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A b s t r a c t  

We examine the tracking of 3-dimensional targets moving in a complex (e.g. highly 

textured) visual environment, which makes the application of methods relying on static 

segmentation and feature correspondence very problematic, even under specific assump- 

tions "about the trajectory of the target. From the system kinematics and optical flow 

formalism we derive a general criterion, the Tracking Constraint, which specifies the op- 

l~imal camera reorientation as the one that minimizes the optical flow in the center of the 

camera in the sense of an appropriate metric. A correspondence-free scheme is devised 

'which employs dynamic segmentation and linear features of the image in order to cap- 

ture global information about the scene and bypass numerical differentiation of the image 

:intensity. 

1. I N T R O D U C T I O N  

Visual tracking is an important problem in Computer Vision, not only because of its 

applications in areas such as aircraft and missile tracking, robot manipulation of objects, 

navigation, traffic monitoring, cloud tracking in meteorology, cell motion and tracking of 

moving parts of the body (e.g. the heart) in biomedicine, but also because it increases the 

robustness of Early Vision process solutions [1], allows more efficient use of our sensory 

and computational resources by focusing them on an area of interest and avoids blurring 

:from the motion of the target by stabilizing it in the center of the camera. 

The Vision Module of a tracking system consists of the hardware and software nec- 

essary for the processing of the Visual information. It gets the analog image, digitizes it, 

creates an array of intensities for all points of the field of view and from this information 

locates the target and computes the camera positioning that will achieve tracking. Lo- 

cating the target is the part of the tracking process referred to as the Target Acquisition 
phase and corresponds in the human oculomotor system to the fixation of a target using 

saccadic eye movements: The computation and execution of a smooth and continuous 
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camera motion that will keep the target foveated is called the Tracking phase and corre- 

sponds in the human visual system to the smooth pursuit eye movements. During this 

phase, the target tends to drift slowly away from the center of the image and, after some 

time, it may be lost. Then a new acquisition phase is required. 

In the following we will assume that during the acquisition phase the target was 

brought to the center of the image plane and we will consider the problem of keeping the 

target foveated. We are mainly interested in the most general instance of the problem, 

involving a 3-D target moving in 3-dimensional space. Previous approaches [5], [6], [7], 

[8], [11], [13], [14], [16], [19], [20] to the problem are composed of three main steps: First, 

they perform segmentation of the image or of appropriately selected parts of it, in order 

to locate the target and extract the new position of some characteristic points of its image 

(centroid, feature points, etc.). Second, they match these new characteristic points with 

their corresponding ones in previous or current (in the binocular case) frames and thus 

extract information about the displacement of the target. Third, from this displacement 

they compute the necessary camera rotation that will achieve tracking. 

In our approach we consider a general criterion (one not restricted to a specific 

target or visual environment) for 3-D tracking, the Tracking Constraint, which, if satisfied, 

guarantees tracking in the sense of keeping an initiMly foveated target stationary in the 

center of the camera. This formulates tracking as an Optimization problem and allows 

the use of powerful tools from Optimization Theory for the solution of the problem. We 

follow the continuous motion approach and use the concept of optical .flow to formulate 

this constraint. The Tracking Constraint uses global information from entire areas of the 

image and does not require feature extraction or matching. Therefore it is expected to 

be more robust in the presence of noise than previous methods. To solve the problem in 

a correspondence-free manner (without computing the optical flow field), we assume that 

the shape of the target is known, so that we can estimate the kinematic parameters of its 

motion. Obviously, a requirement for knowledge of the shape in a general tracking scheme 

is by far less restrictive than an ad-hoc tracking scheme for a specific target or class of 

targets, since the latter may be used only for a specific target, while the former may be 

used for any tracking problem where the shape is known exactly or approximately. 

Finally, and most importantly, the theory described here considers tracking in 3-D 

and suggests several research avenues on how tracking interacts with modules such as 

shape from "x ' ,  structure from motion, etc.; such interactions are necessary in our effort 

to integrate various vision modules [2], [12]. 
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2. C O M P U T A T I O N A L  T H E O R Y  OF T R A C K I N G  

In this section we devise a model of the image formation process and the motion of the 

target, based on the system kinematics and the optical flow formalism. (For details see 

[3], [181.) 

Optical Flow is the velocity field generated on the image plane from the projection of 

objects moving in 3-D, from the motion of the observer with respect to the scene or from 

apparent motion~ when a series of images gives the illusion of motion. The image intensity 

s ( x , y , t )  at a point ( x , y )  of the image plane at time t is related to the instantaneous 

velocity (u(x, y), v(x,  y))at  that point by the Optical Flow Constraint equation ([9],[17]): 

s~(x, y, t)u(x, y) + s~(x, y, t)v(x,  y) + st(x, y, t) = O, (1) 

Let T = (T1, T2, T3) and ~ = (wl,w2,w3) be respectively the translational and angular 

velocities of the target at time t, relative to the camera coordinate system (Figure 1). 

The pinhole camera model and the system kinematics can be used to show that, under 

perspective projection, the optical flow field (u, v) induced at the point (x, y) of the image 

plane by the motion of the target, is: 

u(x ,y)  - fT1 - xT3 
Z 

xy (x 2 -% f2) 
wl "7 -% w2 f w3y (2) 

v(x,  y) - fT2 - yT3 wl (y2.4_ f2) -% xy 
Z f w2--f- -% w3x. (3) 

F igure  1. 

Since the optical flow expresses the relative motion of the target and the camera, the 

problem of stabilizing the target at the origin of the image plane by a rotation (w,,wy) 

of the camera, can be expressed equivalently as making the optical flow field zero near 

the origin. When both the camera and the target are moving, the corresponding optical 
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flow field will be the superposition of two components: One induced by the target (u t, v ~) 

and one induced by the camera motion (uC:m,v~:m). By observing that a rotation of 

the camera by (w:,wv) has the same effect on the image formation process as a rotation 

of the target by ( -w : , -wv) ,  both components of the optical flow can be related to the 

corresponding kinematic parameters by the equ. (2) and (3). 

The trackin9 problem can then be set as the specification of the camera rotation 

(w:,wv) that will minimize the optical flow field, in the  sense of an appropriate metric 

(L:2), in a neighborhood/3 of the origin of the image plane : 

min [[ (u2(x, y) + v2(x, y))dx dy, (4) 
OdX ~O~y JJB 

where u = u * + u *~m and v = v t + v ~m. This is called the Tracking Const ra in t .  The 

neighborhood B is specified by the dynamic segmentation process. 

An a lgo r i thm for tracking the motion of an object moving in 3-D then suggests 

itself: Step 1 : Estimate (u*, vt). Step 2 : Solve the Tracking Constraint (eq. (4)) and 

derive the desired camera angular velocities that will achieve tracking. 

Typically Step 1 involves the Optical Flow Constraint. If we assume that the optical 

flow (u*, v*) can be computed from the image, then tracking is achieved through mini- 

mization of (4) or, if (4) is combined with (1), tracking is achieved through solution of 

a penalized least-squares problem. The reader interested in this approach is referred to 

[18]. However, due to the fact that the computation of the optical flow field still remains 

a very hard problem especially for the case of complex visual environments involving dis- 

continuities, we chose to seek an alternative approach. The next section describes our 

algorithm for tracking, which is based on the knowledge of the shape of the target, but 

does not assume knowledge of the optical flow field. Instead, it estimates the kinematic 

parameters (T,~)  of the target motion and then it uses equ. (2) and (3) to compute 

(u *, v ~) for the first step of the algorithm. 

2.1. Es t ima t i on  of t he  Three -Dimens iona l  Mot ion  

Suppose that an object exists in//{3, with its surface given as a function Z = g(X, Y) in 

the camera coordinate system OXYZ.  The following analysis is done with respect to the 

camera coordinate frame. 

Theorem: 
The optical flow (u, v), generated from the motio n by (T, w) of a rigid target relative 

to our camera, is a linear function of the target motion parameters, of the form: 
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where the matrix/A contains known functions of the shape, the projection function and the 

OF I7, Z) is the Jacobian matrix of the projection func- retinal coordinates and where 0-~(X, 

tion P(X,  Y, Z), p [ l ( x ,  y) is the inverse projection mapping from the image to the target (i ":/ surface, which has shape Z = g(X, Y),  and 17(X, Y, Z) = 1 0 -z  0 . For 

0 1 Y - X  

a proof of the theorem, a discussion of its consequences, and examples see [3]. 

In the sequel, the motion parameters (2F, a~) will be denoted by mi, i = 1 , . . . ,  6. 

The problem now is to compute the motion parameters ms, i = 1 , . . . ,  6 of (5), with- 

out actually computing the optical flow or the spatial derivatives of the image intensity 

function. For this purpose, we use the concept of linear features, which are sets of func- 

tionals over an area S of the image plane F(t) = {fi(t) = / L s ( x ,  y, t))#i(x, y)dx dy, i = 
1 , . . . ,  n}, where #i(x, y) is called the measuring function of the~ ith linear feature. Consider 

the temporal derivative of the ith linear feature: 

]i = ttidx dy = - mk I~(uk, s ,  + u~sv)dx dy , 
JJ S (7~ k= l  

where ukl are the elements of the matrix/g in (eq. 5). Defining hik = --ffstt~(uklsx + 

uk2sv)dx dy we get ]i = ~6 mkhlk and then , k = l  

% 

H r , = f ,  (6) 

where H is the n x 6 matrix of the coefficients hik and ra = ( m l , . . . ,  ms). The vector of 
% 

derivatives of linear features f and the matrix H depend on measurable quantities. We 

can therefore compute them, solve the linear system (6) and obtain the motion parameter 

vector rTt. Since the number n of linear features will normally be greater than 6, a least- 

squares solution will be used. It is well known that the system (6) has the unique minimal 

norm solution ~ = H t j  e~, where H t is the Moore-Penrose inverse of H.  

In our target motion parameter estimation scheme no explicit calculation of the 

optical flow field is needed, as we have seen up to this point. In the next section we will 

see that neither is it needed for the tracking scheme developed there. Moreover, the only 

calculation involving the derivatives of the image intensity function s is done in order to 

obtain the parameters hlk. Spatial differentiation of s is needed there, but, since numerical 

differentiation is an ill-posed problem, we tried to bypass it by using Green's Theorem on 

the boundary OS of the area S: 

/ fs[:O Q(x,y) - ff~P(x,y)]dx dy = ~ s P ( x , y ) d x  + Q(x,y)dy. 
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Then, from the definition of h~k: 

Therefore, spatial differentiation of s was replaced by differentiation of g~ and Ukl, 

which can be done analytically. Now, if we consider as S the projection of the target on 

the image plane, we can use the dynamic segmentation procedure to specify OS and then 

the above procedure will specify the kinematic parameters of the target. 

2 . 2 .  T r a c k i n g  

Using eq. (2), (3), (5), and the target motion parameters m~ that we just computed, the 

Tracking Constraint can be brought to the form: 

where a, 13,..., ~ are known functions of the data. 

Obviously a, fl >__ 0. Experimental results show that they are not simultaneously 

zero and that 4aft - J ~ 0. It is easy to prove that under those conditions the Tracking 

* ~ and * = ~ , which is the Constraint has a unique minimizer: w e = 4 ~ - ~  wy 4 ~ - ~  

desired camera rotation that achieves tracking. 

3.  E X P E R I M E N T A L  R E S U L T S  

3.1. Syn the t i c  e x p e r i m e n t s  

The previous tracking algorithm was implemented on SGI IRIS graphics workstations for 

a textured planar target moving in front of a randomly textured background (Figure 2). 

In this paper only the diagram of the distance oPw versus time is presented as a 

measure of the quality of tracking. (P~ is the projection on the image plane of the "center" 

W of the target; o is the origin of the image plane coordinate system.) The simulation 

of the tracking process consists of a sequence of a target motion followed by a camera 

tracking action at each time instant. Therefore, motion at even time instants on the 

diagrams corresponds to target motion, while motion at odd time instants corresponds to 

camera tracking motion. 
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Figure 2. 

Very good results were obtained for this tracking scheme fed with "perfect" estimates 

of the target motion (accurate values for the direction of translation and rotation) for 

various general motions of the target (Figure 3). The results degenerate "gracefully" as 

the quality of estimates decreases due to very fast motion of the target or noisy images. A 

sequence of "noisy" target motion estimates was generated in order to test the performance 

of the algorithm under inaccurate motion estimates. The algorithm performs well with 

30% to 60% noise in target motion estimation (Figure 4). 
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Errors are introduced in this tracking scheme from discretization effects, which will 

affect mainly the temporal derivatives of the linear features, numerical instabilities in the 

least-squares solution of the linear system Hr~ = f and the coarse resolution of the image 
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used in simulations. 

Several sets of linear features were considered before establishing experimentally that 

the best 3-D motion parameter estimation is obtained with moments of the image, which 

have the advantage that they are easily implementable in hardware, therefore the above 

scheme can be used for real-time applications. (See [4] for a theoretical justification of this 

choice.) Moreover, the Connection Machine can be used for the real-time computation of 

the matrix H and the vector of linear features f ,  which are the computational bottlenecks 

of the above algorithm. 

3.2. A robotic implementation 

In order to demonstrate the feasibility of this approach, we implemented the tracking 

algorithm in a robotic environment built in our laboratory. The task was the following: 

a programmable Mitsubishi robot arm held a soft drink can which it could move towards 

any direction against a textured background. On the hand, a 6-dof American Merlin 

robot arm equipped with a Sony DC-37 CCD camera was used to emulate the tracking 

system. The task then was to have the American Merlin robot arm track the can held by 

the first robot, which could move towards any direction (see Figure 5, which shows part 

of the "seeing" arm on the left "watching" the arm that holds the object to be tracked). 

Figure 6 shows the image of the object to be tracked as seen by the tracker. 

Figure 5. Figure 6. 

Because the analysis of the images taken by the tracker had to be done on a VAX 785 

and the primitive image processing operations on a VICOM image processor, all linked 

through a network, a real time implementation was impossible due to the heavy commu- 

nication bottleneck. For this reason, we chose to present results from the experiments in 

the same format as in the case of the synthetic simulations. Again, the vertical axis of 
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the plots represents the distance oP~ as before, and the horizontal axis represents time 

and motion at even time instants on the diagrams corresponds to target motion, while 

motion at odd time instants corresponds to camera tracking motion. Figure 7 shows the 

results from three experiments. In the first (solid line), the actual motion was translation 

along the x-axis and under the assumption that the object in view was planar (instead 

of cylindrical) in order to examine the deviation of the results .as a function of deviation 

from the local shape assumption. Clearly the results are not sensitive. The next two 

experiments (dotted and dashed lines) show results under horizontal motion (dotted) and 

motion in the x - z plane (dashed). It is quite clear that the results are very satisfactory. 
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