rules of system F , the translation

is de�ned for all well-typed terms. There is no ambiguity and the translation is

deterministic.

Lemma 3. For any term M of system F , if A `M : t) a, then hhAii ` a : hhtii.

Proof (sketch). The proof is by structural induction on M . The only di�culty is

to ensure that when typing hai the polytype [�]

�

of a is always anonymous. Since

the translation of all variables is a type constraint, which renames all labels of

its type, it can easily be shown that the type of an expression never shares any

label with the typing environment.

If we choose for system F the semantics where type abstraction does not

stop evaluation (i.e. ��:E is an evaluation context whenever E is), then the

translation preserves the semantics in a strong sense (reduction steps of a term

can be mapped to the reduction of the translated term). Another semantics

would need easy adjustment, either of the translation or of the semantics of our

system.

Using the extended syntax �x: � : a, we could replace the two �rst rules by:

x : t 2 A

A ` x : t) x

A� (x : t) `M : t

0

) a

A ` �x: t:M : t! t

0

) �x: hhtii: a

This allows for a closer comparison between system F and our language. Let

us compare a term M and its translation a. The type information on lambda

abstractions is the same in both terms. The type information at the elimination

of polymorphism is always omitted in a. The counterpart is that type information

at the introduction of polymorphism is richer in a, since it must give the full

type of the expression, not just the type variable that is abstracted.

Our language is also more
exible: annotations of abstractions are not manda-

tory and, in particular, ML programs do not require any explicit type informa-

tion at all; multiple abstractions can also be introduced simultaneously, as in

[a : 8�

1

; �

2

:�]. Since type application is explicit in system F , the expression

��

1

; �

2

:M would be ambiguous; thus it is not allowed.

The simplicity of our encoding compared to the encoding into polymorphic

data-types is permitted by the introduction of polytypes as �rst-class types, and

does not rely on the inference of polytypes at the elimination. If we leave the

elimination of polymorphism fully explicit, we could keep �rst-class polytypes

but omit all labels in polytypes. We would obtain a weaker but simpler proposal

that would extend ML and be as powerful as system F , but more verbose.

4 Extensions to the core language

In this section, we describe two independent extensions to the core language.

First, we study the restriction of polymorphism to values, which is commonly

accepted as the best solution for keeping type-soundness in the presence of

side e�ects. Then, we extend rule Use to allow a more uniform treatment of

monomorphic and polymorphic polytypes; polymorphic methods in Objective

ML are an important application.

4.1 Value-only polymorphism

For impure functional programming languages, value-only polymorphism has

become the standard way to handle the ubiquity of side-e�ects. It is based on a

very simple idea |if an expression is expansive, i.e. its evaluation may produce

side-e�ects, then its type should not be polymorphic [17].

This is usually incorporated by restricting the Gen rule to a class of expres-

sions b, called non-expansive, composed of variables and functions. Equivalently,

this restriction can be put on the Let rule: both ways give exactly the same

canonical derivations in the core language. We actually prefer this way, since it

still allows us to generalize � before the Use rule, which is needed and correct.

Thus, we replace rules Poly and Let by the following four rules, each rule

being split in its expansive and non-expansive versions.

(Poly-V)

A ` b : �

1

(�

1

: � : �

2

)

A ` [b : �] : [�

2

]

�

(Poly-E)

A ` a : �

1

(�

1

: � : �

2

)

A ` [a : �] : [�

2

]

�

(Let-V)

A ` b : & A� x : & ` a : �

A ` let x = b in a : �

(Let-E)

A ` a

1

: �

0

A� x : �

0

` a

2

: �

A ` let x = a

1

in a

2

: �

The class of non-expansive expressions can be re�ned, provided the evaluation

cannot produce side-e�ects and preserves non-expansiveness. For instance, in

ML, we can consider let-bindings of non-expansive expressions in non-expansive

expressions as non-expansive. In our calculus, type annotations are also non-

expansive. More generally, any expression where every application is protected

(i.e. appears) under an abstraction is non-expansive (creation of mutable data-

structure would be the application of a primitive):

b ::= x j �x: a j let x = b in b j (b : �) j [b : �] j hbi

This system works perfectly, and all properties are preserved.

However, it seems too weak in practice. Since we use polymorphism of �'s to

denote con�rmation of polytypes, as soon as we let-bind an expansive expres-

sion, all its �'s become monomorphic, and all its polytypes weak. For instance,

the following program is not typable, because labels in the type of the binding

occurrence of g cannot be generalized.

let f = [�x: x : 8�:�! �] in let g = (�x: x) f in hgi g

When ML polymorphism is restricted to values, the result of an application is

monomorphic (here, the result of applying �x: x to f). Traditionally, the typical

situation when a polymorphic result is restricted to be monomorphic is partial

application. Polymorphism is there easily recovered by �-expansion. However,

the same problem appears when objects are represented as records of methods,

with no possibility of �-expansion. In our core language, the only way to recover

at least explicit polymorphism in such a case is to annotate the use of let-bound

variables with their own types:

let f = [�x: x : 8�:�! �] in

let g = (�x: x) f in hg : [8�:�! �]i g

In practice, with objects, this means recalling explicit polymorphism information

at each method invocation. The strength of our system being its ability to omit

such information, this limitation would signi�cantly reduce its interest.

One might think that allowing quanti�cation on � in Let-E, i.e. write 8��:�

0

in place of �

0

, is harmless. Indeed, �'s polymorphism does not allow type mis-

matches like �'s polymorphism would: verifying identity of type schemes is done

separately. However, this rule would break principal types. Consider, for instance,

the following expression:

let x = id [] in let y = hhd xi in x

It can be assigned type [�]

�

list for any type scheme �. Since type schemes of

polytypes are not ordered, there is no principal type for this expression.

This problem is pathological, but not anecdotical. It can be solved by using

principal judgments. That is, we replace Let-V and Let-E by the following

restricted rules. A `

?

a : & means that & is the most general scheme for a under

assumptions A.

(Let-V

?

)

A `

?

b : & A� x : & ` a : �

A ` let x = b in a : �

(Let-E

?

)

A `

?

a

1

: 8����:�

0

a

1

6� b A� x : (8��:�

0

)f��=��g ` a

2

: �

A ` let x = a

1

in a

2

: �

This restriction to principal judgments is not new: it has already been used for

the typing of dynamics in ML [7] or value-only polymorphism in Standard ML'96

to disallow monomorphic variables at toplevel. In the former case, the program

�x: (dynamics x) is rejected because, in the principal judgment x : � ` x : �,

some variable of the type of x occurs free in the context. Similarly, (�x: x) (�x: x)

fails to type in Standard ML'96 because the non generalizable variable � is free

in the principal type � ! �. In both cases, a non principal judgment obtained

by choosing int for � would be correct, were it not for the principality condition.

Still, we do not consider this solution as fully satisfactory, and we view it as

an example of the di�culties inherent to value-only polymorphism.

4.2 An extended language

In this section we show how the core language can be used to provide poly-

morphic methods in Objective ML

2

[15]. Polymorphic methods are useful in

parameterized classes. Indirectly, they may also reduce the need for explicit co-

ercions.

2

The examples of objects and classes given below are rather intuitive, and could be

translated in other class-based object-oriented languages; the reader may refer to [15]

for a formal presentation of Objective ML.

While Objective ML has parametric classes, it does not allow methods to be

polymorphic. For instance, the following class de�nition fails to type.

let � collection = class (l)

val contents = l

meth mem = �x. mem x contents

meth fold : (� ! � ! �) ! � ! �

= �f.�x. fold left f x contents

end

The reason is that variable � is free in the type for method fold, but is not bound

to a class parameter. The solution is to have the method fold be polymorphic

in �. With polytypes, we can write

meth fold = [�f.�x. fold left f x contents

: 8�. (� ! � ! �) ! � ! �]

Still, we have to distinguish between polymorphic and monomorphic methods,

in particular when we send a message to the object. The aim of the remainder of

this section is to make use of polymorphic and monomorphic methods similar,

and more generally the use of polymorphic methods smoother.

The �rst step is to give all methods polytypes. This is easily done by wrapping

monomorphic methods in polytypes. For instance,

meth mem = [�x. mem x l : �]

However, we still want to be able to use monomorphic methods without type

annotations. There is a small but very convenient extension of the core language

thats solves this problem. We add a new typing rule Use-M:

(Use-M)

A ` a : [�]

�

A ` hai : �

As opposed to rule Use, this one allows � to appear in A. Inference problems

are solved by forcing the polytype to be monomorphic.

Both rules Use and Use-M apply when � is anonymous and the polytype

is monomorphic, but they produce the same derivation. If either � is free in A,

or the polytype is polymorphic, then only one of the two rules may be used.

As a result, principal types are preserved. The type inference algorithm can be

modi�ed as shown in �gure 5. Subject reduction property is also preserved.

The expression (�x.�y. hx#memi y) is then typable with principal type

hmem : [� ! �]; ..i ! � ! �. Since all methods are now given polytypes,

we will change our notations (the new notations are given in term of the old ones):

in types, we now write m : � for m : [�]; in expressions, we now write m : � = a

for m = [a : �], m = a for m = [a : �] and a#m for ha#mi. With the new

notations, the collection example is written:

let � collection = class (l)

val contents = l

meth mem = �x. mem x contents

meth fold : 8�. (� ! � ! �) ! � ! �

= �f.�x. fold left f x contents

end;;

value collection : class � (� list)

meth mem : � ! bool

meth fold : 8�. (� ! � ! �) ! � ! �

end

A monomorphic method is used exactly as before.

let coll mem c x = c#mem x

coll mem : hmem : � ! �; ..i ! � ! �

However, when polymorphic methods are used under abstractions, the type of

the object should be provided as an annotation,

let simple and double (c : � collection) =

let l1 = c#fold (�x.�y. x::y) [] in

let l2 = c#fold (�x.�y. (x,x)::y) [] in

(l1, l2);;

simple and double : � collection ! (� list * (� * �) list)

Since the method fold is used with two di�erent types, this example could not

be typed without �rst-class polymorphism.

Polymorphic methods also appear to be useful to limit the need for explicit

coercions. In Objective ML, coercions are explicit. For instance suppose that

objects of class point have the interface hx : int; y : inti, and that we want to

de�ne a class circle with a method giving the distance from the circle to a point.

let circle = class (x,y,r) ...

meth distance = �p:point. ...

end;;

value circle : class (int * int * int) ...

meth distance : point !
oat

end

Given a point p and a circle c, we can get their distance by c#distance p.

However, an object cp of a class color point where color point is a subtype

of point (e.g. its interface is hx : int; y : int; color : colori) needs to be

explicitly coerced to point before its distance to the circle can be computed:

c#distance (cp : color point :> point)

This coercion could be avoided if distance were a toplevel function rather than

a method:

let distance c p = c#distance (p :> point);;

value distance : hdistance : point ! � ; ..i ! #point ! �

The type expression #point represents any subtype of point. Actually, it is an

abbreviation for the type hx : int; y : int; �i. Here, #point contains a hidden

row variable that is polymorphic in the function distance. This allows di�erent

applications to use di�erent instances of the generic row variable and thus to

accept di�erent objects all matching the type of points.

Explicit polymorphism allows to recover the same power inside methods:

meth distance : 8�:#point. � ! float = �p. ...

Then, c#distance cp is typable just by instantiation of these row variables,

without explicit coercion. Of course, this also means that we have to know that

c is a circle before using method distance, like would happen in more classi-

cal object-oriented type systems. There is a choice here between using explicit

coercions and giving more type information. The advantage of type information

is that it occurs at more convenient places, i.e. at method de�nitions and in-

vocation of a method on an object of unknown type. On the opposite, explicit

coercions must be repeated at each invocation of a method even when all types

are known.

Related Work

Full type inference of polymorphic types is undecidable [16]. Several works have

studied the problem of partial type inference in system F .

Some implementations of languages based on system F relieve the user from

the burden of writing all types down. In Cardelli's implementation of the lan-

guage Fun [1] some polymorphic polytypes may be marked as implicit (actually

their variables are marked) and automatically instantiated when used, or marked

to stay polymorphic. This mechanism turns out to be quite e�ective in inferring

type applications. However, types of abstracted values are never inferred. Thus,

the expression �x: x cannot be typed without providing a type on x, which

shows that this is not an extension of ML. Pierce and Turner have extended this

partial inference mechanism to F

!

<:

in the design of the language Pict [12]. By

default they also assign \uni�cation variables" to parameters of functions with

no type annotations. Their solution requires surprisingly little type information

in practice, especially in the absence of subtyping. Still, as for Cardelli's solu-

tion, it is quite di�cult to know exactly the set of well-typed programs, since

the description is only algorithmic.

A di�erent approach is taken by Pfenning [10]. Instead of providing type

annotations on lambda's he indicates possible type applications (this corresponds

to the notation h i in our language). Then, he shows that partial type inference

in system F corresponds to second-order uni�cation and is thus undecidable [11].

As ours, his solution is an extension of ML. It is also more powerful; the price

is the loss of principal types and decidability of type inference. As explained in

the introduction, we designed our system never to guess higher-order types.

Kfoury and Wells show that type inference could be done for the rank-2

fragment of system F [5]. However, they do not have a notion of principal types.

It is also unclear how partial type information could be added.

In [9], L�aufer and Odersky actually present two di�erent mechanisms. First,

as we explained in the introduction they add higher-order polymorphism with

fully explicit introduction and elimination. As we have seen, our framework

subsumes theirs. They also introduce another mechanism that allows annotations

of abstractions by type schemes as in �x:�: x together with a type containment

relation on type schemes similar to the one of Mitchell [8]. Type schemes may

be of the form 8�:�

1

! �

2

, where �

i

are type scheme themselves. However,

universal variables such as � can only be substituted by simple types. Thus, the

only way to apply a function of type 8�:�! � to a polymorphic value remains

to embed the argument inside an explicitly de�ned polytype.

In [3], Duggan proposes an extension to ML with objects and polymorphic

methods. His solution heavily relies on the use of kinds and type annotations.

These are carried by method names that must be declared before being used. In

this regard, his solution is similar to fully explicit polymorphism both at intro-

duction and elimination, as the one of L�aufer and Odersky. His use of recursive

kinds allows some programs that cannot be typed in our proposal (section 4).

However, this is due to a di�erent interpretation of object types rather than a

stronger treatment of polymorphism.

Conclusion

Our extension of ML allows a more convenient use of polymorphic types. Poly-

types are created with explicit type annotations, and can be used without speci-

fying their types, except under abstraction. This is particularly useful in Objec-

tive ML to allow methods to be polymorphic.

Our solution is practical, since it can be used with the value-only polymor-

phism restriction, that is, in the presence of side-e�ects. We propose two options.

The �rst, standard solution preserves all fundamental properties, but is weaker.

The second solution is stronger, covers all useful cases, and does not present

any new limitations. However, it keeps principal types only under some restric-

tion. This is insigni�cant in practice, but reveals the limitation of value-only

polymorphism.

Our approach is to keep type inference �rst-order, since we believe that this

is su�cient in practice. Still, we allow the explicit introduction of higher-order

polymorphism and its smooth interaction with ML polymorphism. As future

work we would like to present our type system closer to the framework of partial

type inference for second-order lambda-calculus.

The possible application to a similar simpli�cation of �rst-class existential

polymorphism in ML also remains to be investigated.

References

1. Luca Cardelli. An implementation of FSub. Research Report 97, Digital Equipment

Corporation Systems Research Center, 1993.

2. Luis Damas and Robin Milner. Principal type-schemes for functional programs. In

Proceedings of the Ninth ACM Conference on Principles of Programming Langages,

pages 207{212, 1982.

3. Dominic Duggan. Polymorphic methods with self types for ML-like languages.

Technical report cs-95-03, University of Waterloo, 1995.

4. J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: a rule-

based survey of uni�cation. In Jean-Louis Lassez and G. Plotkin, editors, Com-

putational Logic. Essays in honor of Alan Robinson, chapter 8, pages 257{321.

MIT-Press, Cambridge (MA, USA), 1991.

5. A. J. Kfoury and J. B. Wells. A direct algorithm for type inference in the rank-2

fragment of the second-order �-calculus. In Proceedings of the ACM Conference

on Lisp and functional programming, pages 196{207, Orlando, Florida, June 1994.

6. Konstantin L�aufer and Martin Odersky. Polymorphic type inference and ab-

stract data types. ACM Transactions on Programming Languages and Systems,

16(5):1411{1430, September 1994.

7. Xavier Leroy and Michel Mauny. Dynamics in ML. In John Hughes, editor,

Conference on Functional Programming and Computer Achitecture, volume 523 of

Lecture Notes in Computer Science, pages 406{426. Springer-Verlag, 1991.

8. John C. Mitchell. Polymorphic type inference and containment. In Proceedings of

the International Symposium on Semantics of Data Types, volume 173 of Lecture

Notes in Computer Science, pages 257{278, Sophia-Antipolis, France, June 1984.

Springer-Verlag. Full version in Information and Computation, 76(2/3):211{249,

1988. Reprinted in Logical Foundations of Functional Programming, ed. G. Huet,

pages 153{194, Addison-Wesley, 1990.

9. Martin Odersky and Konstantin L�aufer. Putting type annotations to work. In

Proceedings of the 23rd ACM Conference on Principles of Programming Languages,

pages 54{67, January 1996.

10. Frank Pfenning. Partial polymorphic type inference and higher-order uni�cation.

In Proceedings of the ACM Conference on Lisp and Functional Programming, pages

153{163, Snowbird, Utah, July 1988. ACM Press.

11. Frank Pfenning. On the undecidability of partial polymorphic type reconstruction.

Fundamenta Informaticae, 19(1/2):185{199, 1993. Preliminary version available as

Technical Report CMU-CS-92-105, School of Computer Science, Carnegie Mellon

University, January 1992.

12. Benjamin C. Pierce and David N. Turner. Pict: A programming language based

on the pi-calculus. Technical report, Computer Science Department, Indiana Uni-

versity, 1997.

13. Didier R�emy. Extending ML type system with a sorted equational theory. Research

Report 1766, Institut National de Recherche en Informatique et Automatisme,

Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France, 1992.

14. Didier R�emy. Programming objects with ML-ART: An extension to ML with

abstract and record types. In Masami Hagiya and John C. Mitchell, editors, The-

oretical Aspects of Computer Software, volume 789 of Lecture Notes in Computer

Science, pages 321{346. Springer-Verlag, April 1994.

15. Didier R�emy and Jerôme Vouillon. Objective ML: A simple object-oriented exten-

sion to ML. In Proceedings of the 24th ACM Conference on Principles of Program-

ming Languages, pages 40{53. ACM Press, January 1997.

16. J. B. Wells. Typability and type checking in the second order �-calculus are equiv-

alent and undecidable. In Ninth annual IEEE Symposium on Logic in Computer

Science, pages 176{185, Paris, France, July 1994.

17. Andrew K. Wright. Polymorphism for imperative languages without imperative

types. Technical Report 93{200, Rice University, February 1993.

A Proofs of main theorems

Proof of type soundness for the core language

Lemma 4 (Term substitution). If A � x : �

2

` a : �

1

and A ` v : �

2

hold,

then A ` afv=xg : �

1

also holds.

Proof. The proof is an easy induction on the structure of v.

Theorem 4 (Subject reduction). Reduction preserves typings, i.e. if a

1

�!

a

2

, then a

1

� a

2

.

Proof. We show that every rule in the de�nition of �! is satis�ed by the relation

�. Since �! is the smallest relation verifying those rules, then � must be a

super-relation of �!. All cases are independent. In each case, we assume that

A ` a

1

: � (1) and that a

1

�! a

2

, (the structure of a

1

depending on the case)

and we show that A ` a

2

: � (2).

We �rst assume that the derivation does not end with a rule Gen If the

derivation ends with a rule Gen, then it is of the form:

A ` a : &

(Gen*)

A ` a : 8

�

�:&

and there is a derivation of (1) that does not end with a rule Gen. Thus we have

A ` a

2

: � and (2) follows by the same application of rule Gen*.

Case Fun and Let: This is a straightforward application of term-substitution

lemma.

Case Use: A canonical derivation of (1) ends with

A ` a : �

1

(�

1

: �

0

: �

2

)

(Poly)

A ` [a : �

0

] : [�

2

]

�

(Gen)

A ` [a : �

0

] : 8�:[�

2

]

�

(Use)

A ` h[a : �

0

]i : �

2

The type schemes �

1

, �

0

, and �

2

are of the form 8��:�

1

, 8��:�

0

, and 8��:�

2

, and

such that (�

1

: �

0

: �

2

). Choosing �� such that they do not occur free in A, we

can contract this derivation into

A ` a : �

1

(Inst*)

A ` a : �

1

(�

1

: �

0

: �

2

)

(Ann)

A ` (a : �

0

) : �

2

(Gen*)

A ` (a : �

0

) : �

2

Case Tfun: A canonical derivation of A ` a

1

: � ends with

A ` v

1

: �

0

2

! �

0

1

(�

0

2

! �

0

1

: �

1

! �

2

: �

00

2

! �

00

1

) (3)

(Ann)

A ` (v

1

: �

2

! �

1

) : �

00

2

! �

00

1

A ` v

2

: �

00

2

(App)

A ` (v

1

: �

2

! t

1

) v

2

: �

00

1

Since the relation (3) implies both (�

00

2

: �

2

: �

0

2

) and (�

0

1

: �

1

: �

00

1

), we can build

the derivation:

A ` v

1

: �

0

2

! �

0

1

A ` v

2

: �

00

2

(�

00

2

: �

2

: �

0

2

)

(Ann)

A ` (v

2

: �

2

) : �

0

2

(App)

A ` v

1

(v

2

: �

2

) : �

0

1

(�

0

1

: �

1

: �

00

1

)

(Ann)

A ` (a (b : �

1

) : �

2

) : �

00

1

Case Tpol: The last derivation of (1) ends with:

A ` v : �

0

1

(3) (�

0

1

: �

1

: �

00

1

) (4)

(Poly)

A ` [v : �

1

] : [�

00

1

]

�

0

([�

00

1

]

�

1

: [�

2

]

�

2

: [�

3

]

�

3

) (5)

(Ann)

A ` ([v : �

1

] : [�

2

]

�

2

) : [�

3

]

�

3

Let 8�:�

1

be �

1

. From (4), we know that we can write �

0

1

and �

00

1

as 8�:�

0

1

and

8�:�

00

1

. Moreover, we have (�

0

1

: �

1

: �

00

1

) (6). From (5), We also get (�

00

1

: �

2

:

�

3

) (7). Thus, we have

(3)

(Inst*)

A ` v : �

0

1

(6)

(Ann)

A ` (v : �

1

) : �

00

1

(Gen*)

A ` (v : �

1

) : �

00

1

(7)

(Poly)

(2)

Case Tvar: Annotating with a variable does nothing.

Theorem 5 (Canonical forms). Irreducible programs that are well-typed in

the empty environment are values.

Proof. We �rst relate the shape of types and the shape of values. Let v be a

value of type � . By considering the possible canonical derivations, we can show

that:

{ if v is a poly expression, or a poly expression with a type constraint, then �

is a polytype;

{ otherwise, v is of the form w and � is a functional type.

Since polytype and functional types are incompatible, we can invert the property:

{ if � is a polytype, then v is a poly expression.

{ otherwise, � is a functional type, and v is of he form w.

Then we can easily prove the theorem: we consider a program a that is well-

typed in the empty environment, and that cannot be reduced. We easily show

by induction on the structure of a that it is a value.

Proof of the principal type property

Theorem 6. Given a typing problem (A.a : �) there exists a principal solution,

which is computed by the set of rules described in �gures 2, 3 and 4.

Proof. We �rst show the soundness and completeness of each rewriting rule:

Cases Var, Fun, App, and Let: are as in ML.

Case Ann: The case Ann is not special since the construct (: �) could be

treated as the application of a primitive.

Case Poly: We assume that all the conditions of the �rst two lines are satis�ed.

We write �

i

for �f��

1

��

i

=��

0

��

0

g.

Soundness : If ��\ dom (�)[FV (codom (�)) = ;, we have �(A) ` a : �(�

1

) by

generalization of �� in the judgement �(A) ` a : �(�

1

f��

1

=��

0

g). Since (�(�

1

) : � :

�(�

2

)), we have �(A) ` [a : �] : �([�

2

]

�

) That is, � is a solution of A ` [a : �] :

[�

2

]

�

. Thus, a solution of � ^ � = [�

2

]

�

is a solution of A ` [a : �] : � . Moreover,

no variable of ��

1

; ��

2

; �; ��

1

appears in A or � .

Completeness : Let us assume that �

0

is a solution of A . [a : �] : � . The

canonical derivation of �

0

(A) ` [a : �] : �

0

(�) must end with rule Poly. Thus,

�

0

(A) ` a : �

0

(�

1

) (1) for some extension of �

0

to ��

1

, and �

0

(�) is of the form

[�

0

(�

2

)]

�

0

, that is �

0

is a solution of � _= [�

2

]

�

0

(2).

From (1), we have �

0

(A) ` a : �

0

(�

1

f��

1

=��

0

g). Since �

0

is a solution of A ` a :

(�

1

f��

1

=��

0

g). it is also a solution of 9

�

�: �. That is, it can be extended on

�

� into

a solution of �. Together with (2), this shows the completeness of the �rst case.

No variable of �� appears in dom (�

0

) nor in codom (�

0

), otherwise (1) could not

hold. Therefore, no variable of �� can either appear in dom (�) nor in codom (�).

This shows the completeness of the failure case.

Case Use: We assume that all the conditions of the �rst line are satis�ed .

Soundness : If �(�) = [8��

0

:�

0

]

�

and � =2 FL(�(A)) then an extension of �

such that �(�) = �(�

0

) is clearly a solution of A . hai : � . If �(�) = �

0

and

�

0

=2 FV (�(A)) then from �(A) ` a : �

0

we deduce �(A) ` a : [�]

�

for some � not

in FV (�(A)). By generalization of � and rule Use, we get �(A) ` hai : �(�). The

substitution � is thus a solution of A . hai : � .

Completeness : Let us assume that �

0

is a solution of A ` hai : � . The canonical

derivation of �

0

(A) ` hai : �

0

(�) must end with rule Use. Thus, we must have

�

0

(A) . a : [�]

�

0

for some �

0

that does not appear in �

0

(A) and some type scheme

� of which �

0

(�) is an instance. Since 9

�

�: � is a principal solution of A . a : �, �

0

can be extended on

�

� into a solution of � ^ �(�) _= [�]

�

0

(1).

Therefore �(�) cannot be an arrow type. If it is a variable, then it cannot

belong to �(A), otherwise �

0

would belong to �

0

(A). Hence, together with (1) the

completeness of the second and third cases.

If �(�) = [8��

0

:�

0

]

�

then � cannot belong to FL(�(A)), otherwise �

0

would

belong to �

0

(A). Since �

0

is a solution of [�]

�

0

_= [8��

0

:�

0

]

�

, it is also a solution of

� = 8��

0

:� . Since �

0

(�) is an instance of �, it is an instance of 8��

0

:� . Thus �

0

can

be extended on ��

0

into a solution of � = �

0

. Together with (1), �

0

is a solution

of � ^ � = �

0

.

Termination: We now show that applying the rules in any order always termi-

nates, with a uni�cation problem in solved form.

Each rule of the algorithm decreases the lexicographic ordering composed

of successively the total size of program components, the total size of types,

the number of polymorphic constraints, the number of multi-equations, and the

number of renaming problems.

Moreover, uni�cation problems that cannot be reduced are in solved form,

since the side conditions of type-inference rules can never fail. Thus, a general

uni�cation problem in normal form is a uni�cation problem in normal form, i.e.

it is in solved form.

Var

if 8

�

�:�

0

= A(x) and

�

� \ FV (�) = ; then

A . x : � �

�

�

�> 9

�

�: � _= �

0

Fun

if �

1

; �

2

=2 FV (A) [FV (�) then

A . �x: a : � �

�

�

�> 9�

1

; �

2

: (A� x : �

1

. a : �

2

) ^ � _= �

1

! �

2

App

if � =2 FV (A) [FV (�) then

A . a

1

a

2

: � �

�

�

�> 9�: (A . a

1

: �! �) ^ (A . a

2

: �)

Let

if � =2 FV (A) and A . a

1

: � �

�

�

�> 9

�

�: � then

A . let x = a

1

in a

2

: � �

�

�

�> 9

�

�; �: � ^A� x : Gen (�(�); �(A)) . a

2

: �

Ann

if ��

0

= FL(�

0

) and ��

1

and ��

2

are disjoint copies of ��

0

outside of A and �

and ��

0

= FV (�

0

) and ��

1

is a copy of ��

0

outside of A and �

and �

1

= �

0

f��

1

=��

0

g then

A . (a : �

0

) : � �

�

�

�> 9 ��

1

; ��

2

; ��

1

: A . a : �

1

f��

1

=��

0

g ^ � _= �

1

f��

2

=��

0

g

Poly

if ��

0

= FL(�

0

) and ��

1

and ��

2

are disjoint copies of ��

0

outside of A and �

and ��

0

= FV (�

0

) and ��

1

is a copy of ��

0

outside of A and �

and �

1

= �

0

f��

1

=��

0

g and � = 8��:�

0

and �� \ FV (A) = ;

and A . a : �

1

f��

1

=��

0

g �

�

�

�> 9 �: � then

if �� \ (dom (�) [FV (codom (�))) = ; then

A . [a : �] : � �

�

�

�> 9

�

�; ��

1

; ��

2

; ��

1

; �: � ^ � _= [8��:�

1

f��

2

=��

0

g]

�

else A . [a : �] : � �

�

�

�> ?

Use

if � =2 FV (A) and A . a : � �

�

�

�> 9

�

�: � then

if �(�) = [8��

0

:�

0

]

�

and � =2 FL(�(A)) then

A . hai : � �

�

�

�> 9

�

�; �; ��

0

: � ^ �

0

_= �

else if �(�) = �

0

and �

0

=2 FV (�(A)) then

A . hai : � �

�

�

�> 9

�

�; �: �

else A . hai : � �

�

�

�> ?

Fig. 4. Type inference algorithm

Use

if � =2 FV (A) and A . a : � �

�

�

�> 9

�

�: � then

if �(�) = [8��

0

:�

0

]

�

and � =2 FL(�(A)) then

A . hai : � �

�

�

�> 9

�

�; �; ��

0

: � ^ �

0

= �

else if �(�) = �

0

and �

0

=2 FV (�(A)) then

A . hai : � �

�

�

�> 9

�

�; �: �

else if �

0

=2 FV (A) then A . hai : � �

�

�

�> 9

�

�; �

0

; �: � ^ � _= [�]

�

0

Fig. 5. Type inference rule for use of monomorphic polytypes

