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Abstract  

I establish fundamental equations that relate the three dimensional motion of 
a curve to its observed image motion. I introduce the notion of spatio-temporal 
surface and study its differential properties up to the second order. In order to 
do this, I only make the assumption that the 3D motion of the curve preserves 
arc-length, a more general assumption than that of rigid motion. I show that, 
contrarily to what is commonly believed, the full optical flow of the curve can never 
be recovered from this surface. I nonetheless then show that the hypothesis of a 
rigid 3D motion allows in general t0 recover the structure and the motion of the 
curve, in fact without explicitely computing tire tangential optical flow. 

1 I n t r o d u c t i o n  

This article is a condensed version of a longer version which will appear elsewhere [7]. 
In particular, I have omitted all the proofs of the theorems, tt  presents a mathemati- 
cal formalism for dealing with the motion of curved objects, specifically curves. In our 
previous work on stereo [1] and motion [9], we have limited ourselves to primitives such 
as points and lines. I at tempt here to lay the ground for extending this work to general 
curvilinear features. More specifically, I study the image motion of 3D curves moving 
in a "non-elastic" way (to be defined later), such as ropes. I show that under this weak 
~ssumption the full apparent optical flow (to be defined later) can be recovered. I also 
show that  recovering the full real optical flow (i.e the projection of the 3D velocity field) 
is impossible. If rigid motion is hypothesized, then I show that,  in general, the full 3D 
structure ~nd motion of the curve can be recovered without explicitely computing the full 
flow real. I assume that  pixels along curves have been extracted by some standard edge 
detection techniques [3,4]. 

This is related and inspired by the work of Koenderink [14], the work of Horn and 
Schunk [13] as well as that of Longuet-Higgins and Prazdny [15] who pioneered the analysis 
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of motion in computer vision, that of Nagel [16] who showed first that at grey level 
corners the full optical flow could be recovered, as well as by the work of Hildreth [12] 
who proposed a scheme for recovering the full flow along image intensity edges from the 
normal flow by using a smoothness constraint. This is also related to the work of D'Hayer 
[5] who studied a differential equation satisfied by the optical flow but who did not relate 
it to the actual 3D motion and to that of Gong and Brady [11] who recently extended 
Nagel's result and showed that it also held along intensity gradient edges. All assume, 
though, that the standard motion constrain equation: 

dI 
d-'~ = V I .  v + IT = 0 (1) 

is true, where I is the image intensity, v the optical flow (a mysterious quantity which 
is in fact defined by this equation), and r the time, It is known that this equation is, in 
general, far from being true [19]. In my approach, I do not make this assumption and, 
instead, keep explicit the relation between image and 3D velocities. 

In fact there is a big confusion in the Computer Vision literature about the exact 
meaning of the optical flow. I define it precisely in this paper and show that two flows, 
the "apparent" and the "real" one must be distinguished. I show that only the apparent 
one can be recovered from the image for a large class of 3D motions. 

My work is also related to that of Baker and Bolles [2] in the sense that I also work 
with spatio-temporal surfaces for which I provide a beginning of quantitative description 
through Differential Geometry in the case where they are generated by curves. 

It is also motivated by the work of Girosi, Torre and Verri [18] who have investi- 
gated various ways of replacing equatio n (1) by several equations to remove the inherent 
ambiguity in the determination of the optical flow v. 

2 Def ini t ions  and notat ions  

I use some elementary notions from Differential Geometry of curves and surfaces. I 
summarize these notions in the next sections and introduce my notations. 

2 .1  C a m e r a  m o d e l  

I assume the standard pinhole model for the camera. The retina plane 7~ is perpendicular 
to the optical axis Oz, 0 is the optical center. The focal distance is assumed to be 1. Those 
hypothesis are quite reasonable and it is always possible, up to a good approximation, to 
transform a real camera into such an ideal model [17,10]. 

2 .2  T w o - d i m e n s i o n a l  c u r v e s  

A planar curve (c) (usually in the retina plane) is defined as a C 2 mapping u --* re(u) 
from an interval of R into R 2. We will assume that the parameter u is the arclength s of 
(c). We then have the well known two-dimensional Frenet formulas: 

dra=td, -~ ~n ~-~n=--~t (2) 

where t and n are the tangent and normal unit vectors to (c) at the point under consid- 
eration, and ~ is the curvature of (c), the inverse of the radius of curvature r. 
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Figure 1: Definition of the spatio-temporat surface (S) 

2.3 Surface patches 
A surface patch (S) is defined as a C 2 mapping (u,v) ~ P(u,v) from an open set of 
R 2 into R 3. Such a patch is intrinsically characterized, up to a rigid motion, by two 
quadratic forms, called the two fundamental forms [6], which are defined at every point of 
the patch• The first quadratic form 01 defines the length of a vector in the tangent plane 
Tp. More precisely, the two vectors P,, = ~ and P,u = ~ are parallel to this plane and 
define therein a system of coordinates• Each vector in the tangent plane can be defined 
as a linear combination ~P.~ + #P.,. Its squared length is given by the value of the first 
fundamental form 01. Moreover, the normal Np to (S) is parallel to the cross-product 
P,. x P~. 

The second fundamental quadratic from ~52 is related to curvature. For a vector 
x = ~P,~ ÷ #P~ in the tangent plane, we can consider all curves drawn on (S) tangent to 

• ~ 2  x x at P.  These curves have all the same normal curvature, the ratm ~ I ! "~1 X)" 
It is important to study the invariants of ~2, ie. quantities which do not depend 

upon the parametrization (u, v) of (S). ~2 defines a linear mapping Tp ~ Tp by 
~I'2(x) = ~b(x). x. The invariants of.~2 are those of ¢. Those of interest to us are the 
principal directions, the principal curvatures from which the mean and gaussian curvatures 
can be computed. 

3 Set t ing  the  stage: real and apparent  opt ical  flows 

We now assume that we observe in a sequence of images a family (c.) of curves, where r 
denotes the time, which we assume to be the perspective projection in the retina of a 3D 
curve (C) that moves in space. If we consider the three-dimensional space (x, y, r) ,  this 
family of curves sweeps in that  space a surface (S) defined as the set of points ((c,), ~-) 
(see figure 1). 

At a given time instant % let us consider the observed curve (c,). Its arclength s can 
be computed and (c,) can be parameterized by s and r: it is the set of points m,(s). 
The corresponding points P on (S) are represented by the vector P = (mT(s), ~_)T. The 
key observation is that  the arclength s of (c,) is a function s(S, "r) of the arclength S 
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of the 3D curve (C) and the time T, and that the two parameters (S, T) can be used to 
parameterize ($) in a neighborhood of P.  Of course, the function s(S, T) is unknown. 

The assumption that  s is a function of S and r implies that  S itself is not a function of 
time; in other words we do not consider here elastic motions but only motions for which 
S is preserved, i.e non-elastic motions such as the motion of a rope or the motion of a 
curve attached to a moving rigid object. We could call such motions isometric motions. 

As shown in figure 1, we can consider on (8) the curves defined by s = cst or S = cst. 
These curves are in general different, and their projections, parallel to the T-aXiS, in the 
(x, y)- or retina plane have an important physical interpretation, related to our upcoming 
definition of the optical flow. 

Indeed, suppose we choose a point /14o on (C) and fix its arclength So. When (C) 
moves, this point follows a trajectory (Cmo) in 3-space and its image rn0 follows a tra- 
jectory (c~0) in the retina plane; This last curve is the projection in the retina plane, 
parallel to the T-axis, of the curve defined by S = So on the surface (8). We call it the 
"real" trajectory of too. 

We can also consider the same projection of another curve defined on (S) by s = So. 
The corresponding curve (c~0) in the retina plane is the trajectory of the image point mo 
of arclength So on (c,). We call this curve the "apparent" trajectory of rno. 

The mathematical reason why those two curves are different is that the first one is 
defined by S = So while the second is defined by s(S, T) = So. 

Let me now define precisely what I mean by optical flow. If we consider figure 2, 
point rn on (c,) is the image of point M on (C). This point has a 3D velocity VM whose 
projection in the retina is the real optical flow vr (r for real); mathematically speaking: 

• v, is the partial derivative of m with respect to time when S is kept constant, or 
its total time derivative. 

• The apparent optical flow v~ (a for apparent) of rn is the partial derivative with 
respect to time when s is kept constant. 

Those two quantities are in general distinct. To relate this to the previous discussion 
about the curves S = So and s = So of (3), the vector v ,  is tangent to the "apparent" 
trajectory of rn, while v~ is tangent to the "real" one. 

I now make the following fundamental remark. All the information about the motion 
of points of (c,) (and of the 3D points of (C) which project onto .them) is entirely cont~/ined 
in the surface ($). Si, nce ($) is intrinsically characterized, up to a rigid motion, by its 
first and second fundamental forms [6], they are all we need to characterize the optical 
flow of (c,) arid the motion of (C). 

4 Character izat ion  of  the  spat io - t empora l  surface 
(s) 

In this section, we compute the first and second fundamental forms of the spatio-temporal 
surface ($). We will be using over and over again the following result. 

Given a function f of the variables s and T, it is also a function ff  of o c and T. We 
will have to compute ~ and -~', also called the total time derivative of f with respect 
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Figure 2: Definition of the two optical flows: the real and the apparent 

to time, ] ;  introducing u = 0~ and v = ~ ,  we have the following equations: 

(3) 
OS ~ ?J Os 8"r O'r 

Following these notations, we denote by P(s,  T) = (mT(s, r),  r)  T the generic point of (,5) 
and by P'(S, T) = (m'T(S, r),  T) T the same point considered as a function of  S and T. 

4 .1  C o m p u t a t i o n  o f  t h e  f i r s t  f u n d a m e n t a l  f o r m  

Using equations (3), we write immediatly: 

P', = vV~ + P~ = [vt T + v T, 1] I' (4) 

We now write the apparent optical flow v~ in the reference frame defined by t and n :  

vo = at +/3n (5) 

We see from equations (4) and (5) that P~ = [(v + a)t  T + tin T, 1]T; but by definition, 
P ;  [v[, 1] T. Therefore w = v + a is the real tangential optical flow and fl the normal 
real optical flow. Therefore , the real and apparent optical flows have the same component 
along n, we call it the normal optical flow. The real optical flow is given by: 

v, = wt + fin (6) 

Without entering the details and referring the reader to [7], we can write simple 
formulas for the time derivatives of a function f from ($) into R, for example. 

Of Of 
0-7 = ceO-Ts + c~n,f (7) 

of 
f = 'w~s + Onef (8) 
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where Onzf means the partial derivative of f in the direction of nz = [fin, 1] T of Tp, the 
tangent plane to (,S) at P. 

These relations also hold for functions f from ($) into R p. We wilt be using heavily 
the case p = 2 in what follows. 

From equations (4), and the one giving P}, we can compute the coefficients of the 
first fundamental form. I skip the details of the computation and state the main result: 

Given the normal Np to the spatio-temporal surface ($) whose coordinates in the 
coordinate system (t, n, r)  (r is the unit vector defining the r-axis) are denoted by 
N1, N~, N3, we have: 

/~ = _N_~ N I = O  N2 

We have thus the following theorem: 

Theorem 1 The normal to the spatio.temporal surface ($) yields an estimate of the 
normal optical flow f .  

4.2 Computat ion  of the second fundamental  form 

Again, we skip the details and state only the results: 

T h e o r e m  2 The tangential apparent optical flow c~ satisfies: 

Oa 
as aft (9) 

where n is the curvature of (c¢). 

Equation (9) is instructive. Indeed, it shows that c~, the tangential component of the 
apparent optical flow v~ is entirely determined up to the addition of a function of time 
by the normal component of the optical flow fl and the space curvature n of (c~): 

/i = r) f ( t ,  r)dt (10) 
0 

Changing the origin of arclengths from So to sl on (c~) is equivalent to adding the function 
f~'0 ~ ~(t, r ) f ( t ,  r)dt to a, funct'ion which is constant on (c,). This is the fundamental result 
of this section. We have l~roved the following theorem: 

T h e o r e m  3 The tangential apparent optical flow can be recovered from the normal flow 
up to the addition of a function of time through equation (10). 

We now state an interesting relationship between n and f which is proved in [7]. 

T h e o r e m  4 The curvature r~ of (c,) and the normal optical flow f satisfy: 

02f 
= + ( t ,1)  
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4.3 W h a t  informat ion  can be ex trac ted  from the  second fun- 
d a m e n t a l  form 

The idea now is that after observing (S), we compute an estimate of O2 from which we 
attempt to recover the unknowns, for example u or v. We show that it is impossible 
without making stronger assumptions about the  motion of (C). 

We have seen that all invariants of O2 are functions of the principal directions and 
curvatures. We omit the derivation and only state the result: 

Theorem 5 The invariants of the second fundamental form of the surface ($) are not 
functions of u, v, w, the real tangential optical flow nor of a, the apparent tangential 
optical flow. 

4.4 Conc lus ions  

There are three main consequences that we can draw from this analysis. Under the weak 
assumption of isometric motion: 

1. The normal optical flow/~ can be recovered from the normal to the spatio-temporal 
surface, 

2. The tangential apparent optical flow can be recovered from the normal optical flow 
through equation (I0), up to the addition of a function of time, 

3. The tangential real optical flow cannot be recovered from the spatio-temporal sur- 
face. 

Therefore, the full real optical flow is not computable from the observation of the image 
of a moving curve under the isometric assumption. In order to compute it we must add 
more hypothesis, for example that the 3D motion is rigid. This makes me wonder what 
the published algorithms for computing the optical flow are actually computing since they 
are not making any assumptions about what kind of 3D motion is observed. 

I show in the next section that if we assume a 3D rigid motion then the problem is, 
in general, solvable but that there is no need to compute the full real optical flow. 

5 Assuming that (C) is moving rigidly 
We are now assuming that (C) is moving rigidly; let ( a ,  V) be its kinematic screw at 
the optical center O of the camera. We first derive a fundamental relation between the 
tangents t and T to (c,) and (C) and the angular velocity fL In this section, the third 
coordinate of vectors is a space coordinate (along the z-axis) whereas previously it was a 
time coordinate (along the T-axis). 

5.1 Stories  of  tangents  

[ t  ] Th isvec tor i snormal to thep lanedef ined  Let us denote by Ut the vector Om x 0 " 

by the optical center of the camera, the point m on (c~), and t (see figure (3)). Since this 
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Figure 3: Relation between t and T 

plane contains also the tangent T to (C) at M, the 3D point whose image is rn, we have: 

Ut" T = 0 (12) 

But, because (C) moves rigidly, T must also satisfy the following differential equation 
(this equation is satisfied by any constant length vector attached to (C)): 

= a x T (13) 

Skipping once again the details, we obtain: 

W = Ut x (Ut x ft + lJt) (14) 
W 

T = ~llWl! (15) 

Where e = 4-1. We can assume that e = 1 by orienting correctly (c~) and (C). 
Equations (14) and (I5) are important because they relate in a very simple manner the 

tangent T to the unknown 3D curve (C) to the known vector Ut,  the angular velocity gt 
and and to l)t. Notice that this last vector contains the unknown tangential real optical 
flOW W. 

Furthermore, W itself satisfies a differential equation. Skipping the details, we state 
the result: 

T h e o r e m  6 The direction W of the tangent to the 3D curve (C) satisfies the following 
differential equation: 

w x ( w  × w + ( w .  w ) a )  = o (16) 

Equation (16) is fundamental: it expresses the relationship between the unknown ge- 
ometry and motion of the 3D curve (C) and the geometry and motion of the 2D curve 
(c4. 

In order to exploit equation (16), we have to compute W.  This is done in [7] and we 
find that equation (16) involves w and tb, the real tangential opticM flow and its total 
time derivative, as well as ~t, the angular acceleration. 
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5.2 Obtaining more equations 

We ~re now golng to  use the  perspective equation: 

ZOrn = O M  (17) 

to obtain a number of interesting relations by taking its total time derivative. 
Taking the total derivative of equation (17) with respect to time, and projecting it on 

t and n, we obtain two scalar equations: 

Z(w + f t .  b) = Vt - (Ore-t)V~ (18) 

Z(/~ - f t .  a) = V. - ( O m .  n)V~ (19) 

where a and b depend only upon the image geometry. 
These equations are the standard flow equations expressed in our formalism. They 

are fundamental in the sense that they express the relationship between the unknown 3D 
motion of a point and its observed 2D motion. 

Notice that we can eliminate Z between (18) and (19) and obtain the value of the 
tangential real optical flow w as a function of ft and V. 

5.3 Closing the loop or finding the kinematic screw 

The basic idea is to combine equation (16) which embeds the local structure of (C) at 
M (its tangent) and the fact that it moves rigidly, with the equation giving w which is a 
pure expression of the kinematics of the point M without any reference to the  fact that 
it belongs to a curve. 

We take the total time derivative zb of w. In doing this, we introduce the accelerations 
~t and V. If we now replace w and zb by those values in equation (16), we obtain 
two polynomial equations in ft, V, Ft, and X r with coefficients depending on the observed 
geometry and motion of the 2D curve (the two equations come from the fact that equation 
(16) is a cross-product). Two such equations are obtained at each point of.(c,). Those 
polynomials are of degree 5 in V, 1 in V, homogeneous of degree 5 in (V, V), of degree 
4 in ft, 1 in ~t, and of total degree 9 in all those unknowns. 

This step is crucial. This is where we combine the structural information about the 
geometry of (C) embedded in equation (16) with purely kinematic information about the 
motion of its points embedded in equations (18) and (19). This eliminates the need for 
the estimation of the real tangential flow w and its time derivative tb. We thus have the 
following theorem: 

T h e o r e m  7 At each point of (c,) we can write two polynomial equations in the coordi- 
nates of ft ,  V, ft and ~r with coefficients which are polynomials in quantities that can be 
measured from the spatio-temporal surface (S): 

Those polynomials are obtained by eliminating w and ff3 between equations (15), and the 
equations giving w and ~b [7]..They are of total degree 9, homogeneous of degree 5 in 
(v, v) ,  of degree 5 in V, ~ in V, 4 in a ,  1 ~n h.  
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Thus, N points on (c~)provide 2N equations in the 12 unknowns n ,  V, ~ ,  and ~r. 
Therefore, we should expect to be able to find, in some cases, a finite number of solutions. 
Degenerate cases where such solutions do not exist can be easily found: straight lines, 
for example [8], are notorious for being degenerate from that standpoint. The problem of 
studying the cases of degeneracy is left for further research. Ignoring for the moment those 
difficulties (but not underestimating them), we can state one major conjecture/result: 

Con jec tu re  1 The kinematic screw ~,  V ,  and its time derivative ~,  ¢¢, of a rigidly 
moving 31) curve can, in general, be estimated from the observation of the spatio-temporal 
surface generated by its retinal image, by solving a system of polynomial equations. Depth 
can then be recovered at each point through equation (19). The tangent to the curve can 
be recovered at each point through equation (14). 

Notice that we never actually compute the tangential real optical flow w. It is just used as 
an intermediate unknown and eliminated as quickly as possible, as irrelevant. Of course, 
if needed, it can be recovered afterwards, from equation (18). 

6 C o n c l u s i o n  

I have studied the relationship between the 3D motion of a curve (C) moving isometrically 
and the motion of its image (c,). I have introduced the notion of real and apparent 
optical flows and shown how they can be interpreted in terms of vector fields defined on 
the spatio-temporal surface (S) generated by (c~). 

I have shown that the full apparent flow and the normal real flow can be recovered 
from the differential properties of that surface, but not the real tangential flow. 

I have then shown that if the motion of (C) is rigid, then two polynomial equations in 
the components of its kinematic screw and its time derivative, with coefficients obtained 
from geometric properties of the surface ($), can be written for each point of (c,). In 
doing this, the role of the spatio-temporal surface (S) is essential since it is the natural 
place where all the operations of derivation of the geometric features of the curves (c,) 
take place. Conditions under which those equations yield a finite number of solutions 
have not been studied. Implementation of those ideas is under way. Some issues related 
to this implementation are discussed in [7]. 

I think that the major contribution of this paper is to state what can be computed 
from the sequence of images, under which assumptions abOUt the observed 3D motions, 
and how. I also believe that similar ideas can be used to study more general types of 
motions than rigid ones. 
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