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Abs t rac t  

Motion sensitive cells in the primary visual cortex are not selective to velocity, but rather 
are directionally selective and tuned to spatiotemporal frequencies. This paper describes 
physiologically plausible theories for computing velocity from the outputs of spatiotemporally 
oriented filters and proves several theorems showing how to combine the outputs of a class 
of frequency tuned filters to detect local image velocity. Furthermore, it can be shown 
(Grzywacz and YuiIle 1990) that the filters' combination may simulate "Pattern" cells in 
the middle temporal area (MT), while each filter simulates primary visual cortex cells. This 
suggests that MT's role is not to solve the aperture problem~ but to estimate velocities from 
primary cortex information. The spatial integration that accounts for motion coherence may 
be postponed to a later cortical stage. 

1 Introduct ion 

This paper gives a brief summary of a theory for motion estimation. We concentrate here o~ 
the mathematical aspects of the theory. The reader is referred to Grzywacz and Yuille (1990) 
for proofs of the theorems, comparisons of the theory to nenrobiology and detailed references to 
the literature (these r~eferences alone take up over five pages). 

Motivated by neuroscientific experiments the theory assumes that  the motion is first filtered 
by spatiotemporally tuned filters and only later is velocity explicitly computed. It is, therefore, 
related to several existing models (Hassenstein and Reichardt 1956; Poggio & Reichardt 1976; 
van Santen and Sperling 1984; Watson & Ahumada 1985; Jasinschi 1988; Bulthoff, Little & 
Poggio 1989, Fleet & Jepson 1989) and, in particular, to theories involvinge spatiotemporally 
oriented motion energy filters (Adelson & Bergen !985). Our model is closely related to the 
elegant model of Heeger (1987) that  computes velocities through the spatiotemporal integration 
of the outputs of Gabor motion energy filters (Gabor 1946; Daugman 1985). Unfortunately his 
method of computing the velocities assumes that  the image's power spectrum is flat, which is 
often incorrect. Our theoretical results show that  this assumption is unnecessary. 

The model has two stages: The first measures motion energies (the output  of motion energy 
filters) and the second estimates velocity from these energies. Section 2 describes the first stage 
and Section 3 gives mathematical results used as a basis for the second stage in Section 4. 

2 M o d e l  Descr ipt ion  

Following previous work (Adelson & Bergen 1985, Heeger 1987 ) we use a (complex) spacetime 
Gabor filter (Gabor 1946; Daugman 1985) F (£, t : ~,  ~, ~ ,  a, at) where the a 's  are the standard 
deviations and the ft's are the frequencies of the filter. 
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We model the responses of directionally selective cells in primary cortex to an image, 1(2, t), 
as the nonlinear filter 

N (Z , t :  I2, h÷., Fh, a, at) = IF(Z , t  : 12,~,~h,a,(rt) * l ( Z , t ) I  (2.1) 

where * stands for convolution. This definition is similar to the one proposed by Adetson and 
Bergen (1985) who call it motion energy. 

The Fourier tranform of s a Gabor is a Gaussian centered on (FLY, Fit). This shows that  the 
nonfilter N is not directly tuned to velocity. However, although one filter cannot estimate the 
velocity, g, as we will show in the next section, the set of filters responding most vigorously can. 

A physiological interpretation for the model is developed in Grzywaez and Yuille (1990). A 
consequence of this interpretation is that  the bandwidth of the temporal frequency tuning curves 
is relatively wide compared to the spatial bandwidth. Precisely, the assumption states that  for 
all velocities, g, to which the cells respond the following relationship holds: (Ma,)  2 << a 2. 
Informally, it was verified by literature inspection that typically 3 < (o/(1~Io,))  ~ <_ 60. 

3 Veloci ty  Es t imat ion  

The spatiotemporal power spectrum of a translating image lies on the plane ~7 • g + wt = 0 in 
the frequency domain (Watson & Ahumada 1985; Heeger 1987; Daugman 1988). This suggests 
using the combination of the outputs of cells tuned to specific spatiotemporal frequencies to 
detect this plane. Our results show how to combine these cells' responses in a eomputationally 
sensible way. 

The following theorem shows that, if the filters are Gabor with constant standard deviation, 
then the maximal response lies on a plane in the space of cell parameters. Knowledge of this 
plane determines the velocity. This result does not follow trivialy from the knowledge that the 
spatiotemporal power spectrum of a translating image lies on a plane. Indeed, one can show that 
filters other than Gabor filters do not have the same property (this is related to the scale-space 
theorems; Yuille & Poggio 1986). The theorem is strictly correct only when the receptive field 
sizes and temporal windows are constant for all cells. However, in Theorem 3 and its corollary, 
we show that  this constancy requirement can be relaxed under physiological conditions. 

T h e o r e m  1. If  a and at are constants, then the local maxima of N(:~,t : f  l, ~,12t, a, at) as a 
function of (f~, fi, f~t) lie on the plane f~ff . g + f~t = 0 for all images that move with a constant 
velocity g. 

This results follows from a corollary of a stronger result: Theorem 2. 
Theorem 2 will provide the response distribution in the three-dimensional space defined by 

the cells' optimal spatial and temporal frequencies. 
T h e o r e m  2. The response N ( ~ , t  : O, i2t,a, at) is weakly separable as follows: A function p 

exists such that N ( Z , t  ~ 5 ,  f l t ,a ,a , )  -: p ( e , t  : a2~-e~f l~Z,a ,  a t ) e x p ( - ( a ~ a  2) ( f t t +  (5-V))2 /2(a~+ 

a~v2)). Hence the only dependence of N on the spatial characteristics of the stimuli  occurs within 
the function p. 

Proof: See Grzywacz and Yuille (1990). 
The following corollary shows that  if the receptive field sizes and temporal windows are 

constant, then the responses follow a known Gaussian distribution centered on the plane of 
Theorem 1. Thus, the claim in Theorem 1 follows from this corollary. 

C o r o l l a r y  1. I f  a and at are constants, then the variation of N(:~,t : 0,  ft~,a,a~) in the 
(O, i2t) space in the direction ( (~at) /a2 ,1 /a t )  is a Gaussian function centered on the plane f l f f  . 
g + 12t = O, and dependent only on g, a, and a~. 

Proof: The arguments ( a z ~ -  a~F/~v'~ of the function p do not vary in this direction. The only 

variation is therefore due to the Gaussian function exp ( - ( a~a  2) (Ft, + ( f~-g) )2 /2(a  2 + a~tv~)). 
This Gaussian is centered on the plane i2ff. O*+ ill = 0. 
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Theorem 3 shows that the response distribution in the optimal-frequency space is of a 
simple form. This result is important, because the receptive field sizes and temporal windows 
may depend on the cells' optimal frequencies (Section 2). We denote these dependencies by 
a(fZ) = g ( l ~ l ) / l ~  t and at(f~t) = Kt(ftt)/tf~tl, where g and Kt(at) are functions that are mildly 
dependent, or perhaps independent, of o and at respectively. More precisely, Theorem 3 assumes 
that for all velocities, if, to which the cells respond, (Iv~at) ~ << a ~. An informal literature study 
seems to justify this assumption. 

T h e o r e m  3. Given the approximation I~ 2 << (a/at) s, and remembering that at = at(fit) 
and a = a(f~), we find that the response N(~, t  : ~, fit,a, at) is weakly separable in the sense that 
there exists a function r, independent of fit and at, such that N(~, t  : ~,f l t ,  a, at) ~ r(~,t : ~,a) 
× exp(-cr~(ftt + (ft .  v~)Z/2}. Proof: See Grzywacz and Yuille (1090). 

Corollary 2 shows that in the three-dimensional space of optimal frequencies, the response 
distributions as function of temporal frequency have maxima on the plane defined in Theorem 
1. This means that the overall distribution has a maximal ridge on the plane. Under the 
approximation (]v'~at) s << a s, the distribution of motion energies is oriented parailel to temporal 
frequency axis. 

Coro l l a ry  2. With the same assumptions and approximations as Theorem 3, along a one- 
dimensional line parallel to fit axis, the maximum of N(~, t  : ~,f~t,a, at) lies on the plane 
fi.~+flt=O. 

Proof: Consider the set of lines parallel to the F/t axis. The only variation of N(~, t  : 
ft, fit,a, at) is due to the exp(-at2(fit + (f~. v-))s/2) term, which is unimodal with maximum 
at I~. g +  f~t = O. 

Strictly speaking these theorems assume the velocity is constant over the whole image. Since, 
however, the filters have limited spatiotemporal range (determined by a and at) the velocity 
need only be approximately constant over this range. 

4 Strategies and Neural Implementations for Velocity 
Estimation 

We now describe three related methods for finding the velocity of the stimulus using the math- 
ematical results of the previous section, and discuss possible neural implementations. The 
computational, psychophysical, and implementational aspects 'of this problem are described in 
Grzywacz and Yuille (1990). 
The  R idge  S t r a t e g y :  This strategy uses Corollary 2 as a starting point and proposes to 
make excitatory connections from each motion-energy cell to the velocity selective cells most 
consistent with it. These connections should weakly prefer velocities with small components 
perpendicular to the preferred direction, so as to give a unique answer for the aperture problem 
in the large. Suppose we have a set of M motion-energy cells (~", fit", a",a~) with/z = 1, ...,M. 
A possible implementation is to define the response, R(~,t  : v~, at time t of a velocity selective 
cell tuned to velocity if, and whose receptive field is centered at positioia ~', by 

R(~ , t :  v~ = A~-~N(g , t :  ~",12~,a",a~)e-(~t")2(n~,'+(5"~))2/2e-(~'5"'/k) ~, (4.1) 

where ~* is orthogonal to f~, and A and k are constant parameters. 
This equation suggests that the strength of the connection between cell (f~, f~ ,  cr~ cry) and 

the velocity selective cell tuned to the velocity ~'should be exp{-(a~)2(f~÷(f~.v~)S/2} exp{-(g.  

This method is similar to correlation and template matching methods in computer vision. If 
we fix ~ and let f~t vary, then from Theorem 3, we know that the form of the variation of the 
filtered response is exp{-at2 (12t + (~. ~)s/2};  this defines our template. The largest value of the 
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correlation of this template with N(£,  t : 1]~', fl~), as we vary the value of 0 ~ while fixing ~, gives 
an estimate for the velocity. To combine the results as ~ varies, we simply add the magnitude of 
the responses for each ~.  The factor exp _ ( ~ ) 2  is designed to prevent the aperture problem 
in the large (if the image motion is consistent with an infinite set of possible velocities, then 
the smallest velocity is perceived). The parameter k should be sufficiently large to maintain the 
validity of the results of Section 3. A number of velocity selective cells will be excited and the one 
with the largest response corresponds to the velocity estimate. A winner-take-all  mechanism 
may then select the maximally responding cell. 
T h e  E s t i m a t i o n  S t r a t e g y :  This strategy attempts to estimate the image's spatial character- 
istics and compute the velocity simultaneously by minimizing a goodness-of-fit criterion. It is 
based on Theorem 3 which shows that  the response N is the product of two functions, the first 
of which, r, is independent of ~ while the second depends only on the velocity of the image 
and the filter parameters. Thus several filters with the same n~ willput strong constraints on 
the possible velocity (since r will be constant for these filters). 

A robust way of exploiting this idea is to minimize a goodness-of-fit criterion E (g, r(l~)), 

both with respect to 9 and r (~) ,  given a set of measurements N(E, t : ~",  ~ ,  a",  ~ )  for # = 
I, ..., M. We choose the standard least-squares fit criterion 

Suppose we have several lines of filters with constant f~t. Denote the values of r(~) on the 

lines as r v for v = 1 .... , S. This gives E (9, r v) : ~ (N(E, t: ~ ,  f~, o, a,) - rV(#)e -°~(a~'+(5'a))'/~)'. 
One of the ways to find the velocity 9 that minimizes this equation is as follows. Since the 
goodness-of-fit criterion, E (9, r~), is quadratic in r v, we can obtain by differentiation a system 
of L linear equations and L variables, whose solution gives the best r ~ as a function of 9. By 
substituting back for r v one obtains a Cost function a~(~. This function may be fed to  velocity 
selective cells, that  is, a cell selective to velocity 9 would receive input E(v~. Among these cells, 
the one with the smallest response corresponds to the velocity estimate. 
The  E x t r a  I n f o r m a t i o n  S t r a t e g y :  This strategy uses the outputs of purely spatial frequency 
tuned cells to calculate the spatial characteristics of the image. This information can then be 
used to modify the Estimation Strategy by giving estimates for the form of r(l~). We do not 
discuss this method in detail here. 

5 Summary 

The Gabor function is, strictly speaking, the only filter for which we can guarantee that the 
extrema of responses in the cells' optimal-frequency space lie on a ridge (unpublished calcu- 
lations). This can be traced to the fact that  the Gaussian is the only separable rotationally 
invariant function. If, however, the filters are similar, but not exactly, like Gabors, then we 
expect the results of Section 3 to be true most of  the time. This expectation is confirmed by 
the velocity computation in real images with filters that  were built by a self-organizing devel- 
opmental model, and which resemble Gabor functions only roughly (Yuille & Cohen 1989). 

In Grzywaez and Yuille (1990) we show that  our model is consistent with four experimental 
phenomena in the primary visual cortex and the middle temporal area. There are, however, 
three psysiologicai problems with Gabor models (discussed in Grzywacz and Yuille 1990), despite 
their nice mathematical properties. We hope that  the substance of our mathematical analysis 
will remain when we replace Gabors with more realistic filters and make our theory satisfy 
psysiological constraints (Grzywaez & Poggio 1989). 

Our theory provides local estimations of velocity and hence gives a partial  solution to the 
averture vroblem. It does not. however. ~loballv integrate these estimates to ~ive a coherent 
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motion flow. We therefore suggest that these estimates should be input to a motion coherence 
theory (such as Yuilte & Grzywacz 1988) which might be implemented in later cortical areas 
that perform spatial integration over large receptive fields. 
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