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1 Introduction 
The field of computer vision is concerned with extracting information contained in images about 
scenes they depict. The effectiveness of the early levels of processing is crucial in determining 
how successful higher level processing will be. Edge point detectors typically return an edge 
map identifying the location of points where the intensity gradient is high, together with some 
gradient and direction information. The next step is to group points into edge segments. Several 
algorithms have been developed for linking edge points, e.g., [5]. 

The choice of the scale to use in smoothing an image has been much studied. Smaller scales 
result in too much noise and fine texture while larger scales result in delocalization of edges and 
gaps. One approach to this problem is to use multiple scales, e.g. [4]. Witkin [9] introduced 
the concept of scale space, where the zero crossings of the second derivative are examined for a 
continuous spectrum of scales rather than a few discrete values. The properties of scale space 
have been examined by a number of authors, among them [1,2,6]. 

This paper presents a method of producing connected edge contours which are suitable for 
higher processing. The algorithm uses a gradient of Gaussian operator to determine gradient 
magnitude and direction, followed by non-maxima suppression to identify ridges in the gradient 
map. Canny[3] has shown this to be,a near optimal edge detector. The resulting ridge is often 
more than 1 pixel wide, and may have small noisy spurs. In this paper the gradient maxima 
points are thinned to one pixd wide and linked into contours by an algorithm using weights to 
measure noise, curvature, gradient magnitude, and contour length. The set of points giving the 
largest average weight is chosen. This algorithm is then extended to one using multiple scales 
in the edge linking step ai~d to a third algorithm.which uses multiple scales during non-maxima 
suppression. Both multi-scale algorithms improve the detection of edge contours with little 
increase in the response to noise. The third also reduces the delocalization occurring at larger 
scales. 

Further, in order to determine the size neighborhood where an edge point can appear at a 
different scale, a theoretical analysis of the movement of idealized edges is performed. Shah et al., 
developed equations for step pairs convolved with the Gaussian and its derivatives, and showed 
the general shape of the scale space curves. That work is extended to develop the equations of 
the scale space curves and analyze quantitatively the amount of the delocalization that occurs 
as images containing these steps are convolved with Gaussians having different values of a. 

2 Single Scale Edge Detection and Linking 
in this section, we present an algorithm for finding a single good path through the set of gradient 
maximum points. In this method, the image is first convolved with a gradient of Gaussian 
operator. The set of gradient maximum points is placed in a priority queue with the point 
having largest magnitude on the top. Thus the strongest edge points will be extended into 
contours first. 

The search for points to assign to a contour proceeds as follows. The first edge point is 
retrieved from the queue and gradient direction is used to determine the next edge point. The 
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point in the computed direction is examined first, then those in the adjacent directions on 
either side of it. Each branch is followed to the end and a weight assigned at each point based 
on four factors: The four factors are: (1) the difference between the gradient direction and 
the direction in which the point lies, (2) the difference between gradient direction of adjacent 
points, (3) gradient magnitude, (4) contour length. The weights are designed to favor the longest, 
strongest, straightest path. After points in the three primary directions have been examined, the 
path having the largest average weight is chosen and returned to the calling program. Contours 
are constructed in this manner until there are no more edges in the queue having magnitude 
greater than a given per cent of the maximum magnitude. 

3 M a x i m u m  M o v e m e n t  o f  E d g e s  

It is known that as edges undergo smoothing, they are delocalized. In this section the question 
of how far an edge undergoing Ganssian smoothing can move is analyzed. The edge model 
used is the ideal step edge, and the two cases considered are adjacent edges having the same 
and opposite parity. These are the staircase and the pulse edge types. If the unit step edge 
is U(x)  then the staircase and pulse with edges located at - a  and a have respective equations 

Sa(x) = bV(x  + a) + U(x  - a) and P: (x )  = bU(x + a) - U(x  - a) 
The relative heights of the two steps, b, satisfies 0 < b __. 1. Thus the weaker edge is at x = - a .  
After convolving with the derivative of the Gaussian, the equation for the staircase is 

so,~(x) = bg(x + a) + g(x  - a) and that for the pulse is p~,~(x) = bg(x + a) - g (x  - a) 
The equation of a as a function of x at the maxima:for the staircase is 

[ 2~ ] 1/2 
[ 2~x ] 1/2 and for the pulse, cr = Lln(b(x+a)/(x_a))] 

For derivations see [7]. The graphs for two values of b are given in Figure 1. The middle branch 
which appears for small values of o in the graphs for the staircase represents a gradient minimum 
rather than a maximum so does not correspond to an edge. These will be referred to as the 
scale space images. 

First we will cqnsider the staircase. Notice that if b = 1 the edges move together until they 
meet when a = a, then only one edge exists at x = 0 for cr > a. When b < 1 the stronger edge 
moves toward the middle and approaches the asymptote a ( 1 -  b)/(1-t-b) as a approaches ~ .  The 
maximum ,corresponding to the weak edge on the left disappears when a becomes sufficiently 
large. For example, when b = .3 the maximum movement of the weak edge occurs just before it 
disappears and is (1 - .723)a = .277a. The units on both axes are a. 

In practice, when an image is being examined, a is known, but a is not. Thus, a can be 
fixed, a can be allowed to vary, and the movement (m) can be plotted versus a. This is shown 
in Figure 2(a) and (b). On both axes the units are a. When a > 2a the amount of movement is 
negligible. This corresponds to the part of the scale space 'image where the curve is near vertical 
and the edges are far enough apart to have little interaction. The interaction begins slowly as 
the edges appear closer together, then increases rapidly to the maximum, then decreases until a 
reaches 0. When b < 1, the weaker edge disappears. The largest possible movement, a, occurs 
for equal edges which are 2a apart. 

A similar analysis can be performed for a pulse. Figure 3(a) and (b) show the movement 
versus a for a pulse. The maximum movement, when b = 1, is a as it was for the staircase, but 
this value is now the limiting value as the edges become closer together. When b < I the strong 
edge in the scale space image approaches the vertical asymptote a(1 + b)/(1 - b) and displays a 
well-defined maximum movement as in the staircase, for a value of a between 0 and a. But the 
weak edge can move indefinitely as a becomes smaller. In the scale space image the weak edge 

_ z l n b  2 ~  approaches the horizontal parabola  x = (1/2a)(ln b)a 2. But pa,~(-T£~a ) = 0 for all values of 
or, thus the parabola gives the location where the gradient value is zero. The gradient value of 
the weak edge becomes small, and falls below any threshold being used as a increases, and for 
0 < a < 1/2 the conditions of the sampling theorem are not met, thus in practice the movement 
of the weak edge is limited. Figure 3(c) gives a graph of maximum movement for the stronger 
edge of a pulse as b varies. 

In summary, for a staircase greatest movement is a and occurs when edges are 2a apart 
and have equal contrast. Movement decreases rapidly for edges closer or farther away and those 
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having unequal stepsize. For pulse, maximum movement is a for equal edges and for the stronger 
of two unequal edges and occurs when edges are very close together. The weaker of two edges 
can exhibit unbounded movement, but gradient magnitude decreases, so an edge wilt usually 
not be detected farther than a from its original location. 

4 Multiple Scale Algorithms 
This section extends the algorithm given in Section 2 to one using multiple scales, as follows. 
Initially the image is convolved with gradient masks at three or more scales. The search for a 
contour proceeds as for the single scale, using the largest scale, until a best partial contour at 
that scale has been found. Then the next finer scale is chosen and the neighborhood around the 
ends of the contour is searched to see if the edge can be extended. The neighborhood searched 
is only one pixel in each direction, based on the analysis in Section 3. The original algorithm is 
then followed for each point that gives a good continuation of the contour, and the best is chosen 
as an extension to the original edge. While extending the edge, if any point is discovered to be 
a possible edge point at a coarser scale, the search scale is increased to that value. When the 
contour cannot be extended further the scale is decreased to the next finer scale, and the process 
is repeated until the contour cannot be extended at the finest scale. This algorithm resulted 
in a considerable improvement in the detection of some of the incomplete edge contours, with 
almost no degradation due to inclusion of noisy edge points. 

A second algorithm combines the gradient information computed at several scales during non- 
maxima suppression. Non-maxima suppression is performed in the usual manner for the coarsest 
scale and the possible edge points are marked. Then non-maxima suppression is performed at 
successively smaller scales. If a point is being marked as a gradient maximum and an adjacent 
point was a maximum at a coarser scale, but not at the present scale, then the label for the 
coarser scale is moved to the present point. This had the effect of shifting a delocalized edge 
point to its location at the finer scale. An additional weight counts the number of scales at 
which a point was detected, similar to the Marr-Hildreth spacial coincidence assumption. 

5 Experimental Results 
The algorithms were tested on several real images. The values of a used were 1, v~,  and 2 and 
a threshold of .08 was applied. For comparison, the images were also processed using the Canny 
operator. The results for two images, Part and Tiwanaku, are shown in Figure 5. The Canny 
operator is (a), the single scale algorithm is (b), the multiple scale algorithm is (c), and the 
multi-scale non-maydma suppression algorithm is (d). 

The single scale edge linking algorithm deans up the Canny edges and in addition produces 
a set of linked lists corresponding to the contours found. The multiple scale algorithm is able to 
improve detection of edges that are close together and interact at scales which are large enough 
to remove noise and fine texture. It also improves detection of weak, but well defined edges, such 
as those of the shadows in the Part image. Thus a number of fragmented contours have been 
completed. Best results in all cases occurred with the multiple scale non-maxima suppression 
algorithm. Edges which had been delocalized were moved back to their location at a smaller 
scale, separating edges which had become too close together to differentiate and some contours 
were extended farther than with the multiple scale linking algorithm. 

The weights used in the linking were chosen heuristically. Experiments varying the weights 
indicated that the actual values were not critical as long as higher weights were given to the 
points in the primary direction having the same direction as the current point, high magnitude, 
and longer length contour. Experiments in which each one of the factors in turn was removed, 
however, indicated that no three gave as good results as using all four. 

6 Conclusions 
An edge linking agorithm is presented that first comPutes gradient magnitude then uses non- 
maxima suppression to reduce the search space. The gradient magnitude and direction informa- 
tion is used to assign weights to paths through the set of points, and the best path is chosen. The 
single scale algorithm uses a depth first search, but each point is allowed to occur in only one 
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Figure 1: Scale Space Image: Location of Gradient E×trema for Staircase when (a) b = 1, 
(b) b = .3 and for Pulse when (c) b = 1, (d) b = .3 

m 

(a) (b) (c) 
Figure 2: (a)Movement vs Distance between edges, Staircase, b = 1, (b) b = .8, (c) Maximum 
movement in terms of a vs b for weaker and stronger edges. 

subtree. This algorithm is extended to one which links edge points detected a t  multiple scales. 
A second variation is presented which uses the gradient information at multiple scales in the 
non-maxima suppression operation. A modified version of the single scale algorithm then links 
these edge points into contours. The first mtflti-scale method fills in gaps in single-scale con- 
tours, however the second method provides better  localization and separation of nearby edges. 
Both improve detection of edges over the single-scale algorithm without introducing the noisy 
edges detected at the smaller scales. 
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Figure 3: (a)Movement vs Distance between edges, Pulse, b = 1, (b) b = .8, (c) Maximum 
movement in terms of a vs b for stronger edge. 

Figure 4: Original Images: Part, Tiwanaku. 

(a) (b) (c) (d) 

Figure 5: (a) Canny Operator, (b) Single Scale Edge Linking Algorithm, (c) Multiple Scale 
Algorithm, (d) Multi-ScMe Non-maxima Suppression. 


