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1. Abstract 

Experiments are reported on the use of an AssumptiOn-based Truth Maintenance 
System (ATMS) [6] to establish a match between a 3-d model and a single 2-d image. 
We show that the ATMS improves the efficiency of the search for maximal 
combinations of consistently labelled features. A memory cost is incurred, associated 
with the recording system of the ATMS; this can be reduced by simple heuristics. 
Empirical evidence is presented quantifying the costs and benefits of the method. 

2. The consistent labelling of image features 

Features extracted from images are usually ambiguous and uncertain. Object 
recognition depends oi1 the discovery of extended combinations of image features 
which are mutually compatible with a known object. Grimson and Lozano-Perez [9,10] 
have shown that simple binary constraints between pairs of model features may be 
sufficient to reject most mislabellings, ff the number of  model features is small, it is 
feasible to store all binary constraints explicitly, in tables compiled in advance. 
Furthermore, it is only necessary to compute the measures once for a given set of 
image features, and these too can be stored. As the search proceeds, the consistency 
of a pair of labels can be tested simply by comparing the measured datum against 
values in the constraint table. The space of all possible combinations of labels may then 
be searched by a depth-first expansion of the interpretation tree. 

Grimson and Lozano-Perez have shown that if the scene contains a single isolated 
object, very little of the interpretation tree need be explored. The strong constraints 
invalidate large sub-trees, and the search rapidly collapses to the single solution. 
However, a depth-first search with back-tracking is inherently very redundant. At each 
expansion of the interpretation tree, checks must be made that the newly labelled 
datum is pair-wise consistent with all existing labels, identical checks are therefore 
duplicated throughout the tree. For example, two data features separated from each 
other by n levels in the tree, will be cross-checked m (n-l) times (where m is the number 
of model features - i.e. the "fan-out" of the tree). Such duplication of effort is only 
acceptable if the constraint checks are extremely cheap to evaluate. Tiffs is the case in 
[10] where the constraints compare pre-compiled geometrical measurements of 3-d 
model features with 3M sensory data. The duplication is not acceptable in systems 
where the sensory data under-constrains the model, for example when matching 2-d 
data against 3-d models, as is considered in this paper. 
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Two types of constraint are available between 2-d data and 3-d models: 
(1) Qualitative constraints, derived from 2-d geometrical relationships between 

image featm'es, such as coincidence, adjacency, enclosure, similarity. Changes 
of viewpoint cause large changes between image features, so these constraints 
are often weak, and erroneous matches may not be detected. 

(2) Quantitative constraints, using 3-d knowledge, requiring all data to be 
geometrically compatible with a single perspective view of the object (see e.g. 
Lowe, [!2]). This requires the viewpoint to be solved iteratively, followed by 
the evaluation of combinations of features. It provides strong, metrical 
constraints, but they are very expensive to apply. 

Both types of constraint are inherently view-dependent, i.e. the exact relationship 
between the image features is strongly dependent oi1 the pose of the object in front of 
the camera. Therefore 2-d to 3-d constraints cannot be recorded in advance in simple 
numerical look-up tables, and must be evaluated dynamically as the model becomes 
instantiated. The computational cost of applying such constraints is often large, and a 
highly redundant depth-first search with backtracking is impractical. Instead, a record 
of all partial results must be kept, so that unnecessary repetition of the work can be 
avoided. Truth Maintenance Systems have been proposed for this purpose in other 
areas of Artificial Intelligence. W e  demonstrate below how the ATMS can be Used 
within a model-based vision system for recognising vehicles within unconstrained single 
images. The main features of the implementation have been reported elsewhere [1,2]. 
In this paper we report an experimental investigation into the costs and benefits of the 
ATMS for the consistent labelling of image cues. A more detailed report of this 
material is also available [3]. 

3. Outline of CARRS 

CARRS (CAR Recognition System) is an experimental system for finding and locating 
vehicles in images such as Figure l(a). CARRS adopts an "hypothesis-and-test" 
strategy which (in brief) consists of the following stages. 

Stage 1: Data-driven determination of feature groups. 

$1.1 Feature Extraction. Connected edges (Figure l(b)) from a single scale Canny 
operator [5] are segmented into straight lines at curvature maxima, to form polygonal 
approximations. 

$1.2 Cue Identification. Polygons (and fragments of polygons) are extracted to form 
cues for the labelling process. Cues are application-specific features which facilitate 
heuristic methods. At present these consist of U-shaped triples, S-shaped triples, and 
closed quadrilaterals. Each type of cue is associated with known components of the 
model which may give rise to it, e.g. U-shapes and quadrilaterals may arise at any of 
the windows, S-shapes may occur at the near- or off-side pillars of the windscreen. 
Figure l(c) (central box) shows the cues found in Figure l(b). 

$1.3 Identification of  Areas of  Interest. Each cue is considered in turn as a seed 
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feature (SF), and is associated with a subset of all cues likely to be due to a single car. 
The set is based on proximity to the SF in the image, conditioned by rules dependent on 
the type of SF, and its size and orientation in the image. The SFs are then ordered 
according to the cardinality of the proximity sets (Figure 1(c)). Note the overlap 
between proximity sets. 

Stage 2; Search for maximal consistent labellings 

$2.1 Application of 2-d Constraints. Taking each SF in .rank order, a search is made 
for maximal subsets of its proximity set, which may be labelled as model features, such 
that they are consistent with 2-d constraints. The constraints used are heuristic and 
domain-dependent; they are chosen to be fairly independent of viewpoint, and are not 
strongly specific to particular models of vehicles. They express requirements such as: 

• The windowson each side of the car must be aligned and closely adjacent. 
• A near-side window and an off-side window cannot be visible simultaneously. 

These 2-d constraints use metrical concepts such as distance and orientation, which 
are scaled by measurements between junctions within cues. 

$2.2 Hypothesis instantiation. Any maximal set of a SF which contains a sufficient 
number of cues is passed immediately to Stage 3 for verification. All other maximal 
subsets are stacked, pending the examination of the remaining SFs. When all SFs have 
been so treated any surviving maximal set is then passed to Stage 3. 

Stage 3: Model-based verification Of hYP °theses. 

$3.1 Viewpoint inversion. Labelled maximal sets allow the pose of a known object to 
be determined, using a 3-d model. This is carried out in three stages, each of which 
either invalidates the hypothesis, or progressively refines the viewpoint estimate. 
(1) Labelled features identify a patch on the viewsphere from which all the feaatres 

are visible - the "viewpatch" - which is represented as a quad-tree [14]. 
(2) The "roll-consistency constraint" [16] is applied, to reject parts of the viewpatch 

in which the angles (in the image) of labelled lines are inconsistent. 
(3) The perspective transformation is inverted by iterating from the current best 

estimate of view [15]. 

If an hypothesis is rejected at any of these stages then the solution set is invalidated, 
and is removed from further consideration. The previously satisfied set which led to this 
invalid set is then reconsidered as a maximal set. 

$3.2 Iconic verification. The vehicle hypothesis is evaluated by using the view estimate 
to project the entire model back into the image. An hypothesis-driven check is carried 
out for the existence of the projected model features in the image [4]. 

$3.3 Success Pruning. The acceptance of an hypothesis "consumes" the SF and cues in 
its maximal set. All constraints involving a consumed cue are declared' invalid, and the 
cue is removed from all existing sets. This prunes the search carried out in Stage 2. 

Stage 2 and Stage 3 are repeated as necessary, until all maximal partial labellings have 
been confirmed or invalidated. 
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4. Eff ic ient  search  me thods  

All three stages of the system impose significant computational burdens. This study 
concerns the search strategy used in Stage 2, and we take as fixed the cue sets 
delivered by Stage 1, and the verification algorithms used in Stage 3. The current 
problem is how to make efficient use of the weak 2-d constraints. There are two main 
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reasons why the methods adopted by Grimson & I~zano-Perez cannot be used. 
(1) It is infeasible to pre-compile the constraints, and to pre-compute file pairwise 

measurements between features. The measurements between features carried 
out in Stage 2 are only weakly independent of view and must be parameterised 
by the geometry of the feature within the image. 

(2) The constraints which are applied are highly specific to the particular labels 
being tested. An unselective initial calculation of all possible measurements 
between all pairs of features would be absurdly expensive. 

Constraints must therefore be evaluated as and when required. Any evaluation which 
is repeated therefore entails a significant cost. A form of Truth Maintenance System is 
needed, to record results, and to resolve conflicts between partial inferences. 

5. An ATMS approach to labelling 

The ATMS [6] i s a general purpose mechanism that supports reasoning over multiple 
hypotheses. We have previously shown that it can be used to support consistent 
labelling problems [1,2]. In brief, we represent each assignment of a model label to a 
feature as an assumption, and search for mutually consistent sets of assumptions 
(called environments). Constraints are recorded as ATMS constraint-nodes (akin to de 
Kleer's consumers), which are tested as new environments are explored. Invalid sets 
of labels are reduced to minimum inconsistent subsets, and recorded as "no-goods". All 
partial results of the search are stored, to avoid repeated evaluation of constraints; this 
is important where SFs have overlapping proximity sets. In addition, the ATMS 
maintains a "justification network" to record the interdependency of the data; this 
enforces coherence in the data when new inconsistencies are discovered (e.g. after 
success pruning in Stage 3). 

The  ATMS offers a radically different approach to that of the interpretation tree 
method [10] and can be used to solve a wider class of problems. However, there is a 
significant computational cost to pay: the recording mechanism consumes a great deal 
of memory, and the up-dating of the justification network is time-consuming. It is not 
immediately clear when the benefits outweigh the costs. 

Recently, Provan [13] has criticised the use of an ATMS on the grounds that it fails to 
scale up to complex problems effectively. He considered the visual task of identifying 
the components of a humanoid puppet thrown onto a table-top. The simulated "sense- 
data" comprised the positions of rectangles, representing different parts of the puppet, 
together with additional spurious rectangles introduced to create multiple possible 
interpretations. Provan showed that as environments were expanded in the search, 
they could not be disproved until very late, when most of the components had been 
labelled. This resulted in large no-goods which are ineffective at invalidating other 
environments. The number of consistent partial labellings therefore increased 
exponentially, and created an unacceptable storage cost. Provan argued that the cost 
greatly outweighed the slight benefits, and that the ATMS approach is unsuited even to 
quite small labelling problems in vision. 
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Provan's example is only partly relevant to CARRS. It is true that strong constraints 
on the sensory data cannot be applied at early stages of the search. However, unlike 
Provan's example, CARRS can invoke strong (viewpoint-dependent) constraints at the 
later stages of processing (Stage 3 above). The use of "success pruning" ($3.3) then 
allows much of the ATMS memory load to be avoided, since it consumes features, and 
reduces the number of environments needing to be considered. Success pruning has an 
effect similar to the use by Grhnson and Lozano-Perez [10] of a cut-off when some 
fractional match has been found. It reduces the amount of the search tree explored and 
the number of environments which need to be maintained. 

6. Experimental results 

In this section the costs and savings of using the ATMS are considered, by using 
CARRS to analyse five representative images, IMI-IMS. Typical behaviour is 
illustrated using IM 1. 

6.1 Analysis of constraint savings 

Where a significant portion of the search space is explored repeatedly, the encoding of 
constraints and recording of no-goods in the ATMS will result in a reduction in the 
number of constraints evaluated. The savings can be measured by recording how many 
constraints were necessary to check the consistency of an environment the first time it 
is explored. Each time an environment is re-explored, that number of constraint checks 
will have been avoided by the use of an ATMS. A count of the total savings is then 
increased by that amount. 
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Figure 2 : The affect of success pruning on the size of the search space 

These savings are illustrated in Figure 2(a). The abscissa of the graph shows the 
number of labellings explored, i.e. the amount of the search space explored. The point 
where a new SF is selected is shown on the graph, as well as the points where 
hypotheses testing takes place. Graph (1) shows the number of constraints evaluated 
during the search and graph (2) shows the number that would have been evaluated if 
no recording mechanisms were used. The distance between the two graphs is an 
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indication of the savings in constraint evaluation gained by using the ATMS. 

The results show that significant amounts of the search space are re-explored and that 
constraints are re-evaluated repeatedly. This may occur during the search within a 
proximity set, as happens during the search from SF1. However, significantly more re- 
exploration occurs when proximity sets overlap as is the case with SF2 and SF3 which 
have a large intersection with SF1, the first SF explored (see Figure l(c)). 

Images IMI IM2 IM3 IM4 IM5 
Constraints 
(a.1) # evaluated: 799 467 1 007 1 344 1 126 
Labellings explored 
(b.l) # explored: 2 366 3 198 3 382 5 399 5 030 
(b.2) # re-explored: 1 372 2 004 1 996 3 280 3 012 
(b.3) Percentage re-explored: 58% 63% 59% 61% 60% 
Reduction in constraints evaluated 
(c.1) Total reduction: 374 833 655 t 460 1 356 
(c.2) Percentage reduction: 32% 64% 39% 52% 55% 

(c.2) = 100×(c.1) / ((c.1) + (a.1)) 

Table 1 Summary of Constraint Savings 

The savings in constraint evaluation gained by using the ATMS are summarised for the 
5 test images in Table 1. Entry c.2 is the percentage of constraint evaluations that have 
been avoideA by use of  the ATMS encoding. The results show that using the ATMS 
does offer significant savings by avoiding constraint repetition. On aggregate over the 5 
test images approximately 50% of the constraint evaluations are saved. 

6.2 Analysis  o f  results  o f  success  pruning 

The effects of  success pruning can be illustrated in CARRS by disabling the cue 
consumption. The result is shown graphically for image LM1 in Figure 2(b), where it is 
seen that a considerably greater number of constraints are evaluated. 

(a) # of consumed cues: 2 2 2 3 
(b) # of labellings taken OUT: 66 55 63 106 
(c) Immediate verification reduction: 3 0 2 2 
(d) Delayed verification reduction: l 8 7 12 

Table 2 The effects of Success pruning for each test image 

The effects of  success prtming for the 5 test images is summarised in Table 2. Entry 
(a) shows the reduction in the number of  seed features being considered. Entry (b) 
shows the number of  consumed image features that were previously labelled as model 
features. Entries (c) and (d) show the number of maximal labellings pending verification 
that were invalidated as a consequence of success pruning. 

6.3 Memory  requ i rements  

The memory required by the ATMS increases with the search and limits the size of 



549 

application that can be considered. This limit can be estimated by measuring the size of 
the ATMS data structures, constraint nodes and justifications, environments and no- 
goods as each image is analysed. These are summarised in Table 3. 

Images IMI IM2 IM3 IM4 IM5 
Nodes, 
(a.1) # of constraint nodes: 789 927 1 093 1 219 1 155 
(a.2) # of model feature nodes: 366 454 518 698 521 
(a.3) # of feature labelling assumptions: 7 0 7 7 10 
Justifications, 
(b.1) # stored: 2 772 2 768 3 774 5 323 4 405 
Environments, 
(c.l) Final # stored: 931 3 778 2 221 2 071 2 041 
(c.2) Largest # stored: 1 195 4 375 5 216 8 606 3 500 
Nogoods, 
(d.1) Final# stored: 317 410 431 680 504 
(d.2) Largest#stored: 317 410 431 680 504 

Table 3 Storage requirement of the ATMS 

Of these data structures, those that increase the most are the consistent environments 
and the minimal no-goods. Their growth for image IM1 is shown in the graphs in Figure 
3 which shows the effect of success pruning clearly (occurring at the verification of 
SF1) in reducing the number of  consistent environments and minimal no-goods stored. 
These results indicate that in CARRS the storage overhead associated with the use of 
an ATMS does not grow excessively. 
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Figure 3: Storage of Environments for test image IM1 

6.4 CPU c o s t s  o f  u s i n g  t h e  ATMS 

A further disadvantage of the ATMS is the computational overhead incurred in 
maintaining the consistency of  the justification network and environments. This can be 
estimated by recording the CPU time spent on ATMS operations. However, such 
measurements are strongly influenced by minor implementation details, such as the 
choice of data representation and the need for garbage collection. It is shown 
elsewhere [3] that in CARRS up to 73% of the time spent evaluating constraints 
concerns updating the ATMS to reflect newly discovered inconsistencies. 
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7. Conclusions 

Our demonstrations based on the CARRS program have shown that an ATMS can be 
used effectively to determine all maximal consistent sets in a constrained labelling task. 
This approach overcomes a crucial defect inherent in the backtracking algorithm of 
Grimson and Lozano-Perez, and is therefore able to cope with the less well constrained 
problems of matching 2-d image features to 3-d models. In our experiments w e  have 
used relatively simple sets of features. Even here it has been shown that the recording 
mechanism of the ATMS allows approximately 50% of the constraint evaluations to be 
avoided. In more complex examples, having greater potential overlap between feature 
sets, the savings would be correspondingly greater. 

We have also shown that the storage burden needed to maintain the ATMS is not 
excessive - this contradicts Provan's [13] findings for vision tasks such as that 
addressed by CARRS. One important factor in limiting the number of environments is 
the use of "success pruning", based on the ability to verify hypotheses by 3-d model- 
based methods. This has a dramatic effect both on the memory requirements and the 
up-dating costs of the ATMS. The most time-consuming component of CARRS is the 
maintenance of the consistency of environments. Meaningful CPlA-time estimates are 
difficult, but our experiments suggest that the ATMS update time may completely 
cancel out the savings provided by the avoidance of constraint re-evaluation. 

Our experiments on the consistent labelling problem using the general-purpose 
mechanism provided by the ATMS have allowed us to identify where significant 
savings can be made. Our findings show that the recording of partial results has a 
strong impact on the cost of the search, provided that an efficient means of maintaining 
a coherent record is used. 

However, we note that the ATMS represents an "over-kill" for the labelling problem in 
CARRS. The properties of the ATMS which are important in this context may be 
implemented in a far more efficient way, especially if, as here, only binary constraints 
between labels are used. The success or failure of each constraint evaluation may be 
stored, as it is calculated, in a 2-d matrix allowing hashed indexing by means of the cue- 
labels. The breadth-first search used by the ATMS to explore the environment lattice 
can then be imitated by a systematic breadth-first expansion of the interpretation tree. 
Repeated evaluation of constraints can then be avoided by first checking each 
constraint against the evolving results matrix. We are currently investigating this 
strategy. It should be noted that this method will only work for binary constraints. To 
use higher order constraints a more general mechanism is needed - such as de Kleer's 
ATMS. 
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