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Abstract 

A new algorithm is presented for recognising 3D polyhedral objects in a 2D seg- 
mented image using local geometric constraints between 2D line segments. Results 
demonstrate the success of the algorithm at coping with poorly segmented images 
that would cause substantial problems for many current algorithms. The algorithm 
adapts to use with either 3D line data or 2D polygonal objects; either case in- 
creases its effidency. The conventional approach of searching an interpretation tree 
and pruning it using local constraints is discarded; the new approach accumulates 
the information available from the local constraints and forms match hypotheses 
subject to two global constraints that are enforced using the competitive paradigm. 
All stages of processing consist of many extremely simple and intrinsically parallel 
operations. This parallelism means that the algorithm is potentially very fast, and 
contributes to its robustness. It also means that the computation can be guaranteed 
to complete after a known time. 

Many algorithms have been developed in recent years that rely upon dynamically 
growing and pruning an interpretation tree that describes the correspondence between 
object features and image features. The features may be 3D [1, 2, 3] or 2D [4, 5, 6]; 
likewise, objects may be 3D polyhedra or 2D polygons. For example, Goad's algorithm 
matches 2D line segments in the image to 3D segments describing the object; the algorithm 
is an efficient one given a low degree of noise in the image and a good segmentation, and 
has been well-tested in a commercial environment. This work examines such algorithms 
based upon the tree-search formulation with respect to robustness and speed under noisy 
conditions, and concludes that their performance does not degrade gracefully. A new 
formulation is presented that exploits the same information in the image, but is inherently 
parallel and transforms the problem from one of tree-search to signal detection. 

The search-tree paradigm 

In this paradigm possible matches define a search tree which can be pruned using local 
constraints. A solution-state is defined by a leaf-node of the search tree. Heuristics can 
provide an efficient way of searching this tree to find solutions quickly and so providing 
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a sophisticated sequential traversal of the search tree. For example, Goad describes de- 
scribes various ways his algorithm can be unwound and how optimal search paths can be 
pre-computed for models off-line; these are all extensions and modifications to what is es- 
sentially a depth-first sequential search [4, 5]. There are weaknesses with this formulation 
in terms of the sensitivity to image noise, the speed of the search, and the unpredictability 
of the search times involved: 

Sensitivity to Noise 
Tree-search is sensitive to error in the segmentation of the image because one incorrect 
evaluation of a local constraint is sufficient to prevent a correct solution being found. 
LocM constraints will be described later (See Section 3) that can cope with the type 
of error in the data commonly associated with occlusion, poor lighting or bad edge- 
detection. However, suc h measures are ineffective when coping with the problem of image 
features being wholly obscured eg. if predicted lines are not present the algorithm becomes 
inefficient. Solutions to this problem have been suggested such as the Null Face Hypothesis 
[4, 3]. However, these solutions lead to a large expansion of the search-tree and are 
therefore undesirable. Such algorithms are demonstrating ungraceful degradation; a single 
missing line causes substantial problems for the search, and multiple missing lines makes 
the search space hopelessly large. 

Speed of Computation 
Tree-search algorithms are essentially sequential and well-suited to conventional Von Neu- 
mann machines. However, given the best Of optimisation techniques we can only expect a 
sequential algorithm to achieve certain levels of speed. On the other hand, if an algorithm 
is inherently parallel the potential speed of a parallel implementation is extremely high; 
this sort of parallelism can be exploited by many modern architectures today and it seems 
certain that it is the way that hardware is progressing. It is certain that a tree-search 
can always be performed using a parallel algorithm in such a way as to exploit parallel 
facilities. However, this post-hoe exploitation of potential parallelism is usually harder 
to control and less flexible than when dealing with an intrinsically parallel algorithm; 
time-gains are not always as great as anticipated. 

Predictability 
Despite the effect of pruning, the size of the search tree involved, given noisy data, can be 
quite substantial. The time taken for a correct solution to be found can vary enormously 
depending upon where in the tree it lies and how the search is guided. Heuristics can 
be exploited for guiding the search eg. ways of pre-computing optimal search strategies, 
unwinding the search tree. These can be very effective. However, they are only heuristics 
and, by their nature, will fail to prove effective some of the time. They are also often 
model-specific, and the pre-computation of the optimal search path for a new model is 
itself time-consuming. There is therefore an element of uncertainty in whether the system 
will arrive at a correct solution within a given time. This can cause problems in a real-time 
system that requires the best solution available after a given degree of processing. It is also 
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true that many heuristics require parameters to be set and how to determine the optimal 
setting for these parameters is often opaque~ trial and error is often ineffective and always 
time consuming. How many failures to find a predicted line should be tolerated before 
pruning a branch of the tree? How many matches are sufficient for a correct match? How 
many matches must be found before search is terminated? The answer to these questions 
is not obvious and it would be far preferable if the questions could simply be side-stepped. 

A i m s  of  N e w  Formulat ion  

It is apparent that a serial search algorithm can be optimised, but still encounters critical 
problems in the above areas. It might be hoped that a new parallel formulation can be 
derived that exploits to the full the advantages of a parallel approach. If this can be 
achieved then the algorithm might possess the following properties: 

. Graceful  Degradat ion:  The ability to compute the correspondence set and an es- 
timation of object orientation with a degree of accuracy comparable to the accuracy 
of the data. 

2. Pred ic tab i l i ty :  The ability to compute the correspondence set and an estimation 
of object orientation within a particular fixed time. 

. 

. 

Speed:  The ability to compute the correspondence set and an estimation of object 
orientation in very short periods of time. 

Heur is t ic  I n d e p e n d e n t :  The ability to compute the correspondence set and an 
estimation of object orientation in a way that does not rely heavily on ad hoc 
parameter determination. 

I N e w  Formula t ion  

The new formulation consists of four stages of processing: 

. 

. 

. 

Accumulation: In the accumulation stage all possible binary relations between 
image segments are compared with all possible binary relations between model seg- 
ments over all possible viewpoints. If the two relations are consistent then support is 
accumulated for the two assignments of model to image that the relations represent. 

Coopera t ion :  Once accumulation is complete there is a cooperative stage in which 
support in the accumulators is distributed between locally connected regions of the 
viewsphere. 

Competition: In the competitive stage support is distributed within the accumu- 
lators for each viewpatch so as to enforce uniqueness constraints ie. only one model 
line can match one image line and vice versa. The result is an accumulator with a 
small number of high peaks that corresponds to an interpretation for that viewpoint. 
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4. Signal Ext rac t ion :  The final stage of signal extraction finds the interpretation for 
each accumulator and finds the largest maximal clique within the interpretation that 
is wholly consistent in terms of the local constraints. These cliques represent the 
best interpretation for that viewpoint. Those of sufficient size are ordered according 
to the signal/noise ratio in the accumulator and then passed to the model test stage 
in the usual way. 

1 .1  D a t a  S t r u c t u r e s  

Consider an image [I] consisting of Z 2D line segments and a model [M] consisting of M 
3D line segments. Let the Viewsphere be quantised into a set of ]; viewpatches - IV]. For 
each viewpatch a subset of [M] will be visible. Consider a single viewpatch - V~ where 
1 < v < V; for V~ a binary constraint array can be constructed that has dimension M x 2,4 
- call this MAy.  An element of MAy, MA,(  . . . .  ) where 1 < re, m! < M ,  describes the 
local relationship between model line Mm and model line M,~, over viewpatch V~. If either 
M,~ or Mm~ is obscured at V~ then MA,(  . . . .  ) will be empty; otherwise it will contain the 
bounds upon the binary constraints between Mm and Mm~ over V~. Of course all diagonal 
elements MAy( . . . .  ) where 1 < m = m! < M will also be empty as they represent the 
relation between a model segment and itself. Hence M A ,  will be a sparse array due to 
visibility constraints; also, if the local constraints being used are symmetric then only a 
triangular half of the array need be stored ie. MA,(  . . . .  ) where 1 <_ m < m! < m. 

In a like manner a single binary constraint array can be constructed for the image 
segments - call this IA .  This contains the actual values for the binary constraints between 
any pair of image Segments. If the constraints being measured rely upon the segments 
being directed, then this will be of dimension Z x 2 x 27 x 2; otherwise it will have dimension 
of simply 27 × Z. This is basicMly decomposing an undirected image segment into two 
possible directed image segments of opposite directions - this effectively doubles the size 
of the image. Since the two constraints to be used both use directed image segments we 
will assume a dimension of 2- x 2 x Z x 2 from here on. This array will not be sparse 
except that the diagonal elements IA(i,d,i,,d,), where 1 < i = i! < Z and d, dt E [1, 2] will 
be empty since they represent the relationship between an image segment and itself. 

For the same viewpoint V~ it is also possible to construct a Correspondence array. Let 
us call it CA, .  This array will act as an accumulator. It will store information concerning 
possible correspondences between model and image segments for V~. It will therefore have 
dimensions of M x iT. Since it acts as an accumulator each element is an accumulator 
cell such that a high count in CA,(,~, 0 where t < m < M and 1 < i < Z, implies strong 
support for model segment m corresponding to image segment i in Viewpatch V~. 

1.2 Updat ing  The Accumulators  

Given the above representation of data-structures it is easy to see how the ~ accumulator 
arrays can be updated. Given a particular viewpatch V~, each non-empty element of I A  

- IA(i,d,i~,dO - can be checked against each non-empty element of M A ,  - MA,(  . . . .  ) - to 
give a boolean output that will depend upon whether the values of IA(~,d, il,dO fall inside 
the bounds defined by MA~(,~,,,,). If IA(i,d,~,,~) is consistent with MA~(m.m,) then the two 
cells CA,(m,o and CA,(,,,~,) in the accumulator array C A ,  can be incremented. If it is 
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inconsistent then no update occurs. Therefore for V. the number of possible updates to 
CA~ is equal to the twice the product of the number of elements in MA, and the number 
of elements in IA. In practice it will be much less than this since updates only occur for 
consistent matches. 

1 .3  C o m p e t i t i o n  a n d  C o - o p e r a t i o n  

Let us assume that the accumulation stage is complete on the ~ accumulator arrays. The 
problem is how to extract the correspondence set and an estimation of viewpoint from 
these arrays. This is a signal detection problem. Each accumulator array consists of a 
mixture of signal and noise. At viewpoints far away from the correct one the signal is more 
or less non-existent; as the viewpoint tends towards the correct one the signal becomes 
much stronger and it is expected that it should be detectable from the background noise. 
In this sort of problem it is the ratio of signal to noise that is significant. The signal is 
defined by correct correspondences satisfying the local constraints, and the noise is defined 
by incorrect correspondences satisfying the constraints by chance. For instance, error in 
sensor data will lead to a reduction in signal; irrelevant image segments on the other hand 
lead to and increase in noise; missing image lines will again lead to signal reduction. 

Competit ion 

However, there is further information that can be applied to the accumulators that helps 
to amplify the signal and reduce the noise. Two assumptions can be made which allow 
the competitive paradigm to be applied within each accumulator array. The assumptions 
a r e :  

• No image segment can correspond to more than one model segment  

• No model segment can correspond to more than one image segment 

The first of these assumptions is certainly one that we would wish to incorporate 
in a system, since it is only under very exceptional circumstances that an image line 
corresponds to more than a single model line. The second is not so certain since a model 
line can produce more than a single image line; this may occur in cases of occlusion or poor 
edge-detection. As will be seen, this formulation provides an elegant way of incorporating 
the two different constraints in terms of competition in two orthogonal directions. 

The accumulator has both a model and an image dimension. It is simple to implement 
a form of competition independently in each of these dimensions. Consider the raster in 
the accumulator defined by CA,(m~:) where K is a constant (1 <_ K _< 27) and 1 < m < A//. 
This raster represents the support for the various model lines matching image line K at 
viewpoint v. Since only one model line is allowed to match that image line competition 
can be introduced between the elements of this raster. That is to say, one of these cells 
will win at the expense on the other dUl - 1 lines. If competition was in the model 
dimension alone this competition would be simple to implement. Obviously the element 
in the raster with the highest count would win, and maybe if this count was insufficient 
then there would be no winner. However, there is also similar competition in the image 
dimension ie. those rasters defined by CA~(K.o where K is a constant (1 < K < M)  
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and 1 < i < 27. Therefore a way on implementing this competition in both dimensions 
simultaneously must be adopted that provides a solution consistent with both the above 
assumptions. 

C o - o p e r a t i o n  

There is one more assumption that can be incorporated into this formulation. So far 
we have quantised the viewsphere into Y viewpatches. We have then considered each of 
these independently. In doing this we are ignoring the topology of the viewsphere. As 
stated above, we expect the degree to which the signal will dominate over the noise in a 
particular viewpoints accumulator to be correlated with how close that  viewpoint is to 
the correct viewpoint. It is therefore to be expected that  traces of the signal will not only 
show up in the correct viewpatch but also in neighbouring viewpatches. It is expected 
that  the signal will trail off as the viewpoint moves away from the correct one. It is 
therefore possible to introduce a degree of topographical cooperation between like cells of 
the accumulator for neighbouring viewpatches. In this way the signal is being picked up 
over a larger portion of the viewsphere. 

1.4 Global Consistency 

One of the main problems with the approach as formulated is that  of global inconsistency. 
There can be two types of global inconsistency: 

W i t h i n  L o c a l  C o n s t r a i n t s :  An interpretation is globally inconsistent within local 
constraints when one or more of the correspondences is inconsistent with one or more 
different correspondences in terms of the local constraints used. 

B e y o n d  Loca l  C o n s t r a i n t s :  An interpretation is globally inconsistent beyond 
local constraints when all the local constraints between correspondences are satisfied, 
and yet there is still no single 3D position of the object that will map each model 
feature onto each image feature. 

In the tree search formulation, the interpretation is guaranteed to be globally consis- 
tent  within the local constraints, and consistency beyond local constraints is  guaranteed 
by some form of model test. In the formulation proposed here local consistency within con- 
straints is not guaranteed; inconsistent correspondences may result from incorrect peaks 
resulting from noise. In such interpretations it may be that  many of the correspondences 
are correct but a minority, are not (eg. along rasters corresponding to missing model lines). 
This minority is easily sufficient to force the model test to fail since these matches may 
be radically wrong in terms of the geometry of 3 space a. One solution to this problem is 
to have some form of filtering in the model test that  removes matches that  are preventing 
convergence. It is to be expected that  this would be computationally expensive. A better 
solution is to ensure consistency within local constraints by finding maximal cliques. 

1A model test performing a least squares solution can cope with error as long as incorrect matches 
are "close" to correct. Interpretations that are consistent within constraints usually meet this criterion 
of closeness. However, those that are inconsistent in terms of local constraints often fail to meet this 
criterion and subsequent convergence is impossible 
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The result of the competitive layer is an interpretation that is expected to be largely 
consistent within constraints but not totally so. This can be represented as a graph 
in which each node is a correspondence and a connection represents consistency. The 
problem of ensuring global consistency within constraints is reduced to that of finding 
maximal cliques in the graph. The study of this problem is well-developed, and given 
that the interpretation in expected not to be that large (it is bounded by max(:T, .A~)), 
there are very efficient algorithms for finding these cliques. Bolles & Cain [7, 8] discuss this 
problem in the domain of model-based vision, and state that they have found Johnston's 
algorithm [9] to be quite satisfactory. It is to be expected that the largest maximal clique 
will represent the correct interpretation, although smaller cliques could be considered 
worth investigating if the model test still fails. 

1.5 D i a g r a m m a t i c  R e p r e s e n t a t i o n  

The above formulation is represented in Figure 1. The lowest layer represents the input 
or stimulus - this is an Z × 2" array of binary relations generated from the image segments. 
The second layer represents the constraints generated from the model - an M × M array 
for each of the Y viewpoints. There is a mapping (or connection) between each element in 
Layer 1 and each element in Layer 2. The third layer represents the accumulator space. 
It consists of an M × 2- array for each of the Y viewpoints. For each connection between 
the first and second layers there is a corresponding pair of connections between the second 
layer and two elements in the third (given binary constraints). These connections will 
"fire" depending upon the consistency of model with image. The fourth layer has the 
same dimensions as the third and represents the co-operative process. Each element in 
the fourth layer is connected to the set of similar elements for neighbouring viewpatches 
in the third layer. The final layer again has the same dimensions as the previous and 
contains the results of the competitive stage. From these "12 arrays of dimension M x 2" 
the best globally consistent signal is extracted. 

2 Algorithm 

The first stage is to perform pre-computation of the model bounds array for each viewpoint 
on those model lines visible at that viewpoint 2 This can be computed off-line using the 
chosen set of constraints. Obviously, the model constraints need only be computed once 
and from then on can be loaded up before run-time. Likewise it is possible to compute 
the image constraint array that describes the relationship between any two image lines in 
terms of the local constraints chosen. 

2.1 A c c u m u l a t i o n  

The iterative procedure for doing this is outlined in Figure 2. As can be seen it is wholly 
parallel in nature - a simple outline of the procedure described in Section 1.2. Figure 3 
shows a typical set of  accumulator arrays after the accumulation process. 

2It is assumed that the visibility of model lines over the viewpatches has already been pre-computed 
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2.2 Co-operation 
The co-operative activity between neighbouring patches on the viewsphere is simulated 
by simply making the counts in an accumulator array for a viewpatch a function of both 
themselves and their corresponding counts over neighbouring viewpatches ie. a weighted 
average over neighbouring viewpatches. An example result is shown in Figure 4 of a 
typical set of accumulator arrays after this cooperative stage has been executed. 

2.3 Competit ion 

The competitive activity along the model and image dimensions of the accumulator arrays 
is simulated by re-adjusting counts within a raster line in favour of the winning cell. That 
is to say, given a particular raster line the counts are adjusted so that the winning count 
takes a small amount from each of its losing competitors. This adjustment is performed 
iteratively, adju'stments alternatively along the model rasters and then along each of the 
image rasters. This procedure iterates until the adjustments being made are insignificantly 
small. The usual result is a new accumulator array with a few very large peaks, and these 
peaks tend to be the only peaks along any raster line (ie. along model or image raster 
lines). An example result is demonstrated in Figure 5 of a typical accumulator after the 
competitive stage. It is easy to see that it is very simple using this technique to relax 
the assumptions that the competition iS representing; for example, allowing competition 
only in the image dimension removes the assumption that a model line can match only a 
single image segment. It is also easy to see how the assumptions can be incorporated to 
different degrees by the amount of relative competition in the two dimensions. Both the 
rules governing the re-distribution of the counts along rasters, and the integration of the 
iteration between the two dimensions can easily be adjusted to favour either of the two 
assumptions. 

2.4 Signal Extraction: Maximal Cliques 

The final stage of the algorithm consists of extracting the signal from the accumulators; 
that is to say, deciding which viewpatch is displaying the strongest consistent pattern 
of activation and what that pattern means in terms of the correspondence set. This is 
achieved in a'sequence of three stages: 

In the first stage of Basic  Ex t r ac t ion  the accumulator after competition is examined; 
all cells that are peaks in both their corresponding mode] and image dimensions are taken 
to represent correct correspondences for the given viewpoint ie. they are considered "on". 
The correspondence is obviously denoted by the indices of the accumulator cell. This gives 
an interpretation that meets both the assumptions that a model line matches a single 
image line and vice versa. However, this interpretation can still be globally inconsistent 
in terms of the local constraints used. 

In the second stage Maximal Cliques are extracted. The interpretation arising from 
basic extraction can be considered to be a graph in which a node represents a corre- 
spondence and connectivity is defined by consistency in terms of local constraints. The 
maximal clique algorithm will list all combinations of correspondences that are mutually 
consistent. The largest maximal clique is the largest set of combinations. Applying this 
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algorithm is therefore enforcing global consistency within constraints in that each corre- 
spondence must be locally consistent with every other. The algorithm used for maximal 
clique extraction is that of Johnston [9], and as used by Bolles ~: Cain [8] in their Local 
Feature Focus method for locating 2D objects 3. The algorithm is highly recursive and 
has been found to run very quickly on the short interpretations commonly found. The 
result is that the smallest number of nodes in the original interpretation are turned "off" 
to make the interpretation globally consistent within local constraints. 

The final stage is that of Order ing Viewpoints.  The signal strength for a viewpoint 
is measured as a function of the mean value and the standard deviation of the cells in 
the interpretation that remain "on" after Stage 2 (ie. are part of the largest maximal 
clique). The viewpatches are ordered in terms of the number of "on" cells (if less than 3 
cells are "on" for a viewpoint it is ignored since at least 3 correspbndences are necessary 
to invert the perspective transform); those viewpoints with the same number of "on" 
cells are ordered in terms of signal strength. The result is an ordered set of viewpoints 
and their corresponding interpretations that can be passed to a further model test stage 
to check for global consistency beyond local constraints and to extract the 6 parameters 
that determine object position. Due to the global consistency already enforced this set of 
viewpoints usually represents a small proportion of the whole viewsphere. 

3 Loca l  C o n s t r a i n t s  

In the implementation that produced the results in the next section the scale factor is 
unknown; the object may therefore appear at any size in the image. There are two ap- 
proaches to coping with this problem in the formulation proposed: either accumulation 
operates over a set of likely scales as well as the set of viewpoints, or else the local con- 
straints used are scale independent. The latter approach was adopted. The two geometric 
constraints between segments used were: 

• The  Angle Cons t ra in t  states that for two image lines to match two model lines at 
a particular viewpatch the angle between the image lines must be within the range 
defined the model lines over that viewpatch (within a certain error bounds) 

• The  Direction Constraint states that for two image lines to match two model 
lines at a particular viewpatch the bounds on the angle defined by the arbitrary 
vector connecting the first image segment to ~he second, relative to the first segment, 
must be within the similar bounds defined by the model lines for that viewpatch. 

These two constraints are illustrated in Figure 6. It can be seen that both these con- 
straints are scale independent, since the constraints are defined by angles that are wholly 
independent of segment size. It can also be seen that both constraints are insensitive to 
error in the length of the image segments. The Angle constraint is wholly independent of 
segment length. The Direction constraint is independent as long as the error makes the 
segment too small rather than too large; that is to say, the range of angles defined by any 
subsegments of the true image segments will be a subset of the range of angles defined 
by the true image segments (or model segments). The result is that another dimension 

3The actual algorithm is listed in the Appendix of [8] and described in greater detail in [7] 
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of scale does not need to be added to the accumulator, and the constraints used will also 
be robust to errors in segmentation caused by occlusion, poor edge-detection, or poor 
lighting. 

4 R e s u l t s  

The results were obtained from an implementation of the above algorithm. It has been 
run on noisy simulated data to illustrate its potential. The implementation is actually 
an iterative serial one, the iteration reflecting its parallel nature,  and is written in the 
high-level language P O P l l ,  part of the Sussex University P O P L O G  system. 

Two models were used. The first consists of 6 3D segments connected as an irregular 
tetrahedron; the second consists of 10 randomly generated 3D segments that  are uncon- 
nected. No account is taken in the model concerning the visibility of the segments; all lines 
are considered visible. In this formulation invisible lines should provide low counts in the 
accumulator and therefore be ignored. Visibility can be incorporated very effectively into 
this formulation when the model constraints are compiled; constraints are only computed 
for MA~( . . . .  ) if both model lines M,~ and Mm, are visible at V~. When accumulation 
occurs, connections involving elements of MA.( . . . .  ) which are empty are simply ignored. 
This way the two rasters in CAr corresponding to m and m! are guaranteed to be to ta l ly  
empty and will be ignored in further computation. 

In this implementation a very weak form of the above was incorporated. It was 
considered that  if two model lines were projected into the image and found to intersect at 
a particular viewpoint then one of them was actually invisible at this viewpoint. Therefore 
the constraint box corresponding to these lines at this viewpoint was left empty and 
ignored in subsequent accumulation 4. 

Noisy Images were generated from the model. The model was projected at random 
orientations to produce a basic image and then noise would be added. Three types of 
noise have been added to varying degrees: 

• S e g m e n t  R e d u c t i o n :  As in poor feature extraction or occlusion s 

• S e g m e n t  A d d i t i o n :  As in non-object features. 

• S e g m e n t  R e m o v a l :  As in missing object features. 

The two Scale Independent and Noise Robust constraints discussed in the previous sec- 
tion - the Angle and the Direction constraint - were used. These were both implemented 
as Direction Dependent and Symmetr ic .  

Figures 
The 5 figures 7 to 11 illustrate some results obtained. In the top half of the figure the 
accumulator arrays are displayed for the final viewpoints, that  provide an interpretation 

4Intersection is easy to detect since when two segments intersect the computed bounds on the Direction 
Constraint will be greater than 180 ° 

5Segmentation reduction was set throughout these examples at 40% ie. each segment was reduced to 
60% of its true length. 
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.and that can be verified by a model test. A maximum of 25 viewpoints are displayed; at 
the course resolution this corresponds to all viewpatches except one; at the fine resolution 
!it corresponds to about 11½% of the viewsphere. For display purposes the values in each 
accumulator have been normalised to take advantage of the full range of grey-values avail- 
able; therefore absolute intensities are lost, but relative intensities within accumulators 
are preserved. 

In the examples using the coarsely quantised viewsphere the cooperative stage was left 
,out since it was considered that the signal would not be strongly present in neighbouring 
viewpatches as they are so far away. The left-hand side displays the accumulator cells for 
the final viewpatches in ascending order before competition, The right-hand side displays 
the same accumulators for the same viewpatches after competition. The horizontal rep- 
resents the model dimension, and the vertical represents the image dimension. As can be 
seen, no peak in the competitive layer shares a raster line with another peak, so enforcing 
the two assumptions described above. The cells displayed in the competitive layer are not 
necessarily all used in the model test since some are filtered out by the maximal clique 
test. 

The lower half of the Figure displays the results of the model test using an interpre- 
tation extracted from one of the viewpatches. Firstly the perfect image is shown - this 
consists of the projection of the model at the appropriate viewpoint (ignoring visibility), 
along with the display of the extra noise segments added to the image. Secondly, the 
image is degraded by reducing the length of all segments (both those that are part of 
the object and those that are not) - this is the actual image that is given to the match- 
ing algorithm. In the third portion the model is displayed from the viewpoint selected 
after matching, but having undergone a 2D rotation about this viewpoint that makes a 
rough approximation at the missing degree of freedom. The final projection shows the 
position of the model after Lowe's iterative model test [10, 11, 12] has been applied to 
the interpretation to match the model as accurately as possible to the corresponding line 
segments. 

F igure  7: This first figure displays results for the ideal situation using the model of 
random lines and the fine qnantisation. All model lines are present but no extraneous 
image lines have been added. The model segments have been degraded by up to 
40%. 

* F igure  8: The small viewsphere has been used (only twenty six) viewpatches). Only 
five of the six model lines are present along with nine extra noisy image lines. The 
correct interpretation has been found in only a single viewpatch. This is not perfect 
since the solution should be found in at least two patches - that corresponding to the 
correct viewpoint, and that on the opposite side of the viewsphere corresponding 
to the Necker reversal s. The interpretation found for this viewpoint (view 17) is 
correct and seen to be very close to the actual viewpoint. The model test positions 
the model in perfect position. 

* F igure  9: This Figure uses the small viewsphere and the random model. Only 

SSince near parallel projection has been assumed throughout there is very minimal difference between 
projection at one viewpoint and that on the opposite side of the viewsphere. Since visibility constraints 
have been ignored the system cannot discriminate between the two possibilities. 
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nine of the ten model lines are present and nine extra image lines have been added. 
Two interpretations are found, the first of which is correct, despite the fact that 
the signal is masked considerably (as can be seen from the accumulators displayed). 
The model test is successful and the model is correctly located. 

F igure  10: The fine quantisation of the viewsphere has been used. Only four of 
the six model lines are present, and five extra image lines have been added. Three 
solutions are found and the model test succeeds on the first of these. 

Figure  11: This demonstrates this simple implementation of the algorithm being 
pushed to its limits. The random model has been used and the fine quantisation 
of the viewsphere. Five model lines have been removed and five extra image lines 
have been added. It can be seen from the co-operative laycr that the signal/noise 
ratio is very weak. Seven interpretations are found and the third one is correct and 
passes the model test; the model test had failed on the two previous attempts using 
the "better" interpretations. 

5 D i s c u s s i o n  

5.1 Signal/Noise Ratio 
The main factor determining the success of the algorithm described above is the sig- 
nal/noise ratio; increasing its strength has a very positive effect upon the efficiency of 
the algorithm. This can be done only by altering the constraints checked in the accumu- 
lation Stage. In the tree-search formulation the computation of the bounds on the local 
constraints is determined by the quantisation of the viewsphere and the degree of noise 
anticipated (eg. [4, 5]). In this formulation similar bounds may be computed but not all 
of them need necessarily be used. Given a correct match of two model lines to two image 
lines at a particular viewpoint, it is not, essential that the corresponding accumulations 
CA~(m.o and CA~(m,,,) need either be considered or, if considered, ~hat they should pass 
the constraint check. What is essential is the signal/noise ratio. 

For instance, a local Constraint bound corresponding to MA~( . . . .  ) may be so large 
that it not only lets in the signal but also a large degree of noise; in this case it might 
be considered that it is not worth being considered in the accumulation stage. In other 
words the constraint bounds may be tightened so that both more of the signal and more 
of the noise is excluded from the accumulators; it is the ratio of this exclusion that is 
significant. This method of exclusion could be used as a method of introducing a measure 
of saliency in that it is not accumulating upon constraints that could easily be met by 
chance, but only on those that are likely to be met by correct correspondences. 

Of course, another method of changing the signal/noise ratio is to alter the constraints 
considered. The advantage of the constraints used in this implementation (Direction and 
Angle) is that they are Scale Independent, and so they can detect the object at any 
distance or scale without having to have a Scale dimension in the accumulator. If the 
scale/distance of the object was already known in advance then stronger constraints could 
be used that would substantially decreasethe amount of noise in the accumulator. The 
signal/noise detection problem would therefore be simplified. 
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5.2 Advantages 

The approach outlined above possesses three advantages over the original search-tree 
formulation of the matching problem: 

1. Paral lel ism: 

. 

. 

The main advantage offered by this this approach is its inherent 
parallelism. The original tree-formulation is naturally serial, although such a search 
can be implemented to some degree in parallel. This parallelism means: 

• Graceful  Degradat ion:  The algorithm has robust qualities, meaning that 
no particular parts of the image are of especial significance. This is in distinct 
contrast to the tree-search formulation that has problems coping with either 
occlusion or degraded data. 

• P red ic tab le  Speed: Given a degree of serialism, it is possible to predict quite 
accurately how long the process will take to complete (Given complete serialism 
this may be a very long time). 

• Po ten t ia l  Speed: There is no reason why, given appropriate hardware facili- 
ties, such an algorithm could not be made to run as fast as required. 

Scale Independence :  The system of constraints used allows the algorithm to cope 
satisfactorily with the scale problem without extending the accumulation space into 
another dimension. This is at the expense of a weaker signal/noise ratio. If scale is 
already determined, the best of both worlds can be had. 

Reduced  "Ad Hoe"  P a r a m e t e r  Sett ings:  The tree-search formulation is heavily 
reliant on "ad hoc" parameter settings that control the search strategies and how 
the tree can grow. This formulation is less dependent upon such settings. 

5 .3  C o a r s e . - t o - F i n e  S t r a t e g y  

It is very simple to see how this new formulation could be redesigned to employ a coarse- 
to-fine resolution strategy. The results above show that a resolution of 26 viewpatches 
is sufficient in some cases to yield a correct solution; even if it does not give a perfect 
interpretation it often points to the correct viewpatch. The correct viewpatch could be 
quantised to a finer resolution and then the accumulation repeated anew over this limited 
portion of the viewsphere. Extraction of the interpretation need only take place at the 
end. For example, given the two resolutions of 1;1 and 1;2, where 1)1 < 1)2,' the ratio of the 
accumulations necessary for a coarse-to-fine strategy to the accumulations necessary for 
the finer resolution would be: 

(Vl + 
1;1 

In the case of the two resolutions 26 and 218 this represents savings of about 85%; 
this must be offset against time for dynamic configuration and potential error r 

rThe recursive quantisation of the viewsphere necessary for this sort of strategy comes naturally from 
the description of the viewsphere in terms of the icosahedron 
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Figure h Diagrammatic Formulation 

For v from I to V 

Do For i ~rom ~ to I 

Do For d from i to 2 

O~ For i' from I =o I 

Do For d' from i to 2 

Do For m from I to M 

Do For m' from I to M 

Do If consis%ent(IA(i,d,,i*,d~),MA~v)(m,m,)) 

Then CA(v)(m,i) = CA(v)(m,i) + I ; 

CA(v)(m',i') = CA(v)(m'~i') + i ; 

Endif 

Endfor 

Sndfor 

Endfor 

Endfor 

Endfor 

Endfor 

End~or 

Figure 2: Iterative Procedure 

Figure 3: Typical Accumulator Figure 4: Accumulator after Cooperation 
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Figure 5: Accumulator after Competition 
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Figure 6: Constraint set 

Figure 7: Perfect Example Figure 8: Small Viewsphere 1 
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Figure 9: Small Viewsphere 2 Figure 10: Large Viewsphere 1 

Figure 11: Large Viewsphere 2 


