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I. INTRODUCTION 

An image pyramid is a multi-layer data structure in which the input is represented at successively reduced 

resolutions. The input picture, a N 2 array, is taken as level 0, the bottom of the pyramid. The upper levels 

are built recursively by a parallel process, usually using a four-fold reduction in resolution. The height of 
the image pyramid is thus log N. Many tasks can be accomplished in O[log N] on an image pyramid with a 
small increase of memory space [Rosenfeld, 1984 ; Uhr, 1987]. 
The dependence of the low resolution representations on the interaction between the sampling grid and the 
input image is of importance for image pyramid applications. The rigidity of the sampling structure must be 

taken into consideration, for example, many segmentation algorithms employ a delineation process in 
which the weights (parent-child links) are iterafively changed after the initial pyramid was built [Hong 84]. 
We present irregular tessellations to generate an adaptive multiresolufion description of the input image ; the 
hierarchy is built bottom-up adapted to the content of the input image and most of the properties of the 
"classical" image pyramids are preserved. We employ a local stochastic process which can be associated 
with different feature fusion criteria to build lower resolution representations. A graph formulation is 
defined to achieve this target. Applied on labeled pictures, every connected component is reduced to a 
separate root, and the adjacency graph is simultaneously built. In gray level pictures we perform a 
segmentation of the initial image. This work is presented in more details in [Montanvert 1989]. 

II. IRREGULAR TESSELLATIONS AND STOCHASTIC PYRAMIDS 

In the image pyramids based on regular tessellations the artifacts caused by the rigidity of the sampling 
structure are always present. Only a hierarchy of irregular tessellations can be molded to the structure of the 
input image ; however, the topological relations among cells on the different levels are no longer carried 
implicitly by the sampling structure. Thus it is convenient to use the formalism of graphs. 
The ensemble of cells defining the level l of the pyramid are taken as the vertices V[/] of an undirected 
graph G[/] = (V[/], El/]). The edges E[/] of the graph describe the adjacency relations between cells at level 
L The graph G[0] describes the 8-connected sampling grid of the input, G[/] is called the adjacency graph. 
As the image pyramid is to be built recursively bottom-up we must define the procedure of deriving G[/+I] 
from G[/], we are dealing with a graph contraction problem. We must design rules for : 
- choosing the new set of vertice s V[I+I] from V[/] ,i.e., the survivors of the decimation process; 
- allocating each non-surviving vertex of level l to the survivors, i.e., generating the parent-children links; 
- creating the edges E[I+I], i.e., recognizing the adjacency relations among the surviving cells. 
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In order to have any cell in the hierarchy correspond to a compact region of the input, a node of c[l+l] 

V[/+I] must :represent a connected subset of V[/] which defines the children of c[l+l]. We want to assure 

that this process can employ only local operations in parallel to build G[I+I]. A solution is provided by 

searching a maximum independant set (MIS) of vertices [Luby, 1985] among V[/]. Because of the 
properties of the MIS, two important constraints will be respected : 

(1) ar~y non-surviving cell at level l has at least one survivor in its neighborhood, 

(2) two adjacent vertices on level l cannot both survive and thus on level l+1 the number of vertices 

must decrease significantly yielding a pyramidal hierarchy. 
The last step in defining the graph of level 1+1 is the definition of the edges Ell+l] : two vertices are 

connected in G[/+I] iff there exists at least one path between them in G[/] of two or three edges long. The 

graph G[/+I] of the next level is now completely defined by a parallel and local process. 

The survivors will be spread on V[/] in a more flexible way than on a regular pyramid structure. To obtain a 
multiresolution hierarchy adapted to the input image, this selection of parents and then the allocation of 

children will depend on the content of the image. 

A probabilistic algorithm achieves the graph contraction satisfying the two constraints ; it is analyzed in 

more details in [Meet 1989, Meer and C0nnelly 1989]. It is different from other solutions proposed in the 

literature. The basic principle is to iteratively extract from V[/] some vertices satisfying constraints (1) and 

(2), which then belong to V[l+l], and so on until no more vertices can be added : each vertice owns a 

random value (the outcome of a random variable) and is kept iff this value is a local maxima on the 

subgraph induced by the current iteration. It converges after a few steps. If the process is applied to build a 
whole structure (until it remains just one vertex), a complete irregular tessellation hierarchy is defined. The 

power of this algorithm (compared to other algorithms to compute the MIS) comes from the local maxima 

principle which allows the process to be adapted to an information such as images. 

11I. LABELED IMAGES 

In a labeled image every maximal set of connected pixels sharing the same label is a connected component 

of the image. Looking at its neighborhood a cell can see which ceils share its label (they are said to be in the 

same class) which define the similarity graph G'[/]=(V[/] , E'[/]) induced on G[/]. In the similarity graph 
the connected components become maximal connected subgraphs. The techniques describe precedently are 

adapted in the following way : to become a survivor the outcome of the random variable drawn by the cell 

must be the local maximum among the outcomes drawn by the neighbors in the same class. Thus the 

subgraphs of the similarity graph are processed independently and in parallel, each subgraph being 

recursively contracted into one vertex, the root of the connected component ; at each iteration a maximum 

independent set of the similarity graph is extracted to fix the new subgraph.(see Figure 1). 
All the artifacts of rigid muttiresolution hierarchies are eliminated. From each connected component a 

pyramidal  hierarchy based on irregular tessellations is built in log(component_size) steps (the 

component_size of a connected component is its intrinsic diameter). Since random processes are involved 

in the construction of the irregular tessellations the location of the roots depends on the outcomes of local 
processes. Nevertheless, always the same root level adjacency graph is obtained at the top of the 
hierarchy.The famous connectedness puzzle of Minsky and Papert (Figure 1) can be solved in parallel with 
the help of the root level adjacency graph. 
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W. GRAY SCALE IMAGES 

In gray level images we have to analyse the difference between the values of two adjacent pixels. We have 

seen that in our technique to build the hierarchies the pixels in a neighborhood must be arranged into 

classes. The class membership induces the similarity graph on which the stochastic decimation takes place. 

Similar to the labeled images, class membership can be defined based on the gray level difference between 

the center cell c o and one of its neighbors c i , i = 1 ..... r, let gi be their gray levels. Employing an absolute 

threshold T ,  c o decides that its neighbor c i is in the same class iff gi = I go - gi I < T. 

Like in the labeled case this criterion is symmetrical. See Figure 2 for an illustration of a similarity graph on 

a gray scale picture. The stochastic decimation algorithm selects the survivor cells and the non-survivors 

are allocated to their most similar surviving neighbor. The survivors (parents) compute a new gray level 

value g based on their children. Hence the hierarchy is not built on some weII-defined subgraphs of G'[/] 

as it was the case on labeled pictures. Now the similarity subgraphs and then their meaning on the input 

picture evolved when we build the pyramid, since gi values are recomputed. We conclude that a symmetric 

class membership criterion strongly influences the structure of the hierarchy and therefore the final 

representation of the image, some artefacts can be created (see Figure 2). 

To achieve satisfactory results in our irregular tessellations based multiresolution gray level image analysis 

a non-symmetric class membership criterion must be use& Let the ceil c o have r neighbors. In this 

neighborhood we define the local threshold S[ c o ] such that 0 < S[ c o ] <- T . Thus the cell c o declares as 

similar to itselve only its neighbors c i for which I go - gi I < S[ c o ] .  The  threshold S[ c o ] is specific to 

the neighborhood of ceil c o and therefore the criterion is not symmetric. Indeed, in general [go - gi I < 

S[ c o ] does not imply I go - gi I < S[ c i ] since the two thresholds are computed based.on only partially 

overlapping neighborhoods. As a consequence of the non-symmetrical membership criterion the similarity 

graphs become directed. The neighborhood dependent local threshold S[ c o ] assures that every cell 

connects first to its neighbors with the most similar gray level values. Thus the individual rows in the 

image shown in Figure 2.b are reduced to single cells before two cells belonging to adjacent rows can 

become neighbors on the similarity graph. 

The value of the local threshold S[ c o ] is computed based on a subset of cells in the neighborhood of the 

cell c o . The extreme case S[ c o ] = 0 corresponds to connected component recognition. The other extreme, 

S[ c o ] = T yields the symmetric class membership criterion. Several approaches are available to determine 

the S[c O] value best dichotomizing the neighborhood into two classes. We will employ only gray level 

information in computing S[ c o 1. 

Let  ~[i1' i = 0,1 ..... r be the ordered sequence of absolute gray level differences 8i = I go - gi I. 

Thus 810 I = 0 < 8111 < . . .  8[sl < S[ c o ] < ~[s+l] "'" ~-Sltl < T < 8lt+l I ... <8[rl" 

We compute k as the maximum averaged contrast method in which the threshold S[ c o ] is set to the most 

significant step in the sequence of S[i 1 For all the t neighbors we compute 

j t 

~ [i] i=j~+l SliI 
A j =  i=l B j  - l ~ j ~ t - 1  

y t-j 
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Let u = nain arg ( max j ( Bj - Aj )) and s = max arg ( ~[iI = ~[ul )" The threshold SIc o I = 6[sl is set 

by the first occurrence of the maximum averaged contrast between the two classes; it is automatically 

adjusted to the local gray level configuration.The gray level value of a parent is computed as the weighted 
average of the children's gray levels. See Figure 3 for an illustration of the result on an aerial image. 
Different outcomes for the employed random variables cause changes in the hierarchy structure : by 
changing the set of survivor cells the values attributed to these cells may also change slightly yielding 
changes in the similarity graphs of subsequent levels. As expected, regions with sharp boundaries in the 
input image achieve very similar representations (see Figure 3). Lastly we can notice that if in a labeled 
picture a root (an isolated vertex in the similarity graph G'[/]) remains a root at higher levels, this is not true 
in gray scale images while the similarity graph continues to evolve. That is, the root may disappem" at 
subsequent levels, its receptive field being fused into a larger region. 
The decimation process can be modified to be biased toward cells with high informational value. Jolion and 
Montanvert [1989] proposed an adaptive pyramid in which cells belonging to the most homogeneous 
regions have priority to become survivors. Such an approach, however, is not successful for labeled 
pictures in which many cells carry identical descriptions. 

V. CONCLUSION 

In this paper we have presented an image analysis technique in which a separate hierarchy is built over 
every compact object of the input. The approach is made possible by a stochastic decimation algorithm 
which adapts the structure of the hierarchy to the analyzed image. For labeled images the final description is 
unique. For gray level images the classes are defined by converging local processes and slight differences 
may appear. At the apex every mot can recover information about the represented object in logarithmic 
number of processing steps, and thus the adjacency graph can become the foundation for a relational model 

of the scene. 
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Figure 1. Labeled images, (a) G[1] : adjacency graph (b) G'[I] : similarity graph 
(c) Allocation of non survivors (hashed circles)at level 1 (d) G[I+I] 
(e) The root level projected on the bottom for the puzzle of Minsky and Papert 

(e) 
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Figure 2. Symmetrical criterion on gray scale images 
(a) Dot lines show the differences between GIll and G'[t] 
(b) The original image : a uniform gray level slope 
(c) The result provides at the root level shows the artefacts provide by the 

use of a symmetrical criterion 

(a) (b) (c) (d) 
Figure 3. Non symmetrical criterion on gray scale images 

(a) The original picture (b) The result with the root locations superposed 
(c) The adjacency graph of the root levet (d) The result for another outcome 

of the random variable 


