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Abstract 

This paper describes a real time 3-D vision system which uses stereo matching of vertical edge segments. 
The system is designed to permit a mobile robot to avoid obstacles and to position itself within an indoor 
environment. The system uses real time edge tracking to lock onto stereo matches. Stereo matching is 
performed using a global version of dynamic programming for matching stereo segments. 

1. Introduction 

Indoor man-made environments contain many vertical contours. Such contours correspond to environmental 
structures which a mobile robot may perceive to position itself and to navigate. This system was inspired by 
the system of Kriegman, Treindl and Binford [Kriegman et. al. 1989]. The stereo system is organized as a 
pipeline of relatively simple modules, as illustrated in figure 1.1. 

2. Detecting and Linking Vertical Edges 

The first module in the system is concerned with detecting vertical edges. A cascade of simple filters is used 
to first smooth the image and then approximate a first vertical derivative. Filters in this cascade are 
composed of binomial kernel for smoothing, and a f'wst difference kernel for calculating the derivative. 

2.1 The Filter for First Vertical Derivatives 

Our first derivative filter is composed from a cascade of k convolutions of a circularly symmetric binomial 
filter, m convolutions of a vertical low pass filter followed by a convolution with a first difference filter. 

1 2 1  *k ~ *m 

mkm(i ,j) = 2 4 2  • 112] • 
1 2 1  

The results presented below are based on the empirically obtained values of filter of k = 4 and m = 2.This 
filter will give a negative response for transitions from dark to light and a positive response for transitions 
from light to dark. In order to detect points which belong to vertical edges, each row of the filtered image is 
scanned for extrema. An extrema, or edge point is any pixel e(i, j) that is a local maximum and has more 
than twice the absolute value of neighbors 3 pixels away. 

2.2 Raster Scan Edge Chaining 

The second module in the system is responsible for edge chaining and straight line approximations. Raster 
scan based chaining algorithms are well suited to real time implementation. Raster scan edge chaining is 
greatly complicated by the presence of edges near the scan direction [Discours 89]. By restricted edges to 
directions perpendictflar to the scan direction the process becomes quite simple. Edge chains are converted 
to edge segments by the well known "recursive line splitting" process [Duda-Hart 73]. This algorithm is 
known to exhibit instabilities when representing curved edges. In experiments with curved objects, these 
instabilities have not proved a problem for subsequent stages in our system. 

This work was sponsored by Socitt6 ITMI and Project EUREKA EU 110 : MITHRA. 
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2.4 The MDL Edge Segment Representation 

As edge segments axe detected they are transformed to a parametric representation composed of the mid- 
point, direction and length. We refer to this representation as MDL. This representation is designed to 
facilitate the matching step in the segment tracking phase, and to permit Kalman filter tracking of the center 
point as two independent parameters. The MDL parametric representation for segments is described in 
[Crowtey-Stelmaszyk 90] in this conference. A segment is represented by a vector S = {c, d, 0, h} of 
parameters: 
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Figure 1.1 The System Organization 

3. Measuring Image Flow by Tracking Edge Segments 

Tracking allows us to preserve the correspondence between an observed edge and information in the 3-D 
scene model. This tracking process is well debugged and has been used in a number of projects. Real time 
hardware has recently been constructed using this algorithm [Chehikian 88]. This process has been 
described at the second I.C.C.V. [Crowley et. al. 88]. Performing stereo correspondence on the flow 
model provides cleaner data for stereo matching. In particular, this technique also permits the system to 
function in the presence of simple occlusions. 
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Correspondence of edges is maintained by a very simple tracking process based on a Kalman filter. The 

tracking process maintains a list of "active" edge segments composed of the parameter vector, S ={c, d, 0, 
h}. The flow model also contains a confidence factor, CF, represented by a state from the set {1, 2, 3, 4, 
5} and a unique identity, ID. The identity of a segment permits the process to preserve the association 
between a segment, its corresponding segment in the other image, and the resulting 3-D segment. 

4. Correspondence Matching using Dynamic Programming 

Stereo matching is performed by a single pass of a dynamic programming algorithm over the entire image. 
The process "locks on" to correspondences, by feeding the previously discovered disparity for each 
segment pair into the matching process. 

Line segments from the flow models from the left and right images are combined with predictions from the 
previous match to produce a new stereo correspondence list. The contents of the stereo correspondence list 
gives a list of vectors each containing 4 values: (Left ID, Right ID, Disparity, CF). The Left ID and Right 
ID are the ID's of the matching segments. The Disparity is the most recently observed horizontal disparity in 
pixels. The CF is the; number of times which this correspondence has been found in the last 5 images. IF 
CF goes to zero, then the correspondence is removed from the list. 

4.1 Matching by Dynamic Programming 

Stereo matching is performed by a dynamic programming algorithm [Kanade-Ohta 85]. The dynamic 
programming algorithm calculates the best global match provided that the order of the segments is the same 
in the two images. The algorithm works by propagating matching costs in a grid. After propagating the cost 
from the bottom to the top of the grid, the least cost past is traced back to the far comer of the grid. The cells 
in this path provide the most likely globally consistent set of correspondences of segments from the left and 
right flow models. 

The edge lines in each flow model are ordered from left 
to right based on column of the midpoint. When more 
than one segment has the same midpoint, the segments 
are ordered from top to bottom using the row of the 
midpoint. Thus, the columns of the DP array grid 
correspond to the segments from the left flow model, 
and the rows correspond to the segment from the right 
flow model. Paths through the DP grid correspond to 
possible matches of segments. A "lawn-mower" style 
algorithm is then used to propagate the cumulative cost 
for every possible path, based on a cost function for 
each pair of matches., 

4.2 Cost Functions 

Figure 4.1 The segments in the flow 
models are sorted by row and column. 

The individual cost of matching a segment from the left image to a segment in the right image is based on 
the Mahalanobis distance between the attributes of the segments. Let us refer to S n as the nth segment from 
the left flow model and S m as the m th segment from the right flow model. The individual cost for matching 
S n to S m is given by: 

C(n,m) = Co(n,m) + C0(n,m ) + C d (n ,m)  
where: 

Co(n, m) = ABS(d n -dm) / ( h n + hm) C d (n, m) = (c n - c m - Do) / c o 

C0(n,m ) = (0 n - 0 m )  / 10 ° 
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The term Co(n, In) is based on the overlap of the segments, as computed from the parameters d and h. If the 
segments do not overlap, then the normalized difference is greater than 1 and the match is rejected by setting 
the cost to infinity. 

The term C0(n,m ) is based on the similarity of orientation of the segments, as computed from the parameter 

0. An experiment was performed in which it was observed that the largest difference in angles occurred 
when a 3-D line segment is tilted away from the cameras by 45 °. In this case the observed difference in 
angle is 10 °. Thus the cost for the difference in image plane orientation between the left and right images is 
given by the difference normalized by 10 °. 

The term C d (n, m) is the difference between an expected disparity and the observed disparity. A nominal 
disparity is initially determined from a fixation distance. This distance is a parameter which can be 
dynamically controlled during matching. Whenever a stereo match exist from the previous frame has been 
determined with a CF > 1, the nominal disparity is reset to this previous disparity. In this way the process is 
biased to prefer existing matches. The cost is determined by dividing the difference from the fixation 
disparity by an uncertainty, Oo, which is also a parameter which can be controlled in the process. The cost 
of skipping a match is equal to the cost from a 1 standard deviation difference on all three measures, that is 
Cskip = 3. 

The system has been regularly operated using live images during debugging over the last few months. In a 
typical experiment, a sequence of 5 to 10 pairs of stereo images is a made as the mobile robot moves in a 
straight line. Matching statistics have been improved from early results of around 80% correct to nearly 
100% correct by improving the stability of edge segments that are detected. This additional stability was 
achieved by increasing the degree of smoothing from m=2 to m=4, as well to enlarging the tolerance for 
recursive line fitting to 2 pixels. 
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Figure 5.1 Cameras can be mounted with a vergence angle a. Rectification corrects for this angle by 
projecting back to virtual co-planar retinas. 

R e c o v e r y  o f  3 -D Pos i t i on  f r o m  Stereo  I n f o r m a t i o n  

The 3-D inference process begins by rectification of the position of segments which are found to 
correspond. Segments are then limited to their overlapping parts, followed by a the calculation of the depth 
and uncertainty for the end points in a camera centered coordinate system. Segment parameters are then 
computed from the end-points, arid the representation is transformed to scene centered coordinates. 

5.1 Projection to a Virtual Retina at F=I 

When the retings of stereo cameras are co-planer, the depth equations reduce to a trivial form. However, it 
is impossible to mechanically mount cameras such that their retinas are sufficiently close to parallel for this 
simplification to apply. This problem is avoided by calibrating a transformation which projects points in 
stereo images to a pair of virtual co-planar retina's as illustrated in figure 5.1. We call these the "virtual 
rectified retinas. We use a technique inspired by Ayache [Ayache 88] to perform this transformation. 
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5.2 Depth from Co-planar Stereo Cameras 

For coplanar retinas, the depth equation falls directly from a difference in similar triangles. For cameras 
separated by a base line distance of B, the depth, D, is given by the disparity by D = F B / Ax. If we observe 
that our edge lines are rectified to a virtual retina where F = 1, then the depth, D, is given by 

D = B /  Ax. 
The linear term B is determined as a final step in calibration by calculating the distance between the optical 
centers of the left and right cameras as provided by calibration. 

Projection to 3-D is performed using the segment end-points. Because segment length is not always reliable, 
we must f'rrst determine the overlapping part of the corresponding segments. For each of the end points in 
the corresponding segments, we compute the depth, D = B / Ax. We then compute the corresponding 
point in the scene, in the coordinate system of the stereo pair of camera as: 

x c = D Xrr (di/F) + B/2 Yc = D Yrr (dj/F) z c = D 
The uncertainty of each recovered point is modeled as having two independent components: an uncertainty 

in x, c x, and an uncertainty in D, o D. 

6 Sample Results 

This system is the subject of ongoing tests and refinements at our laboratory. A sample of the results form 
the system is presented in the following figures. This is the second pair from a set of 5 pairs taken at 10 cm 
displacements. Matches were 100% correct in 4 of the 5 pairs in this sequence, with one incorrect match in 
the first stereo pair. Figure 6.1 shows the raw images and the vertical edge lines which are detected. Positive 
edges are shown in white, negative in black. Figure 6.2 shows the correspondance between the segments in 
the left and right flow models. Figure 6.3 shows an overhead view of the 3D segments which were 
projected into scene coordinates. 
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Figure 6.1 An example of the vertical edge segments detected in a laboratory scene. 

Figure 6.2 Stereo Correspondence for segments extracted from the stereo images. 
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Figure 6.3 Overhead view of the vertical segments reconstructed from the correspondences in figure 6.2. 


