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1 Introduction

The possibility of reconstructing the shape of the environment from the correspondences between
two images first arose during the 19th century with the invention of photography. The methods
developed for exploiting this possibility were based on projective geometry since projection provides
a good model for image formation. At first the shape of the environment was reconstructed by linear
methods [16], which did not make full use of the rigidity of the environment. Later methods incor-
porated the rigidity constraint [3,7], thus allowing reconstruction with fewer image correspondences,
but at the cost of greatly increasing the complexity of the reconstruction algorithm.

More recently the reconstruction problem has been transformed by the advent of electronic
cameras and computers. Large numbers of images are obtained by an electronic camera in a short
space of time, the image correspondences are found automatically, and reconstruction is carried
out by a computer algorithm. In this way a robot or an automatic vehicle can obtain useful
information by passive means well suited to a wide variety of environments. The modern approach
{0 reconstruction is based on Euclidean geometry and the vector calculus, rather than on projective
geometry [3, 6, 8]. A very large number of algorithms for reconstruction have been published recently.
An example of a linear algorithm may be found in [8], and examples of non-linear algorithms may
be found in [6], together with further references to the literature.

In some cases reconstruction from image correspondences is ambiguous, in that two essentially
different surfaces in space are obtained. Ambiguity has been studied previously using both the older
projective geometric approach [3,4,17] and the newer Euclidean approach [3,5,6,9]. In this paper
projective geometric and Euclidean techniques are used together to prove that ambiguous surfaces
are invariant under a rotation through 180°. The rotation interchanges the two possible positions
for the optical centre of the camera taking the second image. In consequence, a cubic polynomial
constraint on ambiguous surfaces is obtained, which forms the basis of a new proof of Demazure’s
result []] that there are in general exactly ten camera displacements compatible with five given
image correspondences.

The invariance of an ambiguous surface under a rotation through 180° was first discovered in
photogrammetry [4]. The cubic polynomial constraint on ambiguous surfaces is new. An extensive
discussion of the projective geometric approach to ambiguity including alternative proofs of some
of the results given here will appear in [14].

1.1 Notation

The necessary background in projective geometry is given in [15]. Euclidean three dimensional
space R® is regarded as a subset of projective space P®. Points of R® are denoted by [:1:1, &2, z-s} and
points of P* are denoted by (1, 24, 23, 74). Two points of P?, (z,, $2,$3,$4) and {wl,:r:z,aza, z,) are
the same if and only if there exists a non-zero scalar A such that z; = ,\:z:g for1 <i<4. Thus,in
P3,

(z1, 22, T3, 24) = May, T3, 23, 24) 1)

It follows from (1) that the zeros of a polynomial equation f(x) = 0 are well defined in P? if and
only f(x) is homogeneous in the coordinates z; of x.
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The embedding R® C P? is the usual one [21, %2, T3] — (%1, %2, 23, 1). The same symbol x is used
to denote both [z, 22, zs] and (21, z3, 73, 1), depending on context. The set P3\ R® is the plane at
infinity, . The equation of Il is 24 = 0. The coordinates z; of R® {and P?) are chosen to be
rectangular. In this case the z; are referred to as Cartesian coordinates. The origin (0,0,0,1) of
Cartesian coordinates is denoted by o.

Points of P* are typically denoted by o, a, b, X, y, and lines of P® are denoted by g, h, k. The
line joining two distinct points a, b of P® is < a,b >, and similaly, the plane containing the line
g and the point a not on ¢ is < g,a >. This notation is extended to arbitrary numbers of lines
and points. For example, < g,h,a > is the smallest subspace of P® containing the lines ¢, & and
the point a. Planes in P® are typically denoted by II, ®, Z. Quadric surfaces in P® are typically
denoted by ¥.

Fach point x of R® defines a vector, namely, the line segment from the origin o to x. This vector
is denoted by the same symbol x as the point x. The dot product x.y and the vector product x xy
of vectors x, y are formed in the usual way. Each non-zero vector x = (z;, 23, T3, z4) corresponds to
a unique point (zy, Z3, 23, 0) of II,,, which can be thought of as the direction of x. If x, y are points
of I, then x x y is defined as the unique point of I, corresponding to the direction orthogonal
to the directions of x and y.

The tensor product of two vectors x, y is denoted by x @ y. In the applications of the tensor
product made in this paper x and y are points of P? contained in II.. Then x @ y is the 3 x 3
matrix with 7, jth entry equal to z;y; for 1 <4, < 3. The coordinates of x and y are only defined
up-to a non-zero scalar multiple, thus x ® y is also only defined up to a non-zero scalar multiple.

Invertible linear transformations, or collineations, are typically denoted by w, r. The value of w
at a point x is wx (without brackets). If S is a set of points, for example a line, or a plane, then
w(S) (with brackets) is the set of wx as x ranges over S. If w(S) C S then S is said to be invariant
under w.

2 Reconstruction from image correspondences

The usual formulation of the reconstruction problem is employed {10]. Two images of the same set
of scene points p; are taken from distinct projéction points, o and a. It is assumed that the p; are
fixed rigidly in space with respect to 0 and a. The point o is referred to as the optical centre of the
first camera, and a is referred to as the optical centre of the second camera. The imaging surface of
each camera is the unit sphere with centre at the optical centre of the camera. The image is formed
by polar projection towards the optical centre. Each scene point p; gives rise to points q;, q; in the
first and second images respectively. The correspondence between q; and q; is denoted by q; « ¢s.

In practice, the camera projection is more complicated than polar projection onto the unif
sphere. This discrepancy between theory and experiment is overcome by calibrating the camera.
The acquired image is transformed in order to obtain the image that would have arisen from polar
projection.

2.1 The Euclidean approach

In the Euclidean approach to reconstruction each camera has associated to it a coordinate frame
in which the positions of the image points are measured. The displacement of the second camera
with respect to the first is specified by giving both the translation from the first optical centre o to
the second optical centre a, and the rotation R needed to bring the two camera coordinate frames
into alignment after the translation. It is assumed that det(R) = 1, thus excluding the possibility
that the two coordinate frames differ by a reflection. When specifying the relative position of the
cameras by a pair {R,a} it is assumed that Cartesian coordinates have been chosen with the origin
o at the optical centre of the first camera. The translation vector a is then identified with the point
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a at the optical centre of the second camera.

If the pair {R, a} is known then the positions p; of the scene points relative to the two cameras
are easily calculated from the image correspondences. The reconstruction problem thus reduces to
the problem of recovering {R,a} from the image correspondences. Each correspondence g « ¢
places a single linear constraint on {R,a} of the form (Rq X Ra).q' = 0.

In the ambiguous case there exist at least two camera displacements, {R,a} and {S,b} com-
patible with the same set of image correspondences such that a is not parallel to b. Let ¢ be the
surface giving rise to the image correspondences when the relative displacement of the two cameras
is {R,a}. It is shown in [9] that the equation of ¥ is quadratic in x and of the form

{Uxxx}.b=(Uaxx)b (2

where U = STR. In (2) the points x, a, b are in R®, thus x = [z, 7, 23], etc. Equation (2) for the
ambiguous surface ¥ has the form
X Mx+1lx=0 3)

where M is a symmetric 3 X 3 matrix and 1 = Ua x b. It follows from (2} and (3) that there exist
vectors m, n such that n is the axis of U, and such that M has the form

M=%(m®n+n®m)-—m.n] 4)
Let 8 be the angle of rotation of U. Then
m = sin{6)b + [1 — cos(8)]b x n (5)

Equations (2) and (3) for 3 are appropriate for points x in R®. The equations are extended to
Il by writing them in homogeneous form using the coordinate 4. For example, (3) becomes

XTMx+azdx=0 (6)

The point {zy, 23, 23, 24) is in ¥ if and only if it satisfies (6). The points of R® contained in ¢ are
unchanged because (6) reduces to (3) on setting =4 = 1. The points of ¢ NII,, are obtained by
setting 24 = 0 in (6).

The vectors m, n of (4) correspond to points (my,ms, m3,0) and (ny, nz,n3,0) of M. Under
this correspondence, m and n are points of 1) because m" Mm = 0 and n" Mn = 0. The points m,
n are called the principal points of .

A quadric surface in P* for which the second order terms have the form x7 Mx where M is given
by (4) is known as a rectangular quadric. Ambiguous surfaces are examples of rectangular quadrics.

2.2 The projective geometric approach

The projective geometric approach to reconstruction is along the following lines. Let two images of
the points p; in space be obtained from cameras with optical centres at distinct points 0 and a. A
point ¢; in the first image defines a projection line < 0, q; > such that all points on this line project
to g;, and similarly, a point q; in the second image defines a projection line < a, q: > such that all
points on this line project to q;. Thus, image formation is modelled as a linear transformation from
the points of P3 to the two dimensional projective space of lines (sight rays) passing through the
optical centre of the camera from which the image is obtained. The lines < o,q; > and < a,q; >
correspond if and only if they intersect at some point in space.

If the reconstruction is ambiguous then there exist points a, b, not both collinear with o, such
that the camera taking the second image can have its optical centre either at a or at b. In this
case, let ¢ be the line of points projecting to a point q in the first image. Let r be the line of points
projecting to the corresponding point ¢ in the second image when the optical centre of the second
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camera is at a, and let s be the line of points projecting to g in the second image when the optical
centre of the second camera is at b. The line ¢ is the unique common transversal of r and s passing
through o, as illustrated in Figure 1.

Figure 1:

o

The image taken by the second camera is fixed independently of whether the camera is thought
to be at a or b, thus the angles between pairs of lines r;, r; through a are equal to the angles
between the corresponding pairs of lines s;, s; through b. It follows that there is a linear orthogonal
(ie. angle preserving) transformation w from the lines through a to the lines through b such that
wr =s.

Each line through a intersects I, at a unique point, thus the space of lines through a is
parameterised by Il,,. Similarly, the space of lines through b is also paraineterised by H,,. K
these parameterisations are adopted, then w becomes a linear transformation from Il to itself that
preserves angles. Thus, w is a rotation. In Cartesian coordinates the matrix of w is orthogonal. In
this case w coincides with the rotation U appearing in (2).

2.3 Geometrical construction of an ambiguous surface

The projective geometric treatment of ambiguity leads to a geometrical construction of ambiguous
surfaces, as given in [17]. The transformation w from the lines through a to the lines through b
induces a linear transformation, also denoted by w, from the planes through a to the planes through
b. If a line r through a is contained in a plane ®, then the line wr through b is contained in w(®).
Let II be any plane containing the line A = w™' < o,b >. Then w(Il) contains < 0,b >. As Il
varies through the one dimensional projective space of planes containing h, w(Il) varies through
the one dimensional projective space of planes containing < o,b >. The line I = I N w(II) then
sweeps out the ambiguous surface, 9, associated with the camera displacement from o to a. This
construction is illustrated in Figure 2.

The proof that ! sweeps out, 3 follows from the fact that, with the notation of Figure 1, ¢ is the
unique common transversal of r and s. In more detail, let I = Il Nw(II), as shown in Figure 2. Let
p be any point of [, let r =< a,p >, and let s be the line through b such that wr = s. Then s
and < o,p > are contained in II, thus s intersects < o,p >. Hence < o, p > is the unique common
transversal of r, s passing through o. It follows that p is in 9. The point p is an arbitrary point of
1, thus [ is contained in ¥ as required.
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Figure 2:

3 Invariance of an ambiguous surface under rotation

It is shown in Theorem 3.1 below that an ambiguous surface is invariant under a rotation through
180°. Before proving this result the following fact about rotations is recalled. If w is any rotation
with axis n, and 7 is a rotation through 180° about an axis orthogonal to n, then

w=Tw r (7

To prove (7) note firstly that w™!7 reverses the direction of n. It follows that w™!7 is a rotation
through 180°.
Theorem 3.1. Let ¢ be an ambiguous surface viewed by two cameras with optical centres at o
and a respectively. Let b be the alternative optical centre for the camera at a. Then 9 is invariant
under a rotation through 180° that takes a onto the line < o,b >.
Proof. Let 1 be generated by the construction described in §2.3, and let m, n be the principal
directions of ¢, as defined in §2.1. The collineation w of §2.3 is regarded as an orthogonal collineation
of I, with axis n and angle of rotation §. In this proof the point b serves oaly to fix the direction
of the line < o,b >. It is convenient to regard b as the point of II, corresponding to the direction
of < 0,b >.

Let 7 be the rotation of I, through 180° with axis m x n. It follows from the definition of 7,
on using (1), that

7b = 2[b.{m x n)jm x n — ||m x n||*b (8)

It follows from (5) that
m x n =sin(f)b x n + [1 — cos()](b x n) x n

thus
b.(m x n) = —(1 — cos{#))}|b x n|j* = ——;-”m x nf)? 9
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Equations (8) and (9) yield
thb=mxn+b (10)

Now
w b = —[1 ~ cos(#)][b — (b.n)n] +sin(d)b x n + b (11)

1t follows from (10) and (11) that 7b =w™'b.

Let 7 be the rotation of R® through 180° with axis in the direction m x n such that 7,(< 0,b >)
contains a. Let % be the line w™! < o,b >, as shown in Figure 2. The restriction of 7 to I, is
equal to . Thus

T’/Jb ::Tb :w_'lb = hﬂHoo

It follows that 7,(< 0,b >) = .

Each plane II containing % is uniquely defined by the intersection II N Il,. Thus, to find the
planes w(Il) and 74(11), it is sufficient to consider only the actions of w and 7y on Il;. Let II be
any plane containing < o,b >. Then ! = IINw(II) is a line in ¢. Let Z = ryw(II). Then = contains
k. It follows from (7) that w(E) = tyw17,(E). The application of 7, to ! yields

() = 1 (1) N 7y (Tl) = EN 7y 7y (Z) = ENw(E)

Thus 74(l) is contained in ¥. In consequence, ¥ is invariant under 7y. The result that 7ya is
contained in < o,b > follows from the construction of 7, O

It is shown in [14] that 7, is the unique rotation through 180° that leaves ¢ invariant and that
fixes the principal points of . A converse to Theorem 3.1 is obtained as follows.

Theorem 3.2. Let 3 be a non-singular rectangular quadric and let 7, be the rotation through
180° defined in the proof of Theorem 3.1. Let o, a, 7ya be distinct points of 3 such that rya is
on a generator of ¥ passing through o. Then ¢ is an ambiguous surface such that o is the optical
centre for the camera taking the first image, and a, 7,a are the two possible optical centres for the
camera taking the second image.

Proof. Let b be the point at which < o,7ya > meets II,. Let m, n be the principal points of %.
Let 7 be the restriction of 7y to I, and let o be a rotation of I through 180° with axis b x n.
Define the rotation w of I, by w = 7. Then, on applying (1), w='b = 7ob = 7,b.

Let h = 4(< 0,b >). Then w defines a collineation from the planes containing % to the planes
containing < o,b >. Let 9’ be the ambiguous surface swept out by the lines I = TN w(Il) as I
varies through the planes containing A. To prove the theorem it suffices to show that ¢ = ',

Let n, i, j. be the fixed points of w in Il,,. Let ki, k; ks be the unique lines containing n, i,
Jn, respectively, such that each k; meets both h and < o,b >. It follows from (2) (with U = w)
that n, 1,, j, are contained in 1. Each k; meets ¢ at three points, thus each k; is contained in .
Let II =< h,n >. Then w(Il) =< o,b,n >, thus

Inwl)=<ikn>nN<o,bn>=k

thus k; is contained in 9. Similarly, k, and k3 are contained in 9’. It follows that ¥ N+’ contains a
(split) space curve of degree five comprising %1, k2, ks, k, < 0,b >. Two distinct quadrics intersect
in a space curve of degree four only [15], thus ¢ and v’ are not distinct. In other words, ¥ = 9.
(M}

An explicit expression is obtained for the rotation 7, appearing in Theorem 3.1. The axis of 7,
has direction m x n. Thus the action of 7, on a general point x of R® is given by

__, 2[x.(mxn)lmxn
XSS T ]l

where s is an unknown vector normal to m x n. It follows from (3) that the vector normal to 7 at
o has direction 1. Thus the vector normal to 4 at 7,0 has direction 7yl. It follows that 2Ms +1is
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parallel to ryl. Thus
_2[(n.)m + (m.I)n]
ljm x nj?

It follows that
2[(n.)m + (mI)n}  2[x.(mXxnjjmxn

ffm x n|)* [ m > n]l?

(12)

TyX = —

4 Two cubic constraints on ambiguous surfaces

Two cubic constraints on ambiguous surfaces are obtained. The first constraint is a new one arising
from Thecrem 3.1. The second cubic constraint is well known [5]. To obtain the first constraint the
following three theorems are required.
Theorem 4.1. With the notation of Theorem 3.1, let ¢ be a non-singular ambiguous surface with
principal points m, n, and let Cartesian coordinates be chosen such that the origin o is the optical
centre of the camera taking the first image. Let r = m X n, let | be the normal to the tangent plane
to ¢ at o, and let a be a possible optical centre for the second camera not lying on a generator
through o, Then

—4(mBy(n.l) + 2(ar)(lr) — (al)(rr) =0 (13)

Proof. Let 7, be the unique non-trivial rigid involution of 1 that fixes both m and n. It follows
from Theorem 3.1 that 7ya lies in the tangent plane to ¢ at o, thus L.7ya = 0. The result follows
on substituting the expression for Tya given by (12) into the equation Lrya=0. O

Theorem 4.2. Let m, n be vectors, and define the matrices N, L by

N
L

%(m@n-{-n@m) (14)
(m xn)® (m x n) (15)

Let e]; e;, e] be the rows of N. Then

el xeJ
L=4 (e;l‘ X e;_ )
e] xef
Proof. The result follows from (14) and (15) on expressing e;, €;, €3 in terms of mand n. O
Theorem 4.3. In the reconstruction problem, let two points in space be given as optical centres for
the cameras taking the first and second images respectively. Then any ambiguous surface associated
with these two optical centres satisfies a cubic polynomial constraint.
Proof. Cartesian coordinates are chosen, and the notation of Theorem 3.1 is employed. Let o, a
be the two optical centres, and let an ambiguous surface 9 containing o, a have an equation of the
form (3). Let m, n be the principal directions of %, and let N be the matrix defined by (14). It
follows from (4) and (14) that

N=M- %Traoe(M)I

The entries of N are thus linear functions of the entries of M.
The cubic polynomial constraint on ¢ is obtained from (13). The term —4(Lm)({l.n) on the
left-hand side of (13) has the form

—4(im)}(ln) = —41"N1 (16)
The remaining two terms on the left-hand side of (13) have the form

2(ar)(lr) — (al)(r.r) = 2a" L1 — (al)Trace(L) (17)
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It follows from (16) and (17) that (13) is equivalent to
—41TN142a" L1 — (al)Trace(L) = 0 (18)

Let e], e], e7 be the rows of N. Then, on applying Theorem 4.2, (18) takes the form

. ef N el xe el xe;]
~1Ttel 11+2a" | ef xel |1—(al)Trace| e] xe] | =0 (19)
e el xef el xel

Equation (19) is the required cubic constraint on . O
The second, and well known, cubic polynomial constraint on the ambiguous surface 9 is

det(N) =0 (20)

where N is defined by (14). Equation (20) follows from the fact that IV has rank two. It is cubic
in the coeflicients of the equation (3) defining ¢ because the entries of N depend linearly on the
entries of the matrix M in (3).

5 The case of five image correspondences

An algebraic question arising in reconstruction is that of finding the number of essentially different
camera displacements compatible with five given image correspondences. The number of unknown
parameters in reconstruction is five, comprising three independent parameters for the rotation R,
and two parameters for the direction of the translation a. Each image correspondence imposes one
constraint on {R,a}, thus five image correspondences are sufficient {o reduce the set of compatible
camera displacements to a finite size. Determining the size of this set is of interest because the
number thus obtained is a fundamental algebraic measure of the complexity of the reconstruction
problem.

A comment on the method of counting solutions is required. If the camera displacement {5, b}
is compatible with a given set of image correspondences, then so are {5, b} and {¢S, b}, where
A is any non-zero scalar, and o is a rotation of 180° with axis Sb. {(See [6]). All these solutions
are counted together as a single solution to the reconstruction problem. If {R,a} is an additional
camera displacement compatible with the same image correspondences as {S,b} then the same
ambiguous surface is obtained on pairing {R, a} with the {S,Ab} and {¢S,b} in turn.

Demazure [2] uses algebraic geometry to prove that the number of camera displacements com-
patible with five image correspondences is ten. In this context ten is high, indicating that the re-
construction problem is difficult. The following three theorems comprise a new proof of Demazure’s
result.

Theorem 5.1. Let five image correspondences be given compatible with a given camera displace-
ment. Then a two dimensional space of quadrics can be constructed such that any ambiguous surface
compatible with the five image correspondences and compatible with the given camera displacement
is represented by a point in the two dimensional space of quadrics.

Proof. Let Cartesian coordinates be chosen with origin o at the optical centre of the camera from
which the first image is obtained. Let q; « q; be five image correspondences compatible with the
given camera displacement {R,a}, where R is an orthogonal matrix and a is the optical centre of
the camera from which the second image is obtained. Let p; be the points in P? such that the image
of p; from o is q;, and the image of p; from a is .

An ambiguous surface, compatible with q; ++ q; and compatible with {R,a} contains the five
points p;, together with the points o, a. The space of all quadric surfaces contained in P® is
of dimension nine. The condition that a quadric contains a known point imposes a single linear
constraint on the quadric, thus the quadric surfaces containing the p;, o and aforma 9—7 =2
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dimensional space 8% contained in the space of all quadrics. A basis for §% can be calculated from
the p;, 0 and a. O

Not all the quadrics parameterised by points of S? are ambiguous surfaces. The proof that there
are ten essentially different camera displacements compatible with five image correspondences relies
on selecting from 8? precisely those points corresponding to ambiguous surfaces.
Theorem 5.2. Let five image correspondences be given in general position, and compatible with
a known camera displacement. Then there exist two cubic plane curves fy, f» in the space S?
constructed in Theorem 5.1 such that each camera displacement compatible with the image cor-
respondences, but different from the known camera displacement, arises from a common zero of
f1 and f;. Conversely, each common zero of f; and f, gives rise to essentially only one camera
displacement compatible with the given image correspondences, but essentially different from the
known camera displacement.
Proof. Let {R,a} be the known camera displacement and let {5;,b;}, 1 <7 < n be the camera
displacements essentially different from {R,a} but also compatible with the five image correspon-
dences. Each pair {R,a}, {5;,b;} yields an ambiguous surface v;, with an equation of the form
(2), where b = b; and U = S R. Each y; corresponds to a point u; of §2. The cubic constraints
(19) and (20) yield cubic plane curves fy, fz, respectively, in S2. Each u; is an intersection point
of fi and f,. Conversely, by Theorem 3.2, each intersection point of f; and f, yields an ambiguous
surface 9. The surface ¢ yields a unique camera displacement in the set {S;,b;},1 <i<n. O
Theorem 5.3. Let five image correspondences be given in general position. Then there are exactly
ten essentially different camera displacements compatible with the given image correspondences.
Proof. To prove the theorem it suffices to show that the cubic plane curves fi, fz in 8% obtained
in Theorem 5.2 have, in general, exactly nine distinct intersections. The property that f; and f,
have nine distinct intersections is stable against small perturbations in the coeflicients of f; and fs,
thus it is sufficient tq consider the case in which the coeficients of f; (defined by (19)) involving a
are negligibly small in comparison with the first term —17 N1. It is thus sufficient to consider the
cubic curves in 8?2,

I"™NI=0 det(N) =0 (21)

In order to show that the two curves of (21) have, in general, nine distinct intersections, it is
sufficient to produce a single example in which they have nine intersections. To this end, choose
three of the reconstructed points in P® to be p; = {1,0,0,0)7, p; = (0,1,0,0)7, ps = (0,0,1,0)7,
and choose a = (1,—1,1)7. With these choices, the equation det(N) = 0 splits into three linear
factors. It can be shown by direct calculation that py, ps can be chosen in R® such that each line
comprising det(/N) = 0 meets the cubic plane curve 1" N1 = 0 at three distinct points. 0O

In Theorem 5.3 the possibility is not ruled out that the intersections of the two cubic plane
curves yield quadrics without real generators. Quadrics obtained in this way give rise to complex
camera displacements compatible with the q; & ¢, but which are not physically acceptable.

6 Conclusion

The reconstruction of the relative positions of points in space from the correspondences between
two different images of the points is subject to ambiguity if the points lie on certain surfaces of
degree two known as rectangular hyperboloids. The ambiguous case of reconstruction has been
investigated using both the projective geometric methods developed by the photogrammetrists and
the Euclidean methods developed in computer vision.

A new cubic polynomial constraint on ambiguous surfaces has been obtained. This leads to
a new proof of the known result that there are, in general, exactly ten camera displacements
compatible with five given image correspondences. 1t is conjectured that these results on ambiguity
are relevent to the more general problem of describing the stability of algorithms for recovering
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camera displacement from image correspondences [2]. For example, instability may arise if the two
cubic plane curves obtained in Theorem 5.2 are near coincident over a wide range of points.
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