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I n t r o d u c t i o n  

In order to compute image velocity or binocular disparity it is necessary (in some sense) to localize structure 

in an image sequence and track it across frames, or to match it between left and right stereo views. For 

example, differential-based velocity techniques measure the translation of level contours of either constant 

intensity [6], or constant filter response [5], while zero-crossing approaches focus on the motion of zero- 

crossings in the output of band-pass filters [11]. Recently, the use of contours of constant phase has been 

suggested for the measurement of binocular disparity [3, 7, 8] and image velocity [2]. In choosing what 

type of structure to track it iS important to consider its stability under common image deformations such 

as contrast variations, dilations, shears, and rotations in addition to simple translation (cf. [10]). One main 

advantage of phase information is that, except near certain points referred to here as singularities, phase is 

generally stable with respect to affine image deformations. 

In this paper we illustrate the stability of phase information as compared to the amplitude of filter 

output. In addition, we discuss the existence of phase singularities, the neighbourhoods about them where 

phase is unreliable, and we present a simple method for their detection. Given this detection scheme, highly 

accurate and robust approaches to the measurement of optic flow and binocular disparity are possible. 

For example, based on the spatiotemporal gradient of phase information, Fleet and Jepson [2] reported a 

technique fo r the measurement of component (normal) image velocity for which approximately 90% of the 

accepted estimates had less than 5% relative error in cases of significant dilation and sllear. 

Finally, the results presented here are of general interest for several reasons. First, they also apply to 

zero-crossings of the filter output in that zero-crossings can be viewed as lines of constant phase, Second, 

similar results apply to 2-d signals. Third, the problems caused by deviations from image translation do 

not exist solely for phase-based techniques (cf. [9, 10]). The fact that these issues can be addressed within 

a phase-based frameworkis a major advantage for such approaches. 

G a b o r  Scale-Space 

To demonstrate the robustness of phase and its singularities we first consider a Gabor scale-space expansion 

of a 1-d signal that expresses the filter output as a function of spatial position and the principal wavelength 

to which the filter is tuned. It is defined by 

S(x, A) = Gabor(x; a(A),k(A)) • I (x) ,  (1) 

where ,  denotes convolution, I(z) is the input, Gabor(x; a, k) =- ei~kG(x; a) denotes the Gabor kernel [4] 

where G(z; a) is a Ganesian, and A is the scale parameter (i.e. wavelength). The peak tuning frequency 

is given by k(~) =27r/A, and the radius of support by a(A) = (28 + 1)/(2 ~ - 1)k(A), where fl denotes the 

octave bandwidth (usually taken to be near one). Because Gabor(x; a, k) is complex-valued, S(x, ~) may 
be written as  p(z, A)e ~¢(~,A) where the amplitude and phase components are given by 

p(x, A) = IS(x, A)I, ¢(x, ,k) = arg(S(a~, A)) = Ira[logS(x, A)] . (2) 



5] 

Input 100 
Intensity 0-~ 

0 25 50 75 100 125 150 175 200 
Pixel Location 

i 
l / 

, I  
1 

b 

I 1 
Figure 1. Scale-Space Expansion:  (top) 1.d input signal - a sample of  white Gaussian noise concatenated 
with a scanline from a real image. (middle) p(z, )~) and ¢(x, )t) are shown with scale on the vertical axis 
spanning two octaves with 12 < )~ < 48 pixels. (bottom) Level contours of  p(x, ,~) and ¢(x, )~). 

The local frequency of S(x ,  )~) can be defined as the spatial derivative of phase [12]: ex(x, )~). Although, 

S(x ,  )~) is not expected to have constant frequency (linear phase), a first-order approximation to the spatial 

phase variation is genera~y accurate because of the band-pass filter tuning (cL Fig. 2). This yields an 

amplitude-modulated, constant-frequency approximation to the local structure of S(z, )~). Figure 1 shows 

a 1-d signal with the amplitude and phase components of its scale-space expansion. 

As mentioned above, it is important that the signal property to be tracked is stable with respect to scale 

perturbations. This suggests that its level contours should be vertical in scale-space. To see this, consider 

two 1-d signals (e.g. left and right views) where one is a near-identity affine transformation of the ot:her; 

i.e. let 
IT(a(x)) = I t ( x ) ,  where a(x) = ao + a l z  , (3) 

with at near 1. Because the filters have constant bandwidth the two output signals will satisfy 

S~(a(x), At) = St(x, A2) , where A1 = al)~2 . (4) 
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Figure 2. P h a s e  and Local  F requency  N e a r  Singular i t ies :  (left) qb(z, A) and q)~(z, A) are shown 
.for a slice of the seale-spoee in Figure 1 (with)~ = 20). Vertical dotted lines denote phase wrapping (not 
discontinuities), and the horizontal dotted line marks the filter's peak tuning frequency k(A) = 0.314. (right} 
Typical behaviour of level phase contours near a singularity. The singularity is the point in the centre through 
which several phase contours pass. The small ettipsoidal contour marks the retrograde boundary. 

That is, the two outputs would have similar structure if filters tuned to A1 and A2 had been applied to In(x) 

and II(z) respectively. However, in measuring disparity (or velocity) it is common to apply the same filters 

to In(x) and / l (x )  because the scale factor al is unknown. In other words, we attempt to recover a(z) by 

matching structure (features) of S~(a(z), A1) and Sl(z, A1). To be successful, the structure of St(z, A2) that 

is used for matching must be wen represented by the structure of St(x, ~1). Equivalently, its level contours 

should be nearly vertical in scale-space. 

It is clear from Figure 1 that amplitude structure depends significa~utly on scale in that  its the level 

contours are not vertical. As a consequence, the filter response (which depends significantly on amplitude) 

is also unstable. By contrast, note that except for several isolated regions, phase is generally stable with 
respect to scale perturbations. As explained below, the major source of this instability is the occurrence of 

singularities in the phase signal ~5(~, ~). 

S i n g u l a r i t y  N e i g h b o u r h o o d s  

For a general image I (z) ,  the scale-space defined by (1) is analytic, and contains a number of isolated zeros, 

where S(x, ~) = 0. In p(x, )0 shown in Figure 1, zeros appear as black spots. The phase signal in (2) is also 
analytic, except at  the zeros of S(~, ~). The expected density of these phase singularities is proportional 

to the peak tuning frequency. Here, we describe the characteristic behaviour of S(z, A) in neighbourhoods 

about singular points. In what follows, let (zo, A0) denote the location of a typical singularity. 

The neighbourhoods just above and below singular points can be characterized in terms of the behaviour 

of phase ~(x, ~), and local frequency ~x(z, A). Above singular points (for ~ > A0) they are characterized by 

local frequencies that  are significantly below the corresponding peak tuning frequencies k(A). Within these 

neighbourhoods there exist retrograde regions where local frequencies are negative, i.e. ~x(z, %) < 0. Along 

the boundaries of  retrograde regions (which begin and terminate at singular points) the local frequency is 
zero; i.e. ~ ( z ,  A) = 0. The significance of this is that, where ~ ( z ,  A) = 0, the level phase contours are 

horizontal, and not vertical as desired. Nearby this boundary, both inside and outside the retrograde regions, 

the level contours are generally far from vertical, which, as discussed above, implies considerable phase 

instability. Below singular points (for A < A0) the neighbourhoods are characterized by local frequencies 

of response that are significantly higher than the peak tuning frequencies. In addition, the local frequency 
changes rapidly as a function of spatial location. 

To illustrate this behaviour Figure 2 (left) shows a 1-d slice of ~(x, A) and ~ ( x ,  A) from the scale-space 

in Figure 1 at a single scale (A = 20). This slice (marked on the amplitude contour plot in Fig, 1) passes 
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through three singularity neighbourhoods, two just above singularities (near locations 17 and 124), and one 

just below a singularity (near location 180). Notice the low (sometimes negative) and high local frequencies 

near the singularities. Figure 2 (right) shows the typical behaviour of level phase contours near a singularity. 

The phase singularity is the point in the middle through which several of the phase contours pass. The small 

elliptical contour marks the retrograde boundary where ex(x, A) = 0. The instability above the singular 

point is clear from the nearly horizontal level phase contours. Directly below the singular point, the high 

local frequencies are evident from the high density of phase contours. 

Finally, the nelghbourhoods spatially adjacent to singular points can be characterized in terms of am- 

plitude variation. As we approach a singular point, p(x, Ao) goes to zero. Based on a simple linear model 

of p(z, A0) at xl near x0, the distance to the singularity Ix0-  xl[ is approximately p(zl, Ao)/[p~(xl, ~o)l. 
Therefore, as we approach the singularity ]p,(xl, ~o)]/p(zl, A0) increases. 

D e t e c t i o n  o f  S i n g u l a r i t y  N e i g h b o u r h o o d s  

In order to use phase information reliably toward the measurement of image velocity or binocular dispar- 

ity, singularity nelghbourhoods must be detected so that measurements in them may be discarded. Here 

we introduce constraints on local frequency and amplitude that can be used to identity locations within 

singularity neighbourhoods, while avoiding the explicit localization of the singular points. 

To detect the neighbourhoods above and below the singular points we constrain the distance between 

the local frequency of response and the peak tuning frequency. This can be expressed as a function of the 

extent of the amplitude spectrum (measured at one standard deviation ak(A)) as follows: 

I ¢~(z, ~) - k(~)l (~) ~ 1) " (5) 

The neighbourhoods adjacent to singular points can be detected with a local amplitude constraint: 

~(~) I p~(~, ~)1 p(~,~)  < ~ ,  (6) 

where a(A) defines the radius of filter support. Level contours of (5) for different values of Tk form 8-shaped 

regions with the singular points are their centres, while level contours of (6) form c~-shaped regions. (see 

Figure 3 (top row)). As rk and vp decrease, the constraints become tighter and larger neighbourho0ds are 

detected. Figure 3 (top.right) shows the combined behaviour of (5) and (6) as applied to the scale-space in 

Figure 1, with rk = 1.2 (i.e. local frequencies are accepted up to 20% outside the nominal tuning range of 

the filters) and rp = 1.0 (i.e. points within a(A) of a singularity are discarded). These constraints typically 

remove about 15% the scale-space area. Finally, Figure 3 (bottom row) also shows the original level phase 

contours of Figure 1, the contours that survive the constraints, and the contours in those regions removed. 
Notice the stability of the contours outside the singularity~neighbourhoods. 

M e a s u r e m e n t  o f  B i n o c u l a r  D i s p a r i t y  

To illustrate the problems caused by phase instability and the rapid variation of local frequency that occur 

in singularity neighbourhoods, we compare the results of a technique for disparity measurement with and 

without their detection. Following Jenkln and Jepson [7] and Sanger [8], estimates of binocular disparity 

are computed as 
d(x) = let(x) - er(x)]2z 

k0 ' (7) 

where ¢~(x) :and er(x) denote the phase responses of the left and right views, ko denotes the peak tuning 
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Figure 3. Detection of  Singula r i ty  Nelghbourhoods:  (top-right) Level contours of (5) for rk = 1, 1.5 
and 2for the scale-space in Fig. 1. (top-middle) Level contours of (6) for rp = 0.75, 1, and 1.5. (top-right) 
Neighbourhoods removed by (6) with rp = 1 are shown in black, while the contours show the remaining 
regions marked by (5) with rk = 1.2. (bottom) Level phase contours for scale-space (el. Fig. i), contours 
that survive the constraints, and the phase contours in those regions removed with ~'p = I and r~ = 1.2. 

frequency of the filter, and [012~ E ( - r ,  ~] denotes the principal part of 0. This computation presumes 

a model of local phase given by ¢(x) = kox + ¢0; when the left and right signals are shifted versions of 

one another, and the filter outputs have constant frequency k0, then (7) yields the exa~t result. Toward a 

more general model we can replace k0 in (7) by the average local frequency in the left and right outputs 

(¢~(x) ÷ ¢~(x))/2. This allows frequencies other than k0 with accurate results [3]. Making the local model 

explicit is important because the measurement accuracy and reliability depend on the appropriateness of the 

local model. For example, in neighbourh0ods above and below singular points~ which are characterized by a 

high variation in local frequency, the linear phase model is inappropriate and the numerical approximation 

of Ct(x) will be poor. The removal of these regions is therefore important. 

To illustrate this, assume a simple situation in which the left and right views are shifted versions of 

the 1-d signal shown in Figure 1 (top). Let the disparity be 5 pixels, and let the Gabor filters be tuned 

to a wavelength of 20 pixels. Thus the left and right phase signals are shifted versions of the scale-space 

slice shown in Figure 2, which crosses three singularity neighbourhoods. Figure 4(top) shows the results of 

(7) with the crude linear model [7, 8], and without the removal O f singularity neighbourhoods. Figure 4 

(middle) shows the consequence of removing any disparity measurement for which the left or the right filter 

responses did not satisfy (5) or (6) with rp = 1.0 and rk = 1.2 (as in Fig. 3). In [8] a heuristic constraint 

on amplitude differences between left and right signals and subsequent smoothing were used to lessen the 

effects of such errors. Unfortunately, this smoothing will sacrifice the resolution and accuracy of nearby 

estimates. Finally~ Figure 4 (bottom) shows the improvements obtained with the more general linear model. 
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Figure 4. Dispar i ty  Measurement :  The top two plots show the disparity estimates based on (7) without, 
and then with, the removal of singularity neighbourhoods. Notice the substantial errors in the first case 
vers'us the second. The bottom plot shows the improved technique in which the local frequency is used instead 
of the peak frequency in (7). The same neighbourhoods have been removed. 

S u m m a r y  

Phase-based techniques for the measurement of binocular disparity and image velocity are encouraging, 

especially because of the stability of band-pass phase information with respect to deviations from image 

translation that are typical in projections of 3-d scenes. Despite this stability, phase is unreliable in the 

neighbourhoods of phase singularities. This instability was described, and it was shown that singularity 

neighbourhoods may be detected using simple constraints on the local frequency and the amplitude of the 

filter output. Finally, these results were discussed briefly in the context of binocular disparity measurement. 

R e f e r e n c e s  

1. Butt, P.J., et.al. (1989) Object tracking with a moving camera, IEEE Motion Workshop, Irvine, p 2-12 

2. Fleet, D. and Jepson, A. (1989) Computation of normal velocity from local phase information. 

Proc. IEEE CVPR, San Diego, pp 379-386 

3. Fleet, D. Jepson, A. and Jenkin M. (1990) Phase-based disparity measurement, submitted 

4. Gabor, D. (1946) Theory of communication. J. IEE 93, pp. 429-457 

5. Glazer, F. (1987) Hierarchical gradient-based motion detection. Proc. DARPA IUW, LA., pp 733-748 

6. Horn, B.K.P. and Schunck, B.G. (1981) Determining optic flow. Artif. Intel. 17, pp. 185-204 

7. Jenkin, M. and Jepson, A.D. (1988) The measurement of binocular disparity, in Computa t iona l  

Proeeses in Human  Vision, (ed.) Z. Pylyshyn, Ablex Press, New Jersey 

8. Sanger, T. (1988) Stereo disparity computation using Gabor filters. Biol. Cybern. 59, pp. 405-418 

9. Schunck, B.G. (1985) Image flow: fundamentals and future research. Proc. IEEE CVPR, San 

Francisco, pp 560-571 
10. Verri, A. and Poggio, T. (1987) Against quantitative optic flow. Proc. IEEE ICCV, London, p 171-179 

11. ~Vaxman, A.M., Wu, J., and Bergholm, F. (1988) Convected activation profiles: Receptive fields for 
real-time measurement of short-range visual motion. Proc. IEEE CVPR, Ann Arbor, pp 717-723 

12. Whitham, G.B. (1974) Linear  and Nonl inear  Waves. John Wiley and Sons, New York 


