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A b s t r a c t  

We are interested in matching stereoscopic images involving both natural objects (vegeta- 
tion, sky, reliefs,...) and man made objects (buildings, roads, vehicles,...). In this context 
we have developed a pyramidal stereovision algorithm based on "contour chain points." 
The matching process is performed at different steps corresponding to the different reso- 
lutions. The nature of the primitives allows the algorithm to deal with rich and complex 
scenes. Goods results are obtained for extremely fast computing time. 

I n t r o d u c t i o n  

The fundamental problem of stereovision is matching homologous visual characteristics 
extracted in several images of the same scene observed from different view points. These 
visual characteristics are also called images primitives. Mart and Poggio [Grim81] have 
noted that the difficulty of the correspondence problem and the subproblem of eliminating 
false targets is directly proportional to the range and resolution of disparities considered 
and to the density of matchable features in an image. It is also crucial for the sub- 
sequent triangulation process to localize these primitives very accurately. Thus, many 
stereo matching algorithms have been developed. Multi-resolution approaches provided 
an efficient way to limit the complexity of the matching process [Maxr79], [Hann84]. In 
these algorithms ambiguous matches are solved by enforcing the continuity of disparity 
in the neighbolrhood of ambiguous points. However, the continuity constraint is no more 
available when the neighborhood used for resolving ambiguities, crosses an occluded con- 
tour. Mayhew and Frisby [Mayh81] partially solved this problem by enforcing continuity 
of disparity along edges in the image. This constraint which they called "figural con: 
tinuity" is more realistic than the surface smoothness assumption since, while disparity 
varies discontinuously accross surface boundaries , it rarely varies discontinuously along 
such a boundary. Grimson [Grim85] implemented a new version of his earlier algorithm, 
incorporating this constraint to eliminate random matches. 
Kim and Bovik [Kim86] have also used the continuity of disparity along contours for both 
disambiguation and matching control. In a first step thee" match extremal points (high 
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curvature edge points, terminations and junctions) by enforcing continuity of disparity 
along contours. They check the consistency of the disparity at a matched extremal point 
by examining disparities at its neighbours which have b ~ n  matched and propagate the 
disparities along the contours in order to match other edge points. Their algorithm gives 
good results but it has apparently only been tested on indoor stereo images with few 
objects. 
We think that this constraint is an important continuity law stereo consequence and we 
have tried to include it in a pyramidM stereovision algorithm. 
We can also facilitate the matching process by using richer primitives such as edge seg- 
ments [Medi85], [Long86], [Ayac85], regions [Wrob88],... 
Within Prometheus European Project we are interested in three-dimensional localization 
of obstacles in road scenes. The nature of images we deal with (diversity and complexity 
of shapes) made us choose contour chain points as primitives. For a pedestrian which is a 
typical obstacle, it is very difficult to extract linear features (as edge segments) because of 
the smoothness of the surface of human body. On the other hand it is difficult to match 
chains of contours for two reasons at least: the chain geometry description difficulty and 
problems involved by chains cutting out management. Moreover the chain as an entity 
is not localizable very accurately (same problem with regions). As against this, contours 
chains points are primitives with rich information, so easy to match, are very accurately 
localizable and are suitable to describe any type of scene, man made, natural or mixt. 
Moreover, contour chain points provide a studied three-dimensional world more complete 
description. 
The hierarchical structure of Prometheus images (important objects, details), the exis- 
tence of strong disparities and time processing constraint (for obstacles detection we must 
be able to take a decision very quickely) made us choose a coarse-to-fine approach. 

P r e s e n t a t i o n  o f  t h e  m e t h o d  

Da ta  s t ruc ture :  We use a pyramidal image data structure in which the search for 
objects starts at a low resolution and is refined at ever increasing resolutions until one 
reaches the highest resolution of interest. We consider a pyramid at the four highest 
resolution levels. The consolidation is made in a 2x2 neighborhood. We have chosen 
a pyramidal approach rather than a classical multi-resolution approach essentially for 
time computing reasons. In a pyramid of resolution the image size is reduced by the 
consolidation process. 

Pr imit ives:  Contour chain points extraction is performed in three steps: gradient 
computation [Deri87], hysteresis thresholding to eliminate noise and contour points chain- 
ing [Gira87]. The contour chain is used on the one hand to eliminate false targets and 
on the other hand to propagate the disparity. The three-dimensionM world description 
provided by contour chains is richer and facilitates the further recognition process. 

Matching:  Matching of the two stereo images is performed by optimizating a simi- 
laxity function. For two contour points, ( x l ,  Yt ) in the left image and ( x r ,  yr ) in the 
right image, we define the similarity function as: 

- a(~,~r,)]2 + [e(~l,W) ~e(,x,~,y~ )]2 where f ( x t ,  Yt, x r ,  y~) = [a(xt ,v,)  s~ 
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G ( x ,  y ) and 8 ( x ,  y ) respectively design the gradient norm and orientation at ( x ,  y ) 
point. 
Sa  and S0 are respectively thresholds on the gradient norm and orientation difference. 
For all ( x~, Yi ) in the left image ( x j ,  yj ) is a potential matching in the right image 
if: 

" I G('rti, Y t i )  - G(x, i ,  Y ~ i ) [  <- Sg  
• g & 

• f ( xzi , y~i , x, i , Y~i ) minimum with regard to j 

( X~jo , Yrj~ ) is a potential matching; 
The pair ( ( xti , yz~ ) , ( X~jo , yrjo ) ) is validated if f ( x ,  , yt~ , Xrjo , y~jo ) is minimal 
with regard to i. The matching process is then symmetric, and uniqueness is guaranteed. 
Matched points should have similar properties, of course, because they are both projec- 
tions of the same surface point, but in rr~ny cases there will be ambiguous. So we have to 
determine criterions allowing to decide which matches are correct. The three-dimensional 
spatial continuity of real world surfaces constrains the two-dimensional spatial distribu- 
tion of disparity in the image plane. This is the second stereo law. The continuity of 
disparity over most of the image can be used to avoid false matches based on similarity 
alone, by suppressing matches in the absence of supporting local evidence. We have cho- 
sen contour chains as local support to check the matches consistency. Edge points along 
the chain belong to the same surface, except when the edge crosses an occluding contour: 
we have then to stop the chain; we avoid this problem by using Giraudon chaining al- 
gorithm which cuts Chains when it finds triple points. It may happen that the occluded 
contour gradient is too weak to be detected or is eliminated as noise. The disparity con- 
tinuity assumption along the chain does not hold, but we can limit this occurence with a 
coarse to fine algorithm. As the search of a potential matching is hierarchically governed, 
we can choose very low thresholds at the step of hysteresis thresholding and so increase 
the number of primitives without too much complicating the matching process. We can 
generally consider that the disparity varies smoothly along the chain. Then we avoid the 
problem of the region overlapping an occluding contour. 
For each pair of matched points we determine the disparity vector (its norm L, and its 
orientation/~) and we check the vectors continuity along contour chains. A couple i of 
matched points is validated if: 

I L i  - L ,  } 1 1 $i - ~T t _a j  
- ( ~ , + ~ j  !1, I" ( L, + Lj ) I i i [ z < SL and Z jev~  < SZ 

1 - 1 - 

j ~ v ,  ~ I i _ J l  n ~ I i _ J t  '~ 
Vii : i neighborhood along the chain. 
SL et S~ are thresholds, n define the neighborhood size. 

The  h ie ra rchy  in the  pyramid:  After consolidation, contours (local maximas of 
the first derivate) are extracted on each stereo image and then, matched at finer and 
finer resolutions. The disparity information obtained at a given resolution is used to 
specify the search spac e for finding a matching point at a finer resolution. So we limit the 
matching algorithm complexitY by controlling at each step, the number of primitives and 
the search window size. At the first step (coarsest resolution) the search window size is 
defined by the minimum and maximum depths estimated in the image. At the following 
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steps it is defined by the size of the filter for the extraction of contours. The use of 
epipolar geometry permits us to reduce strongly the correspondence problem dimension: 
the search windows are reduced to strips along epipolar lines. At each step we interpolate 
the disparity along the chain. The disparity at a chain point is given by the average of the 
neighbours disparities weighted by the inverse of the distance between the current point 
and its neighbours. The disparity interpolation along the chain gives us a richer disparity 
map to specify the search space of a potential matching at finer resolution. At a given 
resolution, the search space of a potential matching is obtained by searching at the nearer 
coarse resolution the nearer neighbour which has been matched. 

R e s u l t s  

We have treated two very different Prometheus scenes in order to test the algorithm 
robustness. The images were taken using two CCD cameras mounted parallel on top of a 
car with a height of about 1.60 m and a distance of 40 cm between the cameras. The first 
stereo pair (figure 1) is a countryside scene and is characterized by a lot of discontinuities. 
The figure 2 represents a part of the reconstructed scene in a three-dimensional space. 
The car profile, the dividing line and the post on the right appear clearly. There are two 
important sources of errors in the matching process: 

• the lack of precision in cameras calibration which has constrained us to use epipolar 
bands and not epipolar lines 

e matching errors which arise at horizontal lines due to the cameras relative geometry; 
we expect to limit this problem by swinging the cameras support in an appropriate 
direction. 

For this scene, though we have chains, we have only represented points in three-dimensional 
space because few false matches (which often arise at horizontal lines) are sufficient to 
blur the reconstructed scene. The program was coded in C and implemented in SUN4 
110. For 512x144 stereo images, the consolidation process, the edges detection and the 
chaining take less than 1 minute for the two images. At the last step 1445 points have 
been matched and after the disparity interpolation along chains we had 2522 points. The 
matching process (including interpolation) takes less than 30 secondes. 

fig. t: The stereo images (countryside scene). 
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fig. 2: The reconstructed scene, in a 3D space 

The second scene takes place in town (many discontinuities in the scene) and shows a 
typical obstacle: a cyclist. We present in figure 3 the stereo images.The figures 4a, 4b and 
4c represent the reconstructed chains in a three-dimensional space viewed by an observer 
turning around the scene. The software displays thready chains, so according to the view 
point some chains are seen by transparency; a surface modelisation could cope with this 
problem. In the figure 4a we clearly distinguish the file of cars on the left, the middle 
road line mark and the cyclist. As the observer moves towards the left, in the figure 4b, 
the cyclist appears very clearly. In the figure 4c we still distinguish the cyclist; the road 
right boundary and a parking car appear. 

m 
fig. 3: The stereo images (town scene). 

. 

fig. 4a: The reconstructed chains in a 3D space; the observer 
has moved slightly towards top right. 

fig. 4b: The reconstructed chains in a 3D 
space, front view 

fig. 4c: The reconstructed chains in a 3D 
space; the observer has moved 
slightly towards top left. 

The presented multi-resolution approach gives very interesting results as well for the 
fullness of the reconstructed information as for the quality of this information. We have 
now to deal with three-dimensional data to provide a three-dimensional description of the 
environment seen from the car. 
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Conclusion 

We have presented a matching stereovision algorithm reliable enough to provide a three- 
dimensional description of the environment seen from the car. The hierarchy permits to 
avoid aberrant matches by matching main structures before details. 
Using a symetric similarity function garantees non ambiguity according to the stereo 
unicity law. The second stereo law, the continuity, is checked when validating the matches. 
Using a chain contour as a local support for consistency makes the method indifferent to 
the types of handled scenes (man made, natural) sinc~ the contours density and nature 
(occluded or not) does not affect the method and so makes it more general than methods 
adapted to robotic scenes [AyacSb] or to natural scenes [Grim81]. 
Finally, a pyramidal approach reduces greatly the computing time (by a factor between 
3 and 4) with regard to classical multi-resolution approach. Although this algorithm 
permits to work with rich scenes (involving man made or natural objects), its computing 
time is nevertheless extremely fast. 
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