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Abstract  

This paper presents an algorithm for detecting the occluding contours generated 
by a surface and for reconstructing depth along them. It also describes an algorithm 
for computing the two main curvatures of the surface in the neighborhood of the 
occluding contours. We have used these algorithms on synthetic and real data. 

1 I n t r o d u c t i o n  

One of the aims of computer vision is to extract concise surface descriptions from several 
images of a scene. The descriptions can be used for the purpose of object recognition and 
for geometric reasoning (such as obstacle avoidance). 

Stereovision is often used for recovering the structure of the 3D world. Standard 
techniques can determine the depth of edges on a surface. These techniques fail with 
extremal boundaries as these change according to the viewpoint. 

Nonetheless, in some cases, they are the only source of 3D information (imagine a 
white sphere on a black background), if we are not willing to exploit shape from shading 
techniques. In all cases, they are a rich source of 3D information as will be shown here. 
In this paper, we propose a new method for detecting extremal boundaries. We also 
propose an Mgorithm for reconstructing exactly the curves observed by each camera and 
computing the principle curvatures of the object surface in their vicinity. 

In the first part, we briefly describe the main characteristics of the experimental setup 
used and we present the theoretical framework of our algorithms. In the second part, we 
present a method for detecting and reconstructing the extremM boundaries. The third 
part is devoted to the study of the computation of the two first fundamental forms of 
the surface in the neighbourhood of the extremal boundary. In the last part, we present 
results on real and synthetic data  and a discuss their accuracy. 

*This work was supported in part by Esprit project P2502,Voila 
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2 Background 

We assume that after calibration our cameras can be accurately modeled as pinholes. We 
suppose that we are looking at a smooth object, i.e., whose surface is at least C 2. For a 
given position of the camera, we can draw the optical rays tangent to the surface of the 
object. These rays cut on the retinal plane a curve, the occluding contour, and touch the 
object along a smooth curve on its surface, the rim. 

Several questions can be asked at this point. First what kind of information can 
be obtained from one occluding contour and second what kind of information can be 
obtained from several, possibly many, occluding contours obtained from a number of 
different viewpoints. The first question has been dealt with by Koenderink [5]. In his 
paper, he proves that concavities and convexities of the visual contour allow to draw 
implications about the local shape of the surface looked at: convexity of the contour 
corresponds to a convex patch of the surface while a concavity correspond to a saddle- 
shaped patch. These conclusions fall from a nice theorem which has also been derived 
later by Brady [1]. 

The second question has been addressed by a number of authors, among which Gib- 
lin [3], who worked theoretically and Basri and Ullman [6] who worked on the positioning 
of objects from their occluding contours. Giblin proposes to consider the surface of the 
object as the envelope of its tangent planes. There are two problems with this: how to 
compute the envelope of a family of planes and how to handle inflection points. Giblin 
and Weiss propose to solve the problem by assuming a planar motion of the camera. In 
a second approach, they derive information about the surface from singular points of the 
occluding contours. 

We also consider the surface of the object as the envelope of its tangent planes but 
make no assumption about the camera motion or about the projection on the retina plane 
being orthographic. In fact we deal with the full perspective projection case. 

2.0.1 Definit ions and notat ions:  

z 

Y 

Figure 1: A Rim (R) and i image (r) 

As shown in figure 1, we consider a fixed coordinate system (Oxyz); the optical center 
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is at C. The camera looks at the rim (R) which produces the occluding contour (r). A 
point m on (r) is the image of a point M on (R) at. which the optical ray determined by 
C m  is tangent to the object surface. The tangent plane to the surface at M is defined by 
the optical ray and the tangent t to the occluding contour at m. Let n be the unit length 
normal vector to this plane, defined by its Euler angles 0 and ¢ and p(O, ¢) the distance 
from the origin to the tangent plane. The equation of this plane can be written as: 

~(0, ¢)Tx - p(0, C) = 0 (i) 

where X is the vector (x, y, z) T and n = (cos(0)cos(C), sin(0)cos(C), sin(C)). 

2.0.2 The  envelope t h e o r e m  

Now consider the mapping 
(0, ¢) -~ p(O, ¢) 

which associates to every direction the distance from the origin to the plane tangent to 
the surface whose normal is in the direction (0, ¢). In fact, we know that this mapping is 
locally one to one for elliptic and hyperbolic points [4] but not  for parabolic points. 

The envelope of the two parameters family of planes defined by equation (1) is obtained 
by eliminating 0 and ¢ between equation (1) and 

On(O,¢)r x 0p(0, ¢) 
00 00 - 0 (2) 

o~(o,¢)~x op(o,¢) 
0 (3) 

0¢ 0¢ 
The physical interpretation of this is that the point M where the plane of equation (1) 

is tangent to the surface is obtained as the intersection with the planes defined by equa- 
tions (2), and (3). 

Mathematically, there are no difficulties; it is h'om the practical standpoint that they 
arise. Indeed, in practice we measure pieces of the surface (P) from which we have to 
estimate first and second order derivatives which in turn yield properties of the object 
surface. 

3 D e t e c t i o n  o f  t h e  o c c l u d i n g  c o n t o u r s  

In the previous part, we have assumed that we can detect the extremal boundaries. In 
fact this is not an easy problem. We will show in this part that sophisticated models 
are needed. This investigation is interesting as it provides us with some ideas about the 
numeri'cM stability of the algorithms that we want to implement. We use an algorithm 
which is a simplified version of the general algorithm which will be detailled in the following 
part. This simplified algorithm, allows us test the feasability of this kind of computations. 
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3.1 Edge classification 

The most interesting property of occluding edges is that  they do not correspond to a 
physical marking on the surface. This means that  they do not correspond to a disconti- 
nuity of the normal of the surface or in the reflectance prQperties of the surface. In spite 
of this, they are detected, as the other edges by the edge detection process. 

We suppose that we have matched segments among different images. We want to 
verify if they belong to an extremal boundary. One way to proceed is to assume that they 
belong to one and to write the corresponding equationsl We make the hypothesis that  
the observed surface is part of a cylinder. This provides us, with a number of equations 
that  can be used to compute the parameters of the hypothetical ~ cylinder: its axis and its 
radius. Fortunately this computation can be divided into two independent parts: 

- the direction of the axis. 

- the position of the axis and the radius. 

t> C o m p u t a t i o n  of  t he  d i r ec t ion  of  t he  axis of t he  cy l inde r  

We know the optical plane corresponding to an image line. The axis of the cylinder 
is solution of a linear equation which is a function of the normal to the optical 
plane. The problem turns to be equivalent to finding the smallest eigen-vector for 
a symmetric matrix. 

t> C o m p u t a t i o n  of  t he  pos i t ion  of t he  axis and  the  rad ius  of t he  cy l inde r  

These computations are very simple if we perform them in the right coordinate 
system. A good one is (Ouvw), where w is the direction of the axis of the cylinder, 
u and v define an arbitrary frame in the plane T ~ which is perpendicular to w. The 
projection of the cylinder is a circle C and the parameters of this cylinder can be 
obtained by solving linear equations. 

We have a set of equations which can be used to compute the parameters of a cylinder 
such that the observed line segments are the image of its rim, as seen from ca& camera. 
We need a criterion to check whether our hypothesis is correct i.e. do we observe the 
rim of something which is locally cylindrical or a normal edge. We can first notice that  
the model we used is still correct if we suppose that the radius of the cylinder is zero. A 
cylinder of zero radius is physically equivalent to a normal edge. The occluding edges and 
the normal edges can be classified by performing a test on the value Of the radius. There 
is still a problem: we have to fix a threshold for taking a decision. 

We want to estimate the uncertainty on the measure of the radius of the cylinder. We 
can consider that  we have constructed a function f such that 

(cl, c2, r) = f (u l ,  v l , . . . ,  u~, v~) 

where (ui, vi) are the coordinates of the extremities of the image-segments. We suppose 
that  these values are corrupted by a Gaussian noise of variance o-~ and crv~. In this case, 
we can express the uncertainty On v by the formula: 
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~r = ~ Of(ui,oulV,,...)2 a2  + ~ Of(ui,oviVi,...)2cr2 ' 
• V i 

The expression of f is 
f ~ (ATA)-IATB 

where A is a matrix n x 3 and B is a matrix of n x 1. They are constructed with linear. 
equations. These matrices depend on (ui, vi). We can infer a good criterion for checking 
if an edge is an occluding edge or not. Since a normal edge is characterized by a zero 
radius, the criterion is based on the probability for zero to be in the interval of confidence: 
r-2a<O<r.  

3.2 Results of the implemented system 

We have tested the algorithm on synthetic and real data. 

3.2.1 Synthetic data 

The test on synthetic data aims at testing the software and the verification of the noise 
model that  we have used. 

The principle of this test is to take a description of a system of real cameras and 
to simulate the observation of a cylinder. In fact, we only compute the image-segment 
of the extremat boundary of the cylinder. We add some noise to the endpoints of this 
image-segment. We use a Gaussian noise with a variance of one pixel. 

The next table shows the value of the following parameters for a set of five cylinders: 
the radius of the cylinder, the measured radius, the value of the uncertainty ~ and the 
criterion g. 

.... Real Radius Estimated Radius 
0 1.9 

50 59.2 
t00 98.3 

• 130 l i4:5 
175:2 160 

cr g 

24.5 < 0 
23.2 0.21 
22.1 0.55 
21.3 0.62 
20]0 0.77 

The baseline is approximately 250 millimeters wide and the distance from the optical 
center of the cameras to the objects is about 800 millimeters. 

Nonetheless, we have to keep in mind that the uncertainty on the calibration of the 
cameras and the determination of the motion have not modelized. 

3.2.2 Rea l  data 

For the test on real data, we have used small toys. The results are presented in figure (2). 
On the first image, we show a tea box, a mug and a cylinder with on the left side a tape. 
We then show two images: 

• On the first one, the width of the line depends on the value of the criterion C. 
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• On the second one, the width of the line depends on the value of the curvature 
radius. 

The dotted lines correspond to segments which have not been matched between at 
least three images. 

We can consider that we have detected an extremal boundary if the radius is non-null 
with a criterion which is sut~cient. The results are satisfactory for the longer segments. 
There are occasional mistakes for the smaller segments. 

One can note for example, that the segment-image of the cylinder are characterized 
by an important  radius and a great value for the criterion C. 

The vertical segments are in general more precise because they have a better  orienta- 
tion with respect to the epipolar lines. 

I 

t.1 

Scene 1, mode 1 

Figure 2: Scene 1 
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Scene 1, mode 2 

3 . 3  C o n c l u s i o n  

The main output  of this first part of our work is that it is possible to detect the extremal 
boundaries. We have to use a model of uncertainty. It is clear that this process can 
provide false results if the observed occluding contour does not correspond to a cylinder. 
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The following algorithm handles this case by dealing locally with the occluding contour 
results are corrected by the algorithm which deals locally with the occluding contour. 
Supplementary details about the cylinder case can be found in [8]. 

4 Estimating the object curvature along an occlud- 
ing edge 

In this part, we suppose that we have detected an extremal boundary and we want to 
compute some properties of the surface in the neighbourhood of the rim. We are interested 
by the differential properties of order up to two of the surface. Fundamental theorems 
of Differential Geometry [2] assert that  these properties axe sufficient to characterize the 
surface. 

The zero order differential property is the simple estimation of the position of the 
point. It means that we have to  compute the exact position of the contact point 
between the surface and the optical ray for each of the cameras. 

The first order differential property is the estimation of the tangent plane to the 
surface. It is the easiest to obtain as we are observing an extremal boundary. In 
this case the tangei~t plane is the optical plane. 

The second order properties are the more difficult to obtain as they require the 
evaluation of second order derivatives. Such computation can be sensitive to noise. 

4 . 1  E s t i m a t i o n  o f  the  pos i t ion  of  the  points  

We first notice that the rim (R) of a surface is a curve, and thus the image of the rim (r) 
mus tbe  a curve. It is always true in a generic position. So, we can suppose that we have 
detected a curve (ri) in each image. For each of these curves, it is possible to compute the 
tangent vectors at each of their points. The key idea is to neglect the apparent curvature 
and to use only the radial curvature. This can be realized by estimating the osculating 
circle of the radial curve. We have explained in [7] how this estimation can be carried 
out. 

4.2 Computation of the second differential properties of the 
object shape 

In this part, we show that it is possible to compute the two main curvatures of the surface 
near the points 11///. 

4.2.1 Some useful equations 

We have previously established that if we observe an occluding boundary and that  if we 
suppose that  (0, ¢) is an admissible parametrization of the surface in the neighborhood 
of Mi, located on the rim, we can obtain X = X(O, ¢) from equations (1 - 3). 
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The solution of these equations gives us the analytical expression of X(O, ¢). The 
two fundamental quadratic forms of a surface, which is represented by an admissible 
parametrization, can be derived from this expression. 

At the end of M1 these computations we obtain that the evaluation of the first and 
second fundamental quadratic forms requires an estimation of the value of 0, ¢, p(O, ¢), 
op(0,¢) op(0,¢) ~ ~ o~p(0,¢) 

O0 ' 0 ¢  ~ O0 ~' ' 0¢" ' @OO¢ " 

This is very interesting since these values can be estimated with sutficiently good 
accuracy for the points belonging to an extremal boundary. In [7], we detail the estimation 
of these values. 

4.2.2 A par t icu lar  case: zero Gauss ian  curva ture  

The previous algorithm is exact under the assumption that (6, ¢) is an acceptable para- 
metrization of the observed surface in the neighborhood of M;. For a generic position, 
this assumption fails if and only if one of the two main curvatures is equal to zero or 
in other words if the Gaussian curvature is equal to zero. But this is precisely the case 
where our cylinder model yields directly the answer: the computed radius of the cylinder 
gives us the first main curvature and the second is zero. The detection of this situation 
is performed directly by testing the curvatures of the image curves. 

5 Exper imenta l  Resul t s  

We have tested the algorithm mostly on synthetic data. In fact we should say "almost" 
synthetic since, even though we have been using synthetic models (and one real ball), their 
rims have been projected on real 512 by 512 images and quantization noise is therefore 
present in the data. The reason why we have used synthetic images at this stage is that 
computing the curvatures requires calculating the second order derivatives and the process 
of differentiation is well known to be noise sensitive. Hence we have decided to isolate the 
possible sources of error by testing the algorithm on synthetic images first and to delay 
the experiments using real objects after we gain a better understanding of the numerical 
stability of the algorithm. 

We have conducted a first set of experiments on synthetic images corresponding to a 
torus and a one-sheet hyperboloid. In order to analyze the results, we have focused on 
two things, the reconstructed points and the estimate of the curvatures. 

Figures (3 - 5) represent the reconstruction obtained for a synthetic torus, a one-sheet 
hyperbotoid and the image of a reM volley-ball ballon. The figures show the points which 
are reconstructed from each camera, and the position of the centers of the circles found 
when applying the cylinder method. 

We notice that we have reconstructed three different chains. On some parts, they are 
a bit noisy. These parts correspond to points where the epipolar plane (C~,m, Cj) is 
tangent to the rim (rj). In this case, the cylinder model fails to reconstruct the rim (R~). 
This is not a problem of the method, but a general problem: there are two images which 
provide the same information. This situation is detected by the algorithm through the 
test on the variance on the radius of the cylinder. 

The other figures represent the computed radii of curvature for the points which belong 
to the reconstructed rim. These curves are a little more difficult to interpret. Two of them 
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Figure 3: A synthetic torus 
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Figure 4: A synthetic one sheet hyperboloid 
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Figure 5: 
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A real volley-ball ballon 

98.28 197.2~ 

correspond to the values of each of the two main curvatures along the extremal boundary. 
The two other curves correspond to the "theoretical" radii of curvature. Several parts 
can be -distinguished: 

The two curvatures are equal to zero. For these points, the algorithm fails because 
of the epipolar plane problem. 

One of the two curvatures is equal to zero. This means that  we have detect that  
the Gaussian curvature was equal to zero. This detection is obtained by testing the 
curvature of the image curve. In this case, the other curve in the figure shows the 
radius of the cylinder. 

The two curvatures are different from zero. They can be of the same sign (a positive 
Gaussian curvature) as in the case of the volley-ball or the synthetic sphere. The 
corresponding points on the surface are elliptic. They can have different signs (a 
negative Gaussian curvature) as in the case of the synthetic one-sheet hyperboloid. 
The corresponding points are hyperbolic. 

6 C o n c l u s i o n  

In this article, we have shown that  occluding edges were a robust source of 3D information. 
Points on the rim can be accurately reconstructed and good estimates for the second order 
differential properties of the surface in the vicinity of the rim can be reliably computed. 
More work needs to be done to test our algorithms further on a larger variety of shapes, 
study degenerate cases, and include this kind of processing in the framework of an active 
exploration of an object shape. We are actually testing our algorithm on a large number 
of images representing several different shapes of occluding edges. We also want use 
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the algorithm with more than three views. The supplementary views will be obtained 
by moving the object with a known motion. We think that this wilt improve accuracy 
greatly. 
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