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A b s t r a c t  

Structure-from-motion algorithms based on matched point-like features under orthographic projection 

are explored, for use in analysing image motion from small rigid moving objects. For two-frame 

analysis, closed-form n-point algorithms are devised that minimise image-plane positional errors. The 

bas-relief ambiguity'is shown to exist for arbitrary object rotations. The algorithm is applied to real 

images, and goodestimates of the projection of the axis of rotation onto the image-plane are obtained. 

1 Introduction 

Structure-from-motion (SFM) algorithms are used in the analysis of image motion caused by relative 

three-dimensional (3D) movement between the camera and the (unknown) imaged objects. These 

algorithms attempt to recover both the 3D structure of the image objects (assumed rigid) and the 3D 

motion of each object with respect to the camera (or vice versa). The SFM algorithms explored in this 

paper use point image features, extracted independently from each image in thesequence by use of a 

'comer' detection algorithm [1], and matched between images forming the sequence [2]. 

As the imaging mechanism of conventional cameras is perspective projection (ie. cameras behave as 

if they were 'pin-hole' cameras), most SFM algorithms have been based on perspective projection 

[3,4]. These algorithms have been found to provide acceptable solutions to the 'ego-motion' problem, 

where a camera (of relatively wide field-of-view) moves through an otherwise static environment. 

However, for the perspective SFM algorithms to be well-conditioned, the angle subtended by the 

viewed object (in the ego-motion problem, the viewed scene) must be large, and the viewed object 

must span a relatively large range of depths. Thus the perspective SFM algorithms are of little or no 

practical use for analysing everyday imagery of independently moving objects, such as driven cars and 

flying aircraft. It is algorithms for the analysis of such imagery that is the concern of this paper. 

It is well-known that SFM algorithms are unable to produce an unambiguous solution from visual 

motion data alone, because of the speed-scale ambiguity. On the analysis of  a pair of images, the 

speed-scale ambiguity dictates that the direction of translation of the camera (relative to the viewed 

object) may be determined, but not the magnitude of translation, ie. the speed. SFM algorithms are 

thus carefully constructed to avoid attempting to resolve this ambiguity. However, the current 

perspective SFM algorithms do attempt to solve for all the other motion parameters, no matter how 

ill-conditioned they may be. A prime example here is the bas-relief ambiguity, where, for example, an 

indented fronto-parallel surface (ie. viewed head-on) rotates about an axis lying in the surface. The 

problem of differentiating between a deeply indented surface rotating through a small angle, and a 
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shallowly indented surface rotating by a larger angle, is ill-conditioned. Current perspective SFM 

algorithms applied to such a scene produce diverse and incorrect solutions. This is not to say that such 

scenes are inherently intractable, but that the SFM algorithm is falling because it attempts to determine 

the value of ill-conditioned variables. What are needed are algorithms in which the ill-conditioned 

variables (or combinations of variables) are taken care of explicitly and analytically (just as the 

speed-scale ambiguity is), leaving only well-conditioned variables to be solved for. 

The ill-conditioning that we wish to circumvent occurs for objects subtending a small range of 

depths, and generally subtending a small angle. In these circumstances, a good approximation to the 

imaging process is orthographic projection, in which the variation in object depths is assumed to be 

negligible with respect to  the distance of the Object from the camera. A further reason for using 

orthographic projection is that it is mathematically tractable for the analysis of the motion of point-like 

image features between two images of a sequence [5]. 

2 Structure-from-Motion Algorithm 

Let there be n matches between the two flames, at image locations {xi,Yi} on the first frame, and at 

{x'i,Y'i} on the second frame. Define a coordinate system with the z-axis aligned along the optical 

axis, the x and y axes aligned with the image coordinate axes, and the origin at a distance L in front of 

the centre of projection (the camera pin-hole), so placing the centre of projection at z -- -L. Let the i'th 

point on the moving object be located in 3D at r i = (Xi,Yi,Zi) at the time of the first frame, and at r' i = 

(X'i ,Y'i ,Z'i)  on the second frame. Below, the object will be assumed to be situated close to the 

coordinate origin, and be small compared to L. Without loss of generality, decompose the object 

motion between the two frames as a rotation about the origin, specified by the orthogonal rotation 

matrix R, followed by a translation t. Hence 

r' i = R r i + t 

Perspective projection onto a forward image plane a unit distance from the camera pin-hole gives 

(xi ,Yi) = (Xi,Yi) / ( L + Z i ), (x'i ,Y'i) = (X'i,Y'i) / ( L + Z' i ) 

Substituting gives 

x' i = R 1 lXi + R12Y i + R13z i + t x / L + O (L -2) 

and similarly for Y'i. Dropping the O (L "2) terms for large L (this is the orthographic limit), and 

without loss of generality setting L=I, gives 

x ' i = R l l X  i +R12Y i +R13zi + t  x, y ' i=R21xi  +R22Y i +R23z i + ty  

Now, for real data, the positions {x i, Yi, x'i, Y'i} will be contaminated by measurement noise, so that 

the above equations will not hold true exactly. Assuming isotropic Gaussian noise on the observed 

image-plane locations, the maximum likelihood solution is found by minimising, E, the sum of the 

squares of the residuals of the above equations 
n 

E(R,tx,ty,{Zi}) = ~ [ (RllXi+R12Yi+R13zi+tx_X, i )2 + (R21xi+R22Yi+R23zi+ty_y, i )2 ] 
i=1 
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Note that it is the actual residuals of the image-plane locations that are being minimised, and not some 

other mathematically convenient but less meaningful formulation. To minimise E, first define 

u i = R l l X  i + R12Y i - x' i 

vi = R21xi + R22Yi - Y'i 

Thus 

E =Y~ [ (u i + R13z i + tx)2 + (v i + R23z i + ty )2 ] 
i 

Minimising with respect to z i gives the optimal depth of each point. Substituting the optimal depths 
back gives E as a function of the motion variables alone 

E(R,tx,ty ) =~. [ R23u i . R13v i + (R23tx _ R13ty ) ]2 / [ R132 + R232 ] 
1 

Note that the x and y translations enter the above equation in a fixed relationship, so that minimising 

with respect to t x and to ty would give identical results. To circumvent this problem, E is minimised 

with respect to the appropriate linear combination of the translations 

OE/O(R23t x - R13ty) = 0 => R23t x - R13ty ---  .~ (R23u i - R13vi) 
1 

Substituting back ~nto E, and simplifying the notation by assuming that mean values have been 

removed from xi,Yi,X'i,Y'i,u i and v i, enables E to be written as 

E(R) = Y~ [ R23u i - R13v i ] 2 / [  R132 + R232 ] 
i 

Without loss of generality, write the rotation matrix, R, as 

cos~ -sine 0 1 0 0 cos0 sin0 0 

R = sine cos¢ 0 0 cosrl -sinrl -sin0 cos0 0 

0 0 1 0 sinrl cosrl 0 0 1 

cos¢ cosO + sinq sinO cosrl cos¢ sinO - sine cosO cosrl sine sinrl 

= sine cosO - cos¢ sinO cost 1 sin¢ sinO + cos¢ cosO cosrl -cos¢ sinrl 

- sin0 sinr I cos0 sinrl cosrl 

Hence 

E(0,¢,rl) = Y~ [ (x i cos0 + Yi sin0 ) - ( x' i cos¢ + Y'i sine ) ]2 
i 

Note that E is independent of rl. This means that there is an irresolvable ambiguity in the rotational 

motion obtained from two frames in orthographic projection, as reported by Huang [5], and is present 

for arbitrarily large angles of rotation. This ambiguity is a generalisation of the bas-relief ambiguity 

found at small angles of rotation, that was discussed in the Introduction. We call the angle ~1 the 

bas-relief angle. The analytic solution for 0 and ¢ is subtle, and ends up by finding the zeros of an 8'th 

order polynomial.  This is performed by use of a standard numerical algorithm, and the solution 

generated by each real root compared numerically, to see which provides the minimum value of E. 
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3 Axis of Rotation 

The SFM algorithm results in an interpretation of the object motion in which the axis of rotation passes 

through some point along the optical axis. Were the axis of rotation chosen to pass through some other 

point (say, because the images were shifted slightly) then an equally satisfactory explanation of the 

data would result, with unchanged rotation, but with different values for the object translations. The 

above ambiguity in interpretation can be resolved by seeking a solution in which the object translations 

are zero; this is appropriate for a scenario whexe the camera is static, and the object is executing pure 

rotations. 

Let r = (x,y,z) be any point on the object in the first frame, and r '  = (x',y',z') be the equivalent 

point on the object in the second frame. These may be actual observed points, or for better 

conditioning, the centroids of all the matched points may be chosen. Let c = (Cx, Cy,Cz) be a (3D) point 

on the axis of rotation. For a motion interpretation with no translation, the motion of the object point 

about the axis of rotation must be due to rotation alone, hence 

r ' - c  = R ( r - e )  

Using the first two equations of this vector equation, and eliminating the term in z : c z, results in the 

following equation linear in the unknowns c x and Cy, and so specifies a straight line which is the 

projection of the axis of rotation onto the image 

c x sin((0+<~)/2) - Cy cos((0+~))/2) = ( x cos 0 + y sin 0 - x' cosd? - y' sin~ ) / ( 2 sin((0-~))/2) ) 

That the projection of the rotation axis is independent of the bas-relief angle means that the 

one-dimensional continuum of possible object rotation axes lie in a plane passing through the camera 

pin-hole. These conclusions concerning the orientation of the rotation axis would still be valid if the 

object translations had not been chosen to be zero. 

4 Affine Projection 

The orthographic projection algorithm relies upon the object not significantly approaching or receding 

from the camera, as this would induce size changes to the image which are not catered for. The 

addition of such size changes to orthographic projection are called affine projection, and the 

orthographic algorithm may be modified to cater for them. The equation for the rigid object motion is 

augmented by a scale (or zoom) factor, s 

r ' i = s  ( R r i + t )  

which leads to the following energy term to be minimised 

E(s,R,tx,ty,{Zi}) = s 2 y~ [ (RllXi+R12Yi+R13zi+tx_X,i/s )2 + (R21xi+R22Yi+R23zi+ty.Y,i/s )2 ] 
i 

Proceeding as before, the minimisation variables are reduced to s, 0 and 

E(s,0,~) = 3". [ s (x i cos0 + Yi sin0 ) - ( x' i cos~ + Y'i sin~ ) ]2 
i 

Defining p = s cos0 and q = s sin0 enables E to be easily minimised using no more than an arctangent. 
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5 Results 

The inability to resolve the bas-relief ambiguity makes the results of this algorithm difficult to 

appreciate, as both the rotation and the structure of the object depend upon the bas-relief angle. The 

SFM algorithms were applied to a sequence of 16 real images of a toy truck on a turntable. The images 

are 128 pixels square, and the truck subtends an angle of about 5* from the camera. Between each 

frame of the sequence, the truck was rotated by 10 ° about an axis passing through the centre of the 

turntable, and oriented some 3" clockwise of the vertical. Thus the mae projection of the axis of 

rotation is a nearly vertical line in the image, about one third of the image width from the right-hand 

edge o f  the image.From each image feature-points were extracted using a corner detector [1], from 20 

to 30 being extracted from each image; these are indicated by the black crosses in the Figures. The 

feature-points were matched by hand for expediency. 

The Figures show the projection of the calculated axis of rotation for the analysis of various image 

pairs. In Figure 1, successive pairs of images are analysed, corresponding to a rotation of 10 ° between 

images. The flow-vector of each matched point is shown as a short white line, which terminates at the 

location of the feature-point in the later of the image pairs. The projection of the calculated axis of 

rotation for the orthographic algorithm is indicated by the white line spanning the image, and that for 

the affine algorithm by the black line (it is sometimes wholly or partly obscured by the white line). 

Figures 2 and 3 show the results for 20* and 40" rotation respectively, and in Figure 4 are shown four 

results each for 60", 80", 100" and 120" rotations in successive rows of the image. 

For even the 10" rotations, the SFM algorithms perform well, and for larger angles of rotation the 

rotation axis is increasingly accurately positioned. Both algorithms produce quite similar results, 

mainly because there was no significant zooming of the object (the calculated zooms were all close to 

and consistent with a value of unity). The accuracy of the results increase less than proportionately 

with the angle of rotation. This is due to the number of matches decreasing as the angle increased, and 

due to the inconsistency in objective positioning of the feature-points with large object movement. 

Figure 1.10 ° rotation. Figure 2. 20 ° rotation. 
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Figure 3.40 ° rotation. Figure 4. 60 °, 80 °, 100 ° and 120" rotation. 

6 C o n c l u s i o n s  

The two-frame orthographic and affine SFM algorithm have been demonstrated to be weU-founded 

(since they minimise image-plane positional errors), closed-form in implementation, and produce good 

and weli-eonditioned results. The existence of the bas-relief ambiguity means that there is an ambiguity 

in interpreting both the rotational motion and the structure, resulting in only a limited number of readily 

interpretable outputs, such as the projection of the axis of rotation. To resolve the bas-relief ambiguity, 

matches from three frames in a sequence are needed, and algorithms for analysing such data are 

currently under development. 
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