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This paper describes a technique for building a geometric description of a scene from the motion of a camera 
mounted on a robot arm. The movements of edge-lines in a sequence of image are tracked to maintain an 
image plane "flow model". Tracking perserves the correspondance of segments, even when the camera 
displaces, makeing possible a inexpensive form of motion stereo. Three dimensional structure is computed 
using the matches provided by the segment tracking process and the displacement parameters provided by 
the robot controller. By fusion of 3D data from different view points, we obtain an accurate and complete 
representation of the scene. 

Results from a sequence of 80 images taken from a camera mounted on a robot arm are presented to illustrate 
the technique. These results are used for an experimental evaluation ito illustrate the accuracy and the 
robustness of the technique. 

1. Introduction 

This paper describes a technique for reconstructing and modeling the 3-D geometry of a scene by tracking 
edge lines taken from a moving camera. This technique avoids both the cost of stereo correspondence 
matching, and the cost of matching recovered 3-D segments to update a 3-D model, by tracking. The 
computational and conceptual simplicity of this approach has made possible the development of an 
inexpensive real time hardware implementation. 

A basic idea behind this work is that structures from a dense set of images may be matched with a simple 
linear complexity algorithm. Our work was partly inspired by Generey, who has shown that measurement of 
the motion of points in an image sequence could be based on a Kalman filter [Generey 82]. Matthies et. al. 
have recently demonstrated recovery of depth from lateral displacement of points in a dense image sequence 
using a Kalman filter [Mautties et. al 87]. 

2. Measuring Image Flow by Tracking Edge Segments 

Correspondence of edges in a dense temporal sequence of images can be maintained by a very simply 
tracking process based on a Kalman filter. Such a process has been described in [Crowley et. al. 88]. This 
tracking process is well debugged and has been used in a number of our projects. Real time hardware has 
recently been constructed using this algorithm [Chehikian 88]. 

2.1 A Parametric Representation for Edge Segments 

The first step in the tracking process is to express edge segments in a parametric representation. Our 
tracking algorithm is based on the use of an MDL parametric representation [Crowtey-Ramparany 87], 
illustrated in figure 2.1. This representation is designed to facilitate the matching step in the segment 
tracking phase. As we shall see below, this representation is the 2-D analog of the 3-D representation which 
we apply to 3-D contours. For each segment, we also save the midpoint, Pm, expressed in image 
coordinates (i, j) as well as the end points, P1, and P2- 
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2.2 Representation for the Image Flow 

The tracking process maintains a fist of "active" edge segments composed of the parameter vector, 
S --- {c, d, 0, h} as well as the temporal derivative, a' and the covariance between the attribute 

and its temporal derivative for each attribute A of S. That is, for each A ~ S: 

a' CA = ~a ~a where a' ba =3? (Yaa' (Ya' 
The flow model also contains a confidence factor, CF, represented by a state from the set { 1, 2, 3, 4, 5 } and 
a unique identity, ID. The identity of a segment permits the process to preserve the association between a 
segment, its corresponding segment in the other image, and the resulting 3-D segment. 

Yl .~ x N ~ ~ i ' ' ° ° ° "  Line Segment Parameters: S =  {c,d, 0, h } . c  

0 
° X / x .  h 

Figure 2.1 The MDL Parametric Representation for Line Segments 

The perpendicular distance of the segment 
from the origin. 
The distance from the perpendicular intercept 
of the origin to the midpoint of the segment. 
The orientation of the segment. 
the half-length of the segment. 

2.3 Maintenance of a Dynamic Flow Model 

The segments in the flow model are tracked by a 
three phase process illustrated in figure 3.1. The 
phases of this cyclic process are: 

1) Prediction 
2) Correspondence 
3) Model Update 

Performing stereo correspondence on the flow 
model provides cleaner data for stereo matching. In 
particular, this technique also permits the system to 
function in the presence of temporary occlusions, 

3. Structure from Motion 

Match 

I~__~.~e Flow 

Figure 2.2 The Flow Measurement Process 

Tracking edge lines from a moving camera provides a number of useful capabilities. Two important 
properties are that the flow model provides an image description which is less sensitive to image noise than 
any individual image. A second property is that the ID of the edge lines in the flow model provides a 
correspondence of image features for different views of the same scene. 

The system described below is illustrated in figure 3.1. "Snapshots" of the flow model are saved after the 
camera has moved approximately 5 cm. In our data this corresponds to every 5th image. The ID attribute of 
the tokens in the model provide a correspondence between the tokens in each snapshot. Knowledge of the 
camera location at the time of each update permits us to compute the three dimensional locations for 
corresponding edge lines. These observed 3-D edge lines are then used to update the 3-D composite model. 

The 3-D composite model uses a 3-D edge line primitive described in [Crowtey 86]. These 3-D edge-line 
primitives contain an explicit estimate of the uncertainty of the 3-D positions. As with the flow model, a 
Kalman filter update equation is used to refine the estimated position and uncertainty. The resulting 3-D 
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edge line segments are more reliable and more precise than individual observations of 3-D segments 
obtained from pairs of "snapshots" of the flow model. 

Camera Position k-5 I Stereo Reconstruction 
Camera Position k ~ [ 

~ ~  3-D S e ~  

[ ~1" Verification Update 

I Predicti°n [ * 

~ ' ~ o m p o s i t e  M~e~ 'e~  

Figure 3.1 The components of our system for maintaining a composite model of the geometry of a scene. 

3.1 Coordinate Systems and Notation 

The derivation of the equations for recovery of 3-D structure from the movement of a camera on a robot arm 
requires that we define a set of coordinate systems, as well as homogeneous coordinate transformations 
between these coordinate systems. We represent a homogeneous coordinate transformation matrix as a bold 
letter. The coordinate system from which the transformation is applied is represented by a lower case 
subscript which appears after the matrix symbol. The resulting coordinate system is denoted by lower case 
superscript which precedes the symbol. Vectors will be illustrated with a capital letter followed by a lower 
case subscript which represents the coordinate system in which they are expressed. 

The transformations with which we are concerned ~ ¢ l V L c ~ I m a g e  
are: ~ r a  I~ 

eR r From robot to effector coordinates l ;C~.._ ~N~ ~N 

cc e From effector to camera coordinates J E f f e c t o r  x c  ~s 
CE s From scene to camera coordinates j E s \ 

iM c From camera to image coordinates e 1( r ~ ~  
IN s From scene to image coordinates 

J Robot 
(Calibration Grid) 

Figure 3.2 Coordinate Systems and Transformations 

Notice that the transformations iM c and iN s are not square matrices and thus have no inverse. These 
coordinate systems and transformations are illustrated in figure 3.2. 

Constructing an estimate of the position and uncertainty of 3-D contours in scene coordinates requires a 
model of the image formation process. Such a model is expressed as a composition of the intrinsic and 
extrinsic parameters of the camera. These parameters are obtained using homogeneous coordinate 
ti'ansformation as described in this section. The intrinsic parameters form a transformation, iMc, which 
describes the projection of the point Pc in camera parameters to a point in the image, Pi. 

Pi = iMc Pc. 
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The extrinsic parameters describe a projection, CE s, of a point from scene coordinates, Ps to camera center 
coordinates, Pc. 

Pc = CEs Ps 
Together the intrinsic and extrinsic parameters describe a projection, ins, from scene coordinates to image 
coordinates, 

1N s = IM c CEs, 
so that a point in the scene Ps is projected to a point in the image Pi by 

Pi = INs Ps. 
For the intrinsic camera parameters we employ a standard "central projection" model of image formation. 
This model expresses the projection using the ration of the pixel sizes to focal length, Dx~ and D y~  
(expressed in mm/pixels) and the optical center of the image, C x and Cy (expressed in pixels). 

The extrinsic camera parameters may be~estimated as a composition of the position and orientation of the 
robot arm "tool" coordinates, A, and the transformation from the tool coordinates to the camera B. An 
estimate of the position and orientation of the robot arm tool coordinates is provided to us by the arm 
controller. The estimate of the position and orientation with respect to tools coordinates is a rigid 
transformation which can be calibrated when the system is intialized. 

3.2 Estimation of  the Intrinsic Camera Parameters 

We adopted a camera calibration technique due to Faugeras and Toscani [Faugeras-Toscani 86]. Errors in 
3-D recovery due to errors in the calibration are included in our estimate of the uncertainty of the recovered 
3-D contours, The explicit estimation of uncertainty permits our system to function despite the presence of 
such uncertainties. 

The calibration of the intrinsic camera parameters requires observation of a set of 25 or more points arrayed 
on a grid. We use points extracted from the intersection of line segments in a grid of lines. A 15 by 10 grid 
with a 2 cm separation was prepared. Four images are taken of this pattern placed precise 3cm 
displacements heights above the work space. The first image defines a coordinate system at height Z = 0. 

Any three of the images are sufficient to determine the transformation iN s from scene coordinates to image 
coordinates to within a scale factor. Knowledge of the the height displacement Az = 3 cm provides the scale 
factor. The fourth image provides a check with which to verify the transformation which is obtained, 

Having obtained iN s we can determine the intrinsic parameters, iM c, using the technique provided in 
[Faugeras-Toscani 86]. We can then calculate the transformation from scene to camera coordinates as: 

CE s = iMc-1 iM c CE s 

Such estimate of the extrinsic parameters is obtained for three viewing positions during the calibration 
process. These estimates are combine with the position of the effector obtained from the robot arm controller 
in order to obtain the position of the camera with respect to the gripper as described in the next section. 

3.3 Estimation of the Camera Position Relative to the Robot End Effector 
For an arbitrary viewing position, k, estimation of the extrinsic camera coordinates, CEsk, requires 
knowledge of the position and orientation of the end effector as well as knowledge of the position of the 
camera with respect to the effector. The position and orientation of the robot end effector is obtained directly 

from the robot controller as a homogeneous coordinate transform rRek. 

The transformation from camera coordinates to effector coordinates is a rigid transformation, ec c. A 

technique for estimating the transformation eC c has been developed by Shui and Ahmad [Shui-Ahmad 87]. 
This technique yields a homogeneous transform equation of the form AX = XB. In our notation, this 
relation has the form 

A ec c = ec c B 
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The matrix A is the transformation of the effector position obtained by calibration at the two positions. For 
positions number 0 and 1, this is: 

A01 = rRe0-1 fRet 
The matrix B is the difference in the calibrated extrinsic camera parameters for the two camera positions. 
For positions 0 and 1 this is: 

B01 = CEs0 -1 CEsl 
By calibration at three camera positions (0, 1 and 2), such that the translations A01 and A12 are neither 
parallel nor anti-parallel, we obtain a set of e~uations of the form: 

A01 e c  c = ec  c B01 

A12 ec  c = ec  c BI2 

Solving these equations yields the transformation from camera to effector coordinates, e c  c. This 
transformation permits us to relate the extrinsic camera parameters for an arbitrary viewing position, to the 
calibration grid. 

3.4 Estimation of the Camera Extrinsic Parameters for Arbitrary Robot Positions 

Modeling the scene from multiple view points requires that the recovered 3-D structure be expressed in a 
common coordinate system. This common coordinate system may be any of the individual camera 
coordinate systems or the external scene coordinates. For convenience, we have chosen to use the calibrated 
scene coordinate system, def'med by the calibration grid. 

Let rRe0 represent the robot position at the time of the calibration of the first image, and let tRek represent 
the robot position at the time at which the flow model was updated from the kth image. The extrinsic camera 
transformation for the kth image may be computed from the robot effector position by: 

CEsk = ecc-1 rRek-1 rRe0 ec  c CEs0. 

This computation requires only one matrix inversion and two matrix multiplications. The terms eCc'l and 

rRe0 ec  c CEs0 can be computed at the time of calibration. 

Tracking edge lines as the camera moves produces a flow model composed of 2-D line segments. The robot 
arm controller provides us with the tool position at the time at which the flow model is updated with from 
each image. Knowing the offset of the camera from the tool coordinates permits us to calculate the extrinsic 
camera parameters. Knowing the intrinsic camera parameters permits us to treat snapshots from the flow 
model as stereo images to recover three dimensional position in the scene. This recovery process is 
described in the next section. 

3.5 Recovery of 3-D Scene Position By Motion Stereo 

The extrinsic camera parameters for arbitrary viewing positions permit us to use standard stereo 
reconstruction equations. This process is illustrated in figure 3.3. The composition of intrinsic and extrinsic 
camera parameters describes the projection of a scene point to an image point. 

Pi = iNs Ps. 
Using homogeneous coordinates, this relation has the form: 

F w x i ~  Ni l  N12 N13 N14 

w Y ~  = 21 N22 N23 N24 Ys 

LN31 N32 N33 N 3 

where x i and Yi are the image coordinates and w is the homogeneous variable. Because we can not invert 
this matrix, we are obliged to deal algebraically with the individual relations. 
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For two observations (1 and 2) of the a scene point we obtain the image points Pil = (Xil, Yil) and Pi2 = 
(xi2, Yi2). By algebra we can deduce the relations [Toscani-Faugeras 86] for (Xil , Yil): 

( N l l -  Xil N3I) Xs + (N12 - XilN32) Ys + (NI3 - XilN33) Zs = XilN34 - N14 
(N21 - Yil N3I) Xs + (N22 - YilN32) Ys + (N23 - YilN33) Zs = YilN34 - N24 

and for (xi2, Yi2): 
(Nll  - xi2 N31) Xs + (N12 - xi2N32) Ys + (N13 - xi2N33) Zs = xi2N34 - N14 
(N21 - Yi2 N31) Xs + (N22 - Yi2N32) Ys + (N23 - Yi2N33) Zs = Yi2N34 - N24- 

This provides us with a set of four equations with three unknowns. We select four sets of three equations to 
solve for (Xs, Ys, Zs) four times. We then calculate the average of these four values to cancel small errors 
in the measurement of the image points. 

A common problem with edge line segments is the phenomena of "breaking". Although the token tracking 
process reduces this phenomena, we must still assure that the end-points of the segments correspond to the 
same physical point. To do this, we project the epipolar line from each end point into the other image, to 
determine the part of the two segments which is common to the two segments. The stereo reconstruction 
equations are applied to the end points of the common part of the segment to recover an observed 3-D edge 
segment which is represented as a pair of 3-D points and their uncertainty. 

3.6 Representation of 3-D Structure 

A line segment in the 2-D flow model corresponds to a line segment in the 3-D scene. In order to apply 
Kalman filter estimation techniques to 3-D reconstruction we require a representation which expresses a 
segment in terms of a minimum of parameters A 3-D form of the MDL represenation is used: 3-D segments 
are represented as a midpoint, a direction, a half length, the 2-D uncertainty of the midpoint (perpendicular 
to the segment) and a 2-D uncertainty of the direction. 

Both observed and composite model 3-D segments are represented by a minimal representation and a set of 
redundant parameters. The minimal representation consists of a pair of end-points, Pt and P2, as well as an 
ID. Each end point is expressed as an estimated position expressed in scene coordinates (x, y, z) and its 
covariance, C, as illustrated in figure 3.4. This representation has the advantage of being both minimal and 
simple. 

Thus the representation is expressed as 

P1 : The position of the first end point 

CI: The 3-D covariance in the position of the end-point. 
P2 : The position of the first end point 
C2: The 3-D covariance in the position of the end-point. 
ID: The Identity of the Segment (From the Flow Model). 
CF: Confidence Factor from the set { 1, 2, 3, 4, 5 }. 

Figure 3.4 The End-point representation for a 3D Line Segment 

An MDL expression of the line segment is kept as a set of redundant parameters. These parameters are used 
to veri£y the match of observed segments to the corresponding composite model segment. This redundant 
representation is composed of the parameters shown in figure 3.5. 

The 3-D MDL Parameters are: D 

P The center point of the segment (x, y, z) 
Cp The 3x3 covariance of the center point 
D The direction (expressed as Ax, Ay, and Az) 
C D The 3x3 covariance of the direction 
H The half length of the segment. 

Figure 3.5 An MDL Reprentation for a 3D line segment. 
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These parameters are calculated by 
1 (P2 - P1) H I1 P2 - P1 It 

P = ~ ' (P I  + P2) D = i l P 2 - P 1  II = 2 

1 (C1+ C 2 ) 
Cp = ~-(C 1+ C2) CD= I I P 2 - P 1  112 

4. Integration of Geometric Structure 

The integration of geometric information from independent sources is a fundamental problem in perception. 
This problem is often made difficult by the fact that different observations tend to have varying noise 
statistics. An explicit model of uncertainty, coupled with a model of the sensing process provides a 
powerful tool for this problem. In this section we illustrate how 3-D Segment observations from the motion 
stereo system are dynamically integrated into a composite model. 

The integration process is illustrated in figure 
4.1. Observed 3-D segments from the motion 
stereo process are compared to the 
corresponding segments from the 3-D 
composite model. The correspondence is 
provided by the ID attribute of the segments 
which is inherited from the segment tracking 
process. 

O•b.bs•_eerved 3-D S e g m e n t ~  

~1 Verification 

I "-1 up te 
I 1 , 

Figure 4.1 Integration process for 3-D segments. 

4.1 Verification of Correspondences 

The segment ID from the tracking process permits us to avoid searching for a 3-D correspondence for 
observed segments. However this technique assumes that the token tracking process provides rigorously 
true matches. If a false match occurs during tracking, the stereo reconstruction process may produce a 3-D 
observation with a non-realistic value. 

While the effect of such false value will be limited due to the use of a Kalman filter in the composite model 
update process, such errors will decrease the precision of the composite model. It is possible to detect and 
eliminate tracking errors during the update phase of composite modeling by testing that the observed 3-D 
segment has a spatial position which is similar to the 3-D composite model segment. 

Each observed 3-D segment is compared to the corresponding model segment by a 3-D analog for the 2-D 
test used in token tracking. That is, the 3-D segments are compared for similar orientation, for co-linearity 
and for overlap. These test employ the redundant parameters of the segments. We express these tests 
between observed 3-D segment parameters S O = {Po, Cpo, Do, CD0, Ho} and model segment parameters 
Sm = {Pm, Cpm, Dm, CDm, Hm}. These three tests are a form of Mahalanobis distance with a threshold of 
1 standard deviation. 

The test for orientation is performed by comparing the difference in the direction vectors to the sum of the 
covariances in direction is: 

( ADT ( CD0 + CDm) "lAD ) -< 2 Where AD = D m - D o 
If the directions are found to be similar, the segments are tested for alignment. Alignment and overlap are 
based on a vector AP. 

AP= Pm-Po  
The test for alignment is based on the component of AP which is orthogonal to the model segment. This 
component is determined by subtracting the inner product of AP with the direction vector Dm. This 
component is compared to the covariance of the central point, by the test: 
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(AP - AP Dm) T (Cpm+Cpo) "1 (AP - AP Dm) _< 1 
If the segments are found to have to be aligned, they are tested for overlap. The test for overlap compares 
the length of the vector AP to the sum of the half lengths of the segments 

II APll < Ho+H m 
If any of these tests are not passed then the observed segment is rejected and the confidence of the 
composite model segment is reduced by 1. 

4.2 Fusing an Observed 3-D Segment to the Composite Model 

If an observed segment has been found to have a similar orientation, alignment, and overlap with the 
corresponding model segment, it can be used to update the parameters and the uncertainty of the model 
segment. Fusion is based on the end-points of the segments. However, it may be the case that the end- 
points do not correspond to the same physical point in the scene. To model this possibility, we treat half 
length of the segment as an uncertainty in position of the end-point, in the direction of the segment. 

Using the attribute H defined in the previous section as, the uncertainty of each of the points is enlarged by 
the calculating 

Cp* = Cp+ H 2 D D  T 

The term DD T is a matrix defined by the outer product of the direction vector D. 

The end-points of the model segment (Pml, Cpml*) and (Pro2, Cpm2*) are fused to the end-points of the 
observed segment (Pol, Cpol*) and (Po2, Cpo2*) by calculating a kalman gain matrix : 

Kpm = Cpm* (Cpm* + Cpo*) -1 
The estimated variance is then updated by 

Cpm + = Cpm* - Kpm Cpm* 
and the estimated point position is computed by 

Pm += Pm + Kprn (Pm- Po). 
After the parameters have been updated, new values are computed for the redundant parameters. The 
uncertainty in the direction of the segment is then removed from the uncertainty of the end points. 

Cpm + = Cpm- Hm 2 Din Dm T 
The fusion process is completed by incrementing the confidence factor for the model segment. 

4.3 Managing the Confidence of Composite Model Segments 

The confidence factor in the 3-D composit e model is maintained in a manner which is similar to that in the 
flow model, with one important difference. This difference concerns the elimination of segments which are 
occluded. Segments which reach a confidence value of CFmax (a value of 5 in our current implementation) 
do not have their CF reduced when they are no longer observed. In this way, the system can construct a 
model of a 3-D object whichcontains faces which are not simultaneously visible. 

At the end of the update phase for a set of observed segments, any segment for which no correspondence 
was observed, and for which the CF has a value of less than CFmax has its confidence reduced by 1. If the 
CF of a segment drops below 1, the segment is removed from the composite model. Thus a segment must 
be present in at least 5 observations in order to be considered reliable enough to be preserved in the model. 

5. E x p e r i m e n t a l  E v a l u a t i o n  

We have performed a number of experiments in 3-D scene modeling with our system, using a camera 
mounted in a robot arm. The results of some of these experiments is described in this section. 

5.1 Experimental Set-up 

Our experiments used~a CCD camera equipped with a 16 mm lens and mounted in the gripper of the ann. 
Video signals from the camera are digitized using a frame buffer/digitizer board mounted in the bus of a 
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work-station. A six axis robot arm is linked with a robot controller capable of providing the location of the 
robot gripper simultaneously with the acquisition of each image. This information allows us to reconstruct 
the 3-13 geometry of the scene using motion stereo. 

The object used for each experiment is located at a distance of about 30 cm from the camera. The camera 
follows a roughly circular pre-programmed trajectory which passes over the object. Camera displacements 
are less than 1 cm per image, with rotations under 5 degrees per image. 

Edge points were detected by a version of the Canny operator designed and programmed by R. Deriche of 
INRIA Rocquencourt [Canny 86], [Deriche 87]. Edge points were chained and segmented by a chaining 
program realized by G. Giraudon of INRIA Sophia-Antipolis. Near video rate hardware for these processes 
is currently under construction as part of the same project. 

5.2 An ExampLe of the Complete Process 

One of the image sequences with which we have debugged the system is composed of 80 images of an 
electronic switch box. Figure 5.1 illustrates the description at different phases in the processing. 

Each token in the flow model is assigned an identification number when it is created. This number identify 
tokens in snapshots of the flow model. Matches in each couple of images are represented by similar 
identification number and results are showed on the first line of figure 5.1 for images (30-35) and (65-70). 
For each couple, we proceed to a 3D reconstruction displayed on the second line of the figure 5.1. Each 
reconstruction corresponds to the same physical scene viewed by a different point of view but represented in 
the same frame coordinates. One can check that the same physical segment is represented by a similar label 
in the 3D reconstructed images. 

The superposition of the 14 files obtained by reconstructing each 5 images along the sequence of 70 ones, is 
represented on the last line of figure figure 5.1 (left figure). This view points out a slight dispersion of the 
results but demonstrates the coherence of the obtained data. The last image (right) is the fmal result obtained 
by merging all the previous 3D files. 

5.3 Validation 

One possible verification of the acquired 
3D model consists in reprojecting this 
model in one of the view of the 
sequence. By superimposing this 
projection on the corresponding image, 
we have a qualitative estimation of the 
error. But a qualitative evaluation can be 
only done by making some direct 
measurements on this object and 
comparing them with information 
provided by our process. Instead of 
dealing with the result of the process 
after combination of the whole 
sequence, we illustrate the evolution of 
both measurement and merging values at 
several snapshots of the sequence. Such 
an approach  a l lows a bet ter  
comprehension onthe  evolution of the 
process. 

60 

55 

Distance in mm 

Sequence Number 

60 70 80 
Figure 5.2 Depth measurement at several snapshots and 
fusion: 

As an illustration of the precision of the process, consider the width of the switch box, as measured by the 
perpendicular distance between segment 87 and 156. The object's real width is 58 mm. The perpendicular 
distance between these segments, obtained from dumps of the model every 5 images between images 55 and 
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80 is {58.8, 53.9, 61.0, 58.0, 57.3 and 62.8}. When these values are integrated into the composite model 
using a Kalman filter, the distance is observed to be{57.7, 57.2, 57.4, 57.4 ,57.0  and 57.0} (see figure 
5.2). The error in the integrated model is less that 2%. 

Figure 5.2 shows a plot of the individual width values obtained by measurement after every 5th image, from 
images 55 to 80. We observe that for some camera orientations, the individual reconstructions may have 
errors which are on the order of 5%. We note that the precision is best when segments are located near the 
image center and when the 3D segments are closest to the cameras. Outside this set of views, the accuracy 
progressively degrades. 

Nevertheless, Kalman filter the integration process copes with inaccurate data and is able to provide a good 
estimated value. Furthermore, this merging value is not drastically affected when an aberration in one 
measurement occurs. 

6. Discussion and Improvements 

The system described in this paper provides results which are sufficient for use in processes such as 
recognition by matching to a data-base. Nevertheless, the accuracy of the process can be improved by using 
a more sophisticated estimate of the uncertainty attached to each source of error and by solving some 
mechanical aspects of the demonstration. In particular, the system could be improved by the computation of 
the covariance matrix due to the calibration. An even more important improvement could be obtained if the 
robot arm controller were to accompany its estimateed position with an error estimate. 

Our largest source of uncertainty is from the position and orientation of the robot end effector furnished by 
the robot arm controlled. The present computations consider the displacement matrix provided by the robot 
controller as accurate. However, after having obtained the results presented above, a verification of the 
robot calibration has shown that the the robot arm was very poorly calibrated. This fact points out the 
robustness of the technique and demonstrates that by over-estimated the covariance attached to each 
measurement, one can provide good results. 
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