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We establish the motion equations for rigidly moving 3D lines, and the structure equations 
that relate a temporal match of 2D lines in three consecutive pictures in an image sequence. We 
also analyse in details the numerical stability of such estimations. 

1 I n t r o d u c t i o n  

The aim of this study is to develop a method of recovery of structure from motion and of 
camera displacement estimation in a situation where the following features are available : 
(1) A sequence of view with a stationary background and one or more rigid objects in 
motion, 
(2) Only one camera, 
(3) A real-time acquisition every 20 msec, 
(4) An odometric estimation of ego-motion. 

This study extends previous works [3,2], on the problem of recovery of structure and 
motion fl'om two or three instantaneous views, and is directly related with these studies. 

Bas is  of  t h e  s t u d y  

In a temporal sequence of views, early vision provides the estimation of 2D line segments 
in the picture, .with their statistical covariance. The line support of each line segment 
(unbounded lines), will be considered, as elementary tokens. The token-tracker Algorithm 
designed by R. Deriche [5] provides temporal matches between the same 2D line segment 
in two or more consecutive views, a kind of "temporal stereo" algorithm. It is then well 
known [3] that a match between at least 3 views is required to have a constraint on the 
motion on lines, as it is the case here. Given such matches the structure and  the motion 
of the line can be computed. 

Then, we can formulate the problem studied in this paper as follows : Given 3 consec- 
utive views in a temporal sequence of images closely related in time, and matches between 
21) lines, in these views, how do we compute the related 3D line parameters, and the 
instantaneous rigid 3D-motion of this line (angular velocity w and linear velocity v).  



282 

What  is this paper about. 

This paper introduce the data representation and the equations used for the estimation 
of 3D motion and structure of 2D lines. We discuss the precision, stability and sensitivity 
of these equations when using real data. 

2 E q u a t i o n s  o f  3D  l ines  and 3D m o t i o n  

2.1 Representation of lines and rigid motion 
Camera  geome t ry  and camera  mot ion  

The camera is calibrated, and the geometric quality of actual CCD sensors, legitimates 
the use of pinhole model for the camera, with a unit focal distance. Every quantity is 
referred to the camera intrinsic coordinates. The origin of this frame of reference is the 
optical center of the camera (its image nodal point, in fact) and the (X, Y, Z) vectors are 
oriented as shown on Fig. 1, the Z axis corresponding to the optical axis of the camera. 
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Figure 1: 2D and 3D lines representations 

The camera motion is given by the kinematic screw {v,co}. This 3D-motion will be 
assumed to be locally constant in time. The temporal sequence of views being taken at a 
high rate, the translation between two pictures will be approximated by : 

t--- A T - v  
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where AT  is the sampling period between two pictures. The rotation between two pictures 
will be approximated by 1 : 

R = e AT'~5 ,-o I + A T .  ~, 

2D and 3D lines representat ions  

A straight line D, in 3D space, is represented by its unitary direction vector ~ and a point 
M on the line D. The  point M is chosen to be the closest point to the optical center O o f  
the camera (Fig.l) . It is equivalent to say that  M is chosen such that  O M  is orthogonal 
to ~. 

A 2D-line d in the retina plane is represented by a unitary vector n = (u, v, w) T giving 
its equation : 

u x  + v y  + w = 0 (1) 

The interpretation of n is tha t  it is the normal to the plane defined by the 2D line and 
the opt icalcenter  of the camera, as represented on Fig.1. The vector n is then orthogonal 
to 5 and O M .  

The unitary vector n is the output  of our version of the token-tracker. Each n esti- 
mation is - in fact - the mean value of a statistical estimation. A covariance matrix noted 
W n  is also provided by the token-tracker. 

Summarizing, the unitary vector 5 and the point M are constrained by the following 
equations : 

n T - n = 1 
n T ' ~  = 0 

~ T . o 3 4  = 0 

n T.  0 ~ /  = 0 

Matching  between 3 views  

Let us consider three views: the present view (subscript 0), the previous view (subscript - ) ,  
the next view (subscript q-), as represented on Fig.2. The n vectors components, as 
computed by the token-tracker, are given in a frame of reference attached to each view, 
while we want all quantities to be expressed in the same frame of reference, let us say, in 
the present view. 

We are going to use the subscript /0 (only when necessary), to state that  a quantity 
is expressed in the present view frame of reference, as shown on Fig.1. 

In order to simplify the notations let us take A T  - 1. This will not modify the nature 
our derivations. 

1I will denote the 3 x 3 identity matrix, and :5 the antisymmetrie matrix such that : 

g x , & . x = w A x  

where A denotes the cross product of two vectors. 
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Figure  2: Schemat ic  r ep resen ta t ion  of a segment  ma tch ing  over 3 views 

T h e  t r ans fo rma t ions  a re  then  given by : 

n - / o  = R . n - ~ - ( J + ~ ) . n - = n - + w A n -  
n + / o  = R - 1 - n + - ~ ( I - 5 ~ ) - n + = n + - w A n +  

no/o = no 

0 0 - / o  = - v  
00+/o = +v 

0/o = 0 

2 .2  C o n s t r a i n t s  on  t h e  a n g u l a r  v e l o c i t y  a n d  3 D - l i n e  d i r e c t i o n  

Derivating equations 

All our  deve lopments  will be  based  on the  following geometr ica l  p r o p e r t y  : since in the 
three views the n vectors are orthogonal to the 3D-line direction 5, these three vectors are 
in the same plane. This  condi t ion  can be  wr i t ten  as : 

I no,  n - / o ,  n+ /o  I = 0 (2)  



285 

Expanding  equat ion 2 as 

no, n_ ,  

where the  vector ]3 = A .  no. 

a funct ion of w, we have 2 . 

n+ I - (w, no) .  (w ,n_  A n + )  = 0 

The  A mat r ix  is defined as : 

A = n_nT+ + n + n  T - - 2 ( n + , n _ ) I  

(3) 

Looking at the  previous t rans ibrmat ion equat ion 2 can be equivalently formulated as 
follows : the  or ienta t ion of the 3D line (~), computed  from the previous and next  views 
(~ = n_ /oAn+/o) ,  should be or thogonal  to no. This  s ta tement  is, of  course, not  dependent  
upon permuta t ions  of the n vectors. It is, in fact, the  only one equat ion one can obtain 
on w from the n vectors , in three views. The  vector  ~ defines the direction along which 
w can be  computed  using equat ion 2. 

T h e  mat r ix  A is a symmetr ic  matr ix .  Its eigen values are easy to compute ,  since we 
have : 

A . x  = A . x  ¢* ( n _ , x ) n +  + ( n + , x ) n _  = (A + 2 ( n _ , n + ) ) x  

and the three solutions are : 

x = n _ A n + ,  A1 = - 2 ( n _ , n + )  
x = n _ - n + ,  A2 = - t - ( n _ , n + )  
x = n _ + n + ,  Aa = 1 - ( n _ , n + )  

This result will be  useful to  s tudy the stabil i ty of equation 2, and the condit ioning of A. 
In addit ion,  one can see tha t  A is the sum of two projections.  Since the mat r ix  : 

Pu±llv = u v  :~ - (u,  v ) t  

defines the pro jec t ion  on to the vector plane or thogonal  to u along the direction of v ( 
T Note tha t  we have : Pu±tl v = PvJqlu), we have : A = Pn_~lln+ + Pn~ltn- 

Equa t ion  2 is a quadra t ic  equat ion on aJ and the related quadric Q. Taking the non- 
or thogonal  f rame of reference (x, y ,  z) defined by the  equations : 

(x,  no) = 1 (y, no) = 0 (z, no) = 0 
( x , n _ A n + ) = 0  ( y , n _ A n + ) =  1 ( z , n _ A n + ) = 0  

(x, fi) = 0 (y,  fl) = 0 (z,/~) = 1 

which have a unique solution if only if 

I no, n_  A n + ,  fl l= ( ( n 0 , n . )  + (n0, n _ ) ) .  ( (n0 ,n+)  - ( n0 ,n_ ) )  ~ 0 

~We used the following notations and relations in our computations : 

(x, y) = x r y  -- ¢ %  (x, x) = IIxll ~ = x~ 
(xAy,  z) =Ix,  y, z I=l Y, z, x I= - l y ,  x, z l . . . .  

x A ( y A z ) =  (x, z)y -- (x, y)z 
(xAy)  A (x A z) -.=I x, y, z I . x  

: ~ . y = x A y  
(× A y, x A z) = (y, ~)(×, x) - (x, y)(x, ~) 

and the multitinearity of ] x, y, z I. 
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and if we note w = (a, b,c) ~ in this frame of reference we simply get : 

x =  (a,b,c) :r E Q ¢e~ a. b+c+qo  = 0 

This is obviously the equation of an hyperbolic cone (see for example [4], Chap X/), a 
quadric of rank 3. In the case where there is not a unique solution, the degenerate case, 
the quadric is of rank 2, and it is known to be a pair of two planes. 

Finally, one should notice that only the component of w orthogonal to the 3D-line 
direction 6 can be computed. The component of w aligned with 6, induces a rotation for 
which 6 is invariant, and the components of the n vectors in their local frame of references 
are not modified by it. ( One should also notice that,  since we have no information a 
priori on the relative location of two views, we have no information on the relative location 
of the n vectors in space, but only on their location with respect to each view frame of 
reference. This is a fundamental difference with stereo). 

One can then assume w to be orthogonal to 6, that  is in the plane of the n vectors. 
These additional constraints are : 

[w, n-/o,  n+/o ] 
I w, no, n-/o I 
I w, no, n+/o [ 

= ( 1 - w 2 ) ( w , n _ A n + ) + 2 ( w A n _ , w h n + )  = 0 
= [w, no, n _ l + ( w A n o ,  w A n - )  = 0 
= Iw, no, n + l - ( w A n o ,  w ^ n + )  = 0 

(4) 

Numerical stability of the previous equations 

It is useful to consider the order of magnitude of the terms in the expansions of equation 2. 
Since the instantaneous rotation between the three views has a small angle, and is assumed 
to be locally constant, the relative angles between the n vectors, and the norm of o0 are 
small quantities. We are now going to Used Taylor expansions to study the numerical 
stability of the previous equations. 

Our discussion will be based on the following statements : 

1. Since no, n-/0,  and n+/0 are in the same plane we have :. 

(n-/o-'Th+/0) = (n_/-~, n0) + (no,~ff+/o) 

2. Since the translation is small, the angles (n_/-~, no) and (no~ff+/o) have the same 

order of magnitude. This is illustrated on F i g . a :  The angles (O: ,M,  Oo) and 
(Oo,M"'-,O+) are roughly equal, since v is small with respect to ltO_MII5 ltOo~Mlt, 
and IIO+MI}. Since n-/o, no, and n+/o are orthogonal respectively to O_M, OoM 
and O+M, there relative angles are equal. We can then conclude that (n_/-~, no) 
and (no~ff+/o) are roughly extual. Precisely this means that  they differ only at the 
second order. We will use this result though the following notations : 

( n _ / - ~ , n o )  = 6 _ = c + e  2 

( n o , - - G / o )  = 6+  = e - -  e2 

3. Since w is in the same plane P of the vectors n, its orientation is entirely defined one 
angle, tel us say (w~fio). Since the norm of co is the angle of the rotation, and since 
n+/o is related to no by this rotation, and no is also related to no/- by this rotation, 
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the norm of w has the same order of magnitude as (n_/-~, no) and (no~ff+/o). 
will summarize these two points by the following notations : 

(~7~o)  = 

211~lL is the ratio between Itwl{ and e. We have : where w = (n-ion+/0) 

w = o(1) 

since I1~11 and ~ have a similar order of magnitude. 

We 

O_ 09 

Figure 3: Schematic representation of the angles in the plane P defined by the vectors n 

With these notations, and using equations 4 one can easily derive the orders of mag- 
nitude of all quantities related to equation 2. The following results are then obtained : 

• The quadratic term in equation 2 is not negligible since : 

IINi = ~/3 + (2 - 10cos(~)~)w~e + o ( d )  
I no, n_ ,  n+ I = o(~ ~) 

(w, n_ An+)(w, no) = o(e') 

and we will have to deM with a quadratic equation, in term of w, even for small 
angles of rotation. 

,, The vectors n do not form a stable frame of reference, since their relative angles are 
very small. 

(n_~--no) = (no~--fi+) = ~/1 + 2 sin(a)2w2e + o(e 2) 

(n_~---n+) = ~/(6 + 2 * cos(o~)2)tlcotl ÷ o(c 2) 
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• The matrix A is not well conditioned since one eigen-value is very small with respect 
to the others, while the two o ther  eigen-values are very similar. We precisely have : 

A3 = (3 ÷ cos(~)~)ll~=ll + o(~ 3) 
A1 = - 2  + 2 A3 + o(¢ 3) 
A2 = - 2 + h a + o ( e  a) 

• The direction of the vector/3 is not trivial, but  we have : 

A 

(/~, n..__ 7 An+) = o(e) 

(8, n - / o A n + / o )  = -~+o(e )  

(#, no) = ¢ o(e) with 0 < <  ~ < <  -~ 

This defines the direction along which w can be estimated which is roughly aligned 
with n_ A n+ but  not with 5 or n- /0  A n+/0, as expected. 

This has two consequences : 
(1) On one hand, we are going to use the found quadratic constraint to recursively estimate 
co. This equation can be used as a measurement equation in an extended Kalman Filter, 
used for the recovery of the 3D line motion. 

(2) On the other hand, we are not going to try to reconstruct co using five, or more 
than five, views, since even if the reconstruction is, in principle, possible, the computation 
will not be numerically stable. 

In addition, the use of a first estimate of co from odometric cues will be very usdul 
in this approach, and the previous constraint will be used only to correct the a priori 
estimate. 

E s t i m a t i o n  of  t h e  3D- l ine  d i r e c t i o n  

Since no is constrained to be in the same plane as n_/o and n+/0, as discussed previously, 
and since 5 is orthogonal to this plane, the 3D-line direction is simply given by : 

a II n_/0 A n+/o = n _  A n+ + Aw + o(w2). 

In the previous section, we studied in details the properties of the matrix A, and the 
direction/3 along which w is estimated. Let us remind that /3  is very dose to the direction 
of n_ A n+ which is a eigen direction of A. Then, w estimation for this line is mainly 
performed in the direction on n_ An+,  only. We then are going to consider co tt n_ An+,  
and we have Ace It n_ A n+ also, and finally : 

A (n_ An+) = 0 (5) 

-- n_An+ 

or ~- lln-̂ n+l]" 
however, since we have 

lln-An+ll = x/g*,Xs+o(d) 

where ~3 has been defined previously, this direct estimate is not numerically stable, and 
equation 5 is to be used instead. 
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2.3 C o n s t r a i n t s  on t h e  t rans la t ion  and the  3D- l ine  d i s tance  

The translation velocity v and the 3d-line distance characterized by the location of the 
point M can be computed from the following relations : 

O ~M _1_ n-lo 
O+M _L n+/0 

034 _1_ no 
034 ± 

where : 

O_~M = v + 034 

O+M = v - 034 

It is immediate to derive : 

(v, n_/o) = - ( O M ,  n_/o) 
(v, n+/0) = +(034, n+/o) 

Since 034 is orthogonal to 5, 034 is in the plane P of the n vectors. Since 03414 is 
also orthogonal to no, M is on the unique line of the plane P, orthogonal to no, and 
going through the origin. Using this remark, and after some algebra, the previous set of 
relations is equivalent to : 

(~, v) = o (6) 

and : 
034 II ~ (7) 

(034, n-/o - n+/o) = - ( v ,  n-/o + n+/o) 

o r  : 

034= (v, n_/___o_+ n+/o__2) ~ 
(~, n-to - n+/o) 

The vectors 7 and ~" are two vectors of the plane P containing the three n vectors, 
precisely : 

7 = an_/o-bn+/o 
= (n+/o, no)n-/o - (n_/o, no)n+/o 

where : 
a = (n_/o, no) - (n-/o, n+/o)(n+/o, no) 
b = (n+/o, no) - (n-/o, n+/o)(n-/o, no) 

In equations 6 and 7 the estimation of v and M are decoupled. We have one equation 
for v, which constrains its direction but not its amplitude, as expected in a monocular 
system. One additional constraint could be : v 2 = 1. In our case, since we have an 
odometric estimation of v, we are going to use equation 6 only to correct this estimate. 

An estimation of v being provided the point M is uniquely defined using the pair of 
linear equations 7. The numerical stability of these equations can be studied as previously, 
and we have the following results : 

• The vectors n-/0 + n+/o and n-/o - n+/o are orthogonal, and can be used as an 
orthogonal frame of reference in the plane P. 
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• The vector ~ is roughly aligned with n-/0 - n+/0 and its norm has the order of 
magnitude of the n vectors angles : 

I1 iI = + 
(~', n - / o  - n + / o )  = o (e )  

• As for ~, the direct estimation of M is not numerically stable. However using 
equation 7, since ~ is almost aligned with n-/o + n+/0, the second line of equation 

7 provides a stable constrains on the norm of O~/. 

• The vector 3' is roughly aligned with n-to + n+/o and its norm is very small which 
is acceptable, since it is used in a homogeneous equation (eq 6) : 

INJ = + o(e 

(3`, n-zo + n+/o) = 

3 C o n c l u s i o n  

Given a match between three 2D-lines in three consecutive views, we can compute one 
quadratic equation on the angular velocity (eq 3), and one linear equation on direction of 
the linear velocity (eq 6). These equations are based on quantities having a small order 
of magnitude (o(e)) but which are numerically stable since these order of magnitude are 
compatible. 

The computation of the velocity torque should be done either in cooperation with 
other matches and/or in cooperation with odometric cnes, since the velocity torque is 
evaluated only along a given direction (~ o1" 7). 

Given a match between three 2D-lines in three consecutive views, with an estimation 
of the velocity torque, the direction of the 3D-line and its location with respect to the 
optical center of the camera can be directly evaluated from equations 5 and 7. 

In this study we do not use estimations of parameters velocity, as it was done in [2]. 
We then avoided the computations of time derivative, which have the drawbacks to be 
noise-sensitive, while the choice of a good derivative estimator is a complex problem. One 
can consider our study as a "discrete version" of the approach in [2], where we implicit 
estimate velocity and acceleration related quantities, since we use 3 consecutive views. 
However, the derivated equations are slightly different and seem to be much stable in our 
case. 

In comparison to the study of [5], where a similar problem has been investigated, 
we made profit of the fact that pictures are very closed, while the rotation between 
two pictures can be approximated by a simple cross-product. We then come to linear 
equations, and could study in details the precision of our method. In addition, we are 
here dealing with the line support of the segments, instead of their extremities, or other 
points of interest. Line-tokens are less noisy geometrical primitives in a picture, since they 
are estimated from several points, and correspond to recognizable features in the visual 
environment. 

Other methods proposed in the literature reach their limit very quickly as the noise in 
the data increases [1], or are based on rather heavy computations [6], or implies important 
restrictions on the type of visual environment [7]. 
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The use of odometric cues in cooperation with one camera provides a solution to the 
scale factor problem, for a stationary background. In the future the cooperation between 
vision and odornetry will be developed from this initial study. 
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