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1 INTRODUCTION 
In monocular vision, recognition and spatial localization are often difficult problems 

because the appearance of the observed objects varies according to the point of view. 
The various aspects of an object can be radically different as shown in Figure 1. 

For polyhedral objects, i.e. the block-world, marly works have been done on the 
labelling of the visible edges and on the interpretation of the contours in terms of shape, 
of relative positions of plane facets, deduced from this labelling at the intersection of 
the edges [SHI-87]. Moreover it has been proved that localization of modelled polyhedra 
can be obtained from one single image [DHO-89]. 

For curved objects, the contours which can be detected in an image and which result 
from different physical phenomena in the image formation process, are curves whose 
geometrical characteristics depend on the shape of the object. They are the projections 
of spaee curves whose position on the surface of the object is related with the point of 
view. 

For objects of  revolution, much information can be derived from a single perspective 
view, especially their localization in the viewer coordinate system. 

Figure 1 presents differents aspects of the image of a vase. The shape of the contours 
which could be extracted would be very variable from one image to an other. But if we 
look at the external contours of such an object, i.e. the contours which separate the vase 
from the background, it is worth noting that they are of two different kinds : 
- either they come from the perspective projection of angular edges on the object surface 
which are obviously circles, 
- or they are the projections of limbs i.e. of space curves on the object surface at each 
point of them the normal of the surface is orthogonal to the viewing direction of this 
point. 

On figure 1, the recurrence of some shape or special points is noticeable in the external 
contour : ellipses, zero-curvature points, angular points. These three geometrical fea- 
tures are very useful to solve the localization problem as it will be shown in the next 
sections. 

For modelled curved objects, especially generalized cylinders, J. Ponce [PON-89b] 
has recently proposed a very general algebraic approach for recognition and localiza- 
tion. He made successful experiments on objects of revolution. But we believe that it 
will be always valuable to exploit geometrical properties of the contours of an object 
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since we will see that the resolution of the localization problem is quite simple in this 
way. Moreover this geometrical approach gives a deep understanding of the perspective 
projection of curves and surfaces. 

Figure 1. Various aspects of the image of a vase. 

2 INTERPRETATION OF ELLIPTICAL CONTOURS 

2.1 The cyclic plane problem 
Let us consider an object of revolution having a circle as an angular edge, for which 

the support plane, the center and the radius are known in an object coordinate system. 
Let us suppose also that the perspective projection of this circle is viewed in the image. 
From this projection, which is an ellipse in the general case, it is possible to recover the 
spatial attitude of the object. 

If the ellipse has been estimated by the following equation, 
ao xz+boxy+coy z+dox+eoy+ 1 = 0  

the equation of the cone defined by the optical center of the camera and by the viewing 
directions of all the points of the ellipse is : 

2 2 do oo 1 aox +boxy+coy +-~-xz+Tyz+-~zZ=O ( I )  

with f being the focal length of the camera. 
The location problem is then a cyclic plane problem, a cyclic plane being a plane 

whose intersection with a cone is a circle. Moreover this circle must have a given radius 
here. 
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2.2 Determining the cyclic planes 
In order to simplify this determination, it is useful to choose a viewer coordinate 

system such that the equation of the cone is reduced to : 

x_..~ + y j  _ z j  = 0 wi t  h --1 _> 
<i,2 b, ~ S ~ a ,  ~ 

This new coordinate system is obtained 
after a rotation R o of the original one 
which makes diagonal the following 
matrix : 

1 
b~ 

a° 2 27 
~0 

Co 

t rio ao 

( 2 )  

In this coordinate system, the great axis of the ellipse can always be horizontal (X 
axis). To solve the cyclic plane problem, then it is sufficient to find the rotation R ~ of 

angle a around the horizontal axis for which the intersection of the cone by a vertical 
plane is a circle. 
After the application of rotation R ~, the equation of the cone becomes : 

x~ e/'cosZa~ ain2a"~ z ¢ sinzu c°s2a'~ z / s i n a c o s a  s i n a c o s a )  

t s 
The intersection of the cone by a vertical plane (constant z 1) is a circle if and only if 

the coefficients of x 12 and y 12 are equal. This gives equation (4) : 

1 cosZa sinZa 
a~ b~ ]2 (4) 

which implies the following determinations for cos ct and ai n ~" 

b~(a~+ fe)  f2 (a~ -  b~) 
COS2~ Sili2 (l = 

a~(b 12 + ]2) a~(b~ + f2) 

and a multiple determination for angle a :  

(~I ~ Et2 = ] [ - -  (11 ' ~ 3  = I [ +  CI[I ' (14 = - - ( I I '  

A quadratic cone has then two families of cyclic planes. For any plane of each family 
there a re  two positions of the object since it can placed in each of the two half spaces 
delimited by this plane. Then there are four families of positions of the object. 

To solve the localization problem completely, the center of the circle has to be 
determined. Thus four spatial attitudes for the object will be got. 

2.3 Finding the center of the circle 
From equations (3) and (4), the cone equation is : 

z 1 1 1 z 2 " ~ a i * J - ' T a T - b ~  

The symbol + corresponds with the sign of the product cos.  sin for the considered 

angle a ~. 
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As the space position of a circle of radius P must compatible with the cone equation, 
this Circle must be in a vertical plane and its center C must be in the plane (y  a, O, z 1 ). 

The coordinates of C are then of the form ( 0, y ~ c, z 1 c) which corresponds with the 

following cone equation : 
2 pZ 

_ + Y l z c z  2 Y l~  xZ+Yl z 1 + 2 - y l z l = 0  (6)  
Z |  c • l c  

The coordinates of C are derived f x 1o = o 
from equations (5) and (6). * p ~ ~ b 21 

The sign 4- has the same meaning as ~ y l c = pblfC£ 21 
in equation (5). \ z ~  = a~ 

The position of the circle center Cin the original viewer coordinate system is obtained 

by applying the rotation R- ~ and the rotation R 5~ a l 

2.4 Experiment 
The preceding method allows to calculate the four spatial attitudes of a given radius 

circle defined by the position of its center and by the normal to its support plane, which 
is compatible with an elliptical contour. Knowing the position of a circular edge on the 
surface of an object of revolutimi, it is then straightforward to determine the rigid 
transform to apply to the object model to bring it in position such that the projection 
of the circular edge will give the observed elliptical contour. 

Figure 2 (left) shows the detected contours of a brightness image o f  a vase. One of 
the detected ellipses appears in figure 2 (right). Figure 3 presents the four attitudes of 
the object model which have been determined from the interpretation of this ellipse. 

It is quite visible that three of them are not valid. The quality of the covering of the 
external contours of the projected model image by the contours of figure 2 (left) can 
be evaluated [RIC-89]. A score between 0 and 1 is calculated (see figure 3) and the 
selected solution has the highest score. Both the brightness image and the projected 
model image for the selected solution are presented in figure 4. 

Figure 2. Detected Contours and selected detected ellipse. 

A localization error occurs in the area of the top of the vase. It is due an inaccurate 
determination of the values of the ellipse parameters. But an iterative adjustement 
procedure can be used to refine the attitude. It involves matching of straight segments 
(straight contours after polygonal segmentation of the contour image and projections 
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of the external edges of the object polyhedral model), a bucketing technique to fasten 
this matching, and the Lowe's algorithm [LOW-85] to calculate a new attitude after the 
matching. At the end of this procedure, a better attitude is obtained (figure 4). 

Sol .#I 

Rx : 177.12 
B9 : 191.12 
Rz: B . M  
Tx: - 64 .37  
Tg: 15.22 
Tz : 49fi. 11 

: 1B(:,,g. ~ 

S o l  .#2 

R×: 35"7.12 
Rg: 191.12 
Rz: 8.tMt 
Tx:  - 6 4 . 3 7  
Tg:  1 5 . 2 2  
Tz :  4 9 6 . 1 1  

: 18 roS .M 

(a) score = 0.55 
g o l  .#3  

Rx: 1 7 3 . 8 9  
Rg: 334.33 
Rz: 8 . M  
Tx: - 6 1  .fr~ 
1'9 : 1 4 . 5 4  
Tz : 496.47 

(c) score = 0.73 

(b) score = 0.20 

(d) score = 0.59 

S o l  .#4  ~'-- 

lqx : 3co3.fl9 
R9 : 3 3 4 . 3 3  
Rz: B . ~  
Tx: - 6 1 . 6 4  

496,47 

Figure 3. The four compatible attitudes and the corresponding scores. 

Figure 4. Selected and final model attitudes. 

3 INTERPRETATION OF ZERO-CURVATURE CONTOUR POINTS 

3.1 Principle 
In this section, it is recalled how the zero-curvature of the contours of an object of 

revolution can be used to locate it. 
This method relies on the following theorem [KOE-84, PON-89a] : 
Theorem : The points of the limbs of an object of revolution which correspond with zero- 
curvature points of the scaling function of the object, are viewed under perspective projection 
as zero-curvature points of the contours corresponding to the projection of the limbs• 

Thus if the scaling function of an object of revolution has at least one zero-curvature 
point and if the point of view is such that the limbs go through at least one section 
corresponding to a zero-curvature point of the scaling function, then the external 
contours of the object contains at least one pair of zero-curvature points. 
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The two points of a pair and the tangents to the contours at these points define a 
triangle. It has been shown [RIC-89] that this triangle is the perspective projection of 
a cone of revolution defined by the corresponding section and by the tangents to the 
surface of the object at each point of this section. It has also been demonstrated that 
there are in general two space attitudes of the cone of revolution compatible with the 
observed triangle. 

3.2 Experiment  

This approach can be used for the image of figure 2.a. Figure 6 shows the selected 
pair of zero-curvature points on the external contours of the vase, and the tangents to 
the contours at these two points. The two possible attitudes of the cone of revolution 
are visible on figure 5. A superposition score is calculated in a same way as in the former 
section. The selected attitude which corresponds with the highest score leads to figure 
7 on which one can see the good fit between the projection of the polyhedral model 
and of the brightness image. 

S o l  .#1 

Rx : 17 '5.43 
Rg: 3 3 3 . 7 5  
Rz: B . ( ~  

Tx :  , ~ ' I .  7 9  
T9 : 1 4 . 1 6  
T z :  4 9 3 . 8 8  
f : t 8 6 5 ; . 8 8  

score=0.86 

Sol ~-- 

Rx:  . 4 3  
R~: .75 

~: e.88 
T×: -64.79 

Tg: 14,16 
Tz:  4 9 3 . 8 8  
f : 1 8 6 ~ . B 8  

S o l  . I t2  

Rx : 1 7 3 . 6 9  I 
89 :  2 2 3 . 7 7  I 
Rz: 8.801 
!~x : - 9 9 . 1 5  I 
T9:  1 8 . 3 8 1  
Yz:  2 6 9 . 3 3 1  
f : 1f l¢ ,5 .001 

score=0.15 

S o l  . # 2  

Rx : 1 7 3 . 6 9  
B9 : 223.7", '  
R z :  8 . 8 8  
Tx:  - - 9 9 . 1 5  
T9 : 1 8 . 3 8  
Tz:  2 6 9 . 3 3  
f : 1 8 6 5 , 0 8  

Figure 5. The two space attitudes of the cone of revolution and of the object model. 

Figure 6. The triangle def'med by a pair of 
zero-curvature contour points and the 
tangents to the contour at these points. 

Figure 7. The superposition of the 
projection of the model in its calculated 

attitude and of the brightness image. 
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The result obtained with this approach is better than the one derived from the 
interpretation of an ellipse. This could be surprising as it is known that it is quite difficult 
to locate zero-curvature points accurately. But the triangle which is interpreted is made 
of two segments which are the tangents to the contours at these points. Then their 
orientation is very precise and the triangle is not so badly defined. 

4 INTERPRETATION OF LIMBS FROM PAIRED POINTS 

4.1 Overview 
The method presented here is a generalization of the preceding one. Using a pro- 

cedure described in the next sub-section, two points of the projection of the limbs which 
belong to the projection of a circular section of the object are selected. As before, these 
two points and the tangents to the contours at these points define a triangle. But here 
the position of this section in the object coordinate system is supposed not to be known. 
So it is necessary to scan all the possible sections of the object and to calculate all the 
possible attitudes compatible with this triangle. In order to select the best one, a 
superposition score is calculated. 

4.2 Choice of a judicious viewer coordinate system 
At first, it must be noted the plane going through the optical center of the camera 

and the axis of revolution of the object is a plane of symmetry for the object. Thus the 
limbs which are situated apart this plane are symmetrical curves on the surface of the 
object with respect to this plane. The perspective projection of these curves are sym- 
metrical if and only if the optical axis intersects the axis of revolution of the object. 

If this is the case then the problem is much simpler since two symmetrical contour 
points in the image belong to the same section of the object. Fortunately it is always 
possible to be in this situation thanks to a transform which allows to calculate a virtual 
image in which the external contours are symmetrical. 

For that it is necessary to know two points belonging to the same section. A pair of 
zero-curvature points could have been used. Here angular points have been retained. 
They are double points of the projection of the limbs and they can be easily obtained 
since the curvature of a contour reaches a maximum absolute value in a neighbourhood 
of these points. 

Having chosen a pair of such points (see figure 8), a rotation R o is applied to the 
viewer coordinate system in order to make symmetrical the two points with respect to 
the vertical axis of the image (see figure 9). Transforming the projection of the limbs 
by this rotation leads to symmetrical external contours with respect to the vertical axis. 

4.3 Compatible attitudes 

Let us consider an object of revolution whose axis coincides with the Z axis of a 
reference system (O, X,  Y ,  Z ). The coordinates of a point P of the surface of this object 
are (X ,  Y ,  Z)  = ( r  cos0,  r s in0 ,  Z)  with r = r ( Z )  being the scaling function or the 
generating curve of the object, and 0 being the azimuth angle in the plane (0 ,  X, Y ) .  

OOP f~ OOP The normal N to the surface at point P is ~ - ,  ,ST and its components are 

(rz,~, r~y, n~) = (cos 0, s i n 0, - r  ")with r "being the derivative o f t  (Z)wi th  respect to 
Z.  

Let us suppose also that O is the optical center of the camera, that the Z axis is the 
optical axis, and that the X and Y axes are respectively the horizontal and the vertical 
axes of the camera. 
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The projection of the limbs after the rotation R o being symmetrical (figure 9), to find 

the space attitude of the object it is sufficient to apply to the object model a rotation 
R ,o f  angle c~around the X axis, and a translation T o,~Of components (0 ,  v, w ) to bring 

it in a position compatible with the observed contours. 

After these two transforms, P and N become P ' a n d  N" respectively. They are defined 
by the following equations : 

(' o 
Y '  = 0 C o s a  

\ Z ' ]  \ 0  Since Cosa / \ Z ]  w ~,r. Sinct. S i n O + Z . C o s a + w ]  

n '  z S i n e  Cosct ] \ n ~ , /  \ S i n z t . S i n O - C o s a . r ' , /  

Let us choose a point p o of the limbs projection (figure 11). Its coordinates in the 

viewer coordinate system are (x  o, Y o, f ) with f being the focal length of the camera. 

Let t o be the tangent to the contour at point p o. Its components are ( a  o, b o, 0 ) .  Let 

us suppose that p o is the perspective projection of a point P ' .  Then equations (7), (8) 

and (9) hold. 
- ~ . O p g = O  (7 )  N-~.~o = 0 (8 )  O p g = X O P  ; (9 )  

Combining equations (7) and (8) leads to the system of equations (10) where 
c o = ( a o Y o - b o x o ) /  f : 

s i n 0  = ( a o r ' c o s a - c o r ' s i n a ) / ( a o s i n c t + c o c o s e t )  
c o s 0  = - b o r ' / ( a o s i n a + c o c o s a  ) ( 1 0 )  

But as cos20 + sin z0 = 1, i f /=  tg  a,  equation (11) is easily obtained from sytem (10). 

(r ,Z(b ~ +c~)_a~)t2_ 2aoCo(r,Z + l )t+ r,2(a~ + bo _ c  oz=O ( l l )  

Let us consider a particular section of  the object model. For it r ( Z ) a n d  r" ( Z )  are 
known. Then equation (11) gives the possible values for or. There are four determination 
for otbecause if ct 1 and a2 are solutions of (11) then ct i + :I1(. and or2 + ~ are solutions 

too. 
Equation (9) gives the following system (12) : 

cos0 = x o ( Z + w c o s a - v s i n a ) / r ( f c o s a - y o s i n a  ) 

s i n 0  = ( y o w - f v + c o s a Y o Z + s i n a f Z ) / r ( f c o s c L - Y o s i n c t )  ( 1 2 )  

If solutions ct~ are set in equations (10) and (12), the following system is obtained 

which is linear in u and w. 

{ (XoCOSCq)W-(Xosina~) v = r c o s O ( f c o s a , - y o s i n a ~ ) - X o  Z 

y o w - f v  = r s i n O ( J : c o s a , - Y o s i n c t , ) - c o s a ~ Y o Z - s i n a J Z  

Then rotation ~ and translation T o~,~ have been determined. It can be proved that 

they are at most two real possible solutions because w must be positive. They are such 
that the projection of two points belonging to the same section (fixed Z) of the object 

model is compatible with the triangle in the image defined by p o, t o and their sym- 

metrical with respect to the vertical axis. It must be noted that the same result as in 
section 3 has been obtained but with a different approach. 

At this stage in order to locate the object it is necessary to find the good section. 
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4.4 Evaluation of an attitude 

For that let us choose some control points ( p 1, p 2 .... p ,  .... p n) along the projection 

of the limbs (figure 9). For each of them, parameters x i, y i, a ~, b ~ and c i are known. 

If any particular compatible attitude A / is considered, its parameters a j,  v j and w / are 

known too. From systems (10) and (12) the following system, linear in Z and 
r ( Z )  r" ( Z ) ,  can be derived : 

~ (a~sina~ +c~cosa~)(y~cosaj+ f s i n a / ) Z  + ( c ~ s i n a j - a , c o a a j ) ( ] c o s a ~ - y ~ s i n a j ) r r "  

= ( a i s i n a / +  c icosa i ) ( f v  i -  yi tc j )  

( a ~ s i n a j  + c~cosa j)x~Z + ( f c o s a i -  y~sina l)birr" 

= (a , s ina~+c~cosa t ) ( v j s ina / -w jcosa~)x  ~ 

A value Z ~/is obtained which corresponds with the section of the object such that a 

limb point of this section will be projected in p~ if the considered attitude A / is the good 
one. 

The limbs equation for attitude A j is : 

O P " . N - : = r ( Z ) - r ' ( Z ) Z ( v / s i n a j - w i s i n a i ) + s i n O ( v / c o s a j + w ~ s i n a i ) = O  ( 1 3 )  

Feeding equation (13) with Z ii the value of sin 0 ~i is obtained, and then the value of 

O ~1 since the sign of cos 0 ~j must be the same as the sign of the abscissa x ~ of point p ~. 

Using 0ii, Z ~/, a i, v) and w j, the coordinates of a point P" ~j can be calculated. This 

point must be projected in p i if attitude A jis correct. But if it is not the case the projection 

of P "~jwill give point p~j and the quadratic distance I ~ 1 ]  2 between p~ and P~i is 

used to evaluate the quality of the attitude A j. 

It is preferable to consider more than one point p ~ to do that. So the criterion which 

i su sed i sC(Z)  = Min Z IP~P~jt 2 wherern is the number of real possible attitudes 
1=1 i - I  

for a given Z. Thus m is equal to 2 or 1. Let us recall that this criterion is a function of 
Z ,  2" being the Z coordinate of the section, in the object reference system, for which it 
is supposed that p o is the projection of one of its points. So all the values of Z have to 

be scanned. ]~ae selected attitude of the object model is the one for which C ( Z )  is 
minimal. 

4.5 Experiment 
This method has been also experimented in case of the image of figure 2 (left). Figure 

8 gives the two selected angular points. After the application of R o, symmetrical contours 
are obtained as shown in figure 9. On this figure, the four control points used in this 
experiment are also visible. 

The height of the vase is nearly 250rnm. We chose to sample the Z axis each millimeter. 
The value of the criterion C ( Z )  is drawn in figure 11. Obviously this curve has two 
relative minima for Z = 158mm (C(Z)  = 21) and Z = 60ram (C(Z)  = 1341). The 
corresponding attitudes for the object model in the virtual image are presented in figure 
10. 
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Figure 8. Selected angular contour points. 

l -  

.Pa 

c t \ 
(a) criterion = 1341 

) - J  /Pl 
./Pz 

I !,, 

\ , 
Figure 9. External contours in the 

virtual image. 

/, / 1 

P2 

/ ~ P 8  

P4 

(c) criterion = 21 
Figure 10. Vase attitudes for the control point p o and for Z = 60 et 158. 

After the best solution is selected, it is easy to compute the rigid transform to apply to 
the object model which corresponds with the interpretation of a pair of angular contour 
points. The superposition of the projected object model and of the brightness image is 
presented in figure 12. The quality of the mutual covering of the two images is quite 
good. The only noticeable differences appear to be due to the polyhedral approximation. 

Figure 11. Values of the criterion. 
Figure 12. Projected model on the 

image plane. 
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5 CONCLUSION 
It has been demonstrated here how some geometrical features extracted from the 

brightness image of an object of revolution and coming from the perspective projection 
of lines or points situated on the surface of the object, can be used to find the spatial 
attitude of the object in the viewer coordinate system. 

The various methods presented in this paper which involve different kinds of geo- 
metrical features are complementary since they could not be all present for some aspect 
of the object. For example, if the angle between the viewing direction and the axis of 
revolution is too small then elliptical contours will surely be seen meanwhile the pro- 
jection of zero-curvature points of the scaling function will probably be hidden. 

Before the des!gn of an automatic system for localization of objects of revolution, the 
problem of the matching of similar contour points (zero-curvature or angular ones in 
the present case) has to be solved efficiently. So it is necessary to built a robust procedure 
to find the projection of the axis of revolution of these objects. 

At last, it must be noted that for the three methods the localization problem is much 
simpler if at first the original viewer coordinate system is changed for a more judicious 
one. In fact with this new reference system, the direction of view always goes through 
the axis of revolution of the objects. It is worth noting that human vision proceeds in 
this way since the cone angle for accurate vision is rather small and consequently since 
the look is approximatively centered on the objects to be recognized or localized. 
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