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A b s t r a c t  

This paper describes an algorithm for estimation of 
directionality in 2D and 3D vector fields and how 
that feature relates to the curvature of curves in 2D 
images and surfaces in 3D images. 

One of the main properties of the method is that 
no thresholding is required. It consists of two steps. 
First the grey level image/volume is filtered with a 
number of filters to obtain a tensor description of the 
local orientation. Secondly the tensor image/volume 
is filtered with a number of filters to achieve the local 
direction description. 

1 I n t r o d u c t i o n  

Earlier papers (e.g [2]) have presented an methodol- 
ogy where a vector data representation is used for 
curvature estimation in 2D images. Here this al- 
gorithm is modified to work on data represented as 
tensors. This modification enables the generMizatiou 
from 2D to 3D. 

The curvature concept is well-known from vector 
analysis and differential geometry [7]. We will denote 
the curvature of a 2D curve with a and the tangent of 
the curve with ~. Surfaces have a direction of most 
curvature as well as a direction of least curvature, 
and these directions are, apart from being perpen- 
dicular to the normal vector of the tangent plane of 
the surface, also perpendicular to each other. We 
will denote the two directions (the principal direc- 
tions) as l~ and k~, while the amounts of curvature 
(the principal curvatures) will be denoted t¢1 and a~. 

There exists a variety of different curvature estima- 
tion and description algorithms, e.g. [1, 3, 5, 6]. The 
new algorithm presented here differs from standard 
curvature algorithms in two very important aspects. 
First no thresholding is required. Secondly the detec- 
tion is done hierarchically in two steps, where erro- 
neous local orientation information is suppressed (as 
opposed to 'eliminated' which is the case in other 
two-step algorithms with thresholding) before the 

actual curvature estimation takes place. 

2 O r i e n t a t i o n  E s t i m a t i o n  

The first step is to achieve a local orientation esti- 
mate. The algorithm utilizes the observation that 
a neighbourhood with one dominant orientation 
has the energy in the Fourier domain concentrated 
around a hue through the origin orientated at the 
orientation (or gradiant direction) (x, y)T ((x, y, z) T 
for 3D images). A number of quadrature filters are 
applied on the grey level image/volume, where each 
filter is concentrated in a specific partition of the 
Fourier domain: The dominant local orientation is 
achieved by 

K 

£ ( ~ , ~ )  = ~ q~(~,~)(T~ - ~I) (1) 
k : l  

where f l  denotes the obtained tensor image, ~ and 
~ are spatial coordinates (add ~ for 3D), K is the 
number of filters, q~ denotes the magnitude of the 
filter response and Tk is the  direction of the filter 
in the representation domain. This results in a ten- 
sot representation which for a dominant orientation 
(x, y)r (or (x, y, ~)r) equ~s 

T2D = xy y2 TaD = xy y2 yz 
xz yz z 2 

(2) 
Tk in E% (1) is computed by expressing the Fourier 
domain direction of the filter (the direction where the 
filter is Concentrated) as a cartesian vector and put 
it into Eq. (2). The filters are evenly spaced over a 
haft of the Fourier space. [4] describes the algorithm 
in detail. It should be noted that  this representation 
is continuous and contains a certainty measure. 

3 C u r v a t u r e  E s t i m a t i o n  in  2 D  

The curvature property of curves in the origi- 
nal image is transferred into the orientation image 
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f l ( ~ z , ~ ) .  It turns out that  estimation of curvature 
direction can be made in the same manner as the 
estimation of local orientation, i.e. by a summation 
of the magnitude responses of a number of filters, 
where each filter is concentrated in a partition of the 
Fourier domain. 

It is in [2] shown that  a 2D-neighbourhood with 
one dominant curvature wilt have a local Fourier 
spectra where the centre of gravity is located in the 
direction of i 'provided that  the pixel values are com- 
plex and equals 

(z~ - v 2) + i2~v. (3) 

This implies that  the following formula (see Fig. i) 
can be used 

K 

f 2 ( ~ , ~ V )  = Eqk(~x,~y)nl~.  (4) 
k = l  

The vector achieved from Eq. (4) will coincide with 
the direction of the tangent of the curve in the grey 
level image. The magnitude of the vector relates to 
the curvature t¢ of the curve. The magnitude q~ of 
the tensor field filtering in Eq. (4) is computed as 

q = [ ( h * * x  2-h**y2+2ho*xy) ~+ 
(he * zV - ho * z 2 + ho * y2)2]½ (5) 

where he and ho are the even and odd parts of 
the quasi-quadrature filter. Observe that the en- 
tire Fourier domain is covered by filters as  opposed 
to the case of orientation estimation, where it is 
enough to cover half of the Fourier domain. A quasi- 
quadrature filter is defined in the Fourier domain as 

H(u)  = H . (u )  cos 2A ~ (6) 

where u is the frequency coordinate vector, u is the 
length of the vector and 

¢ = arccos(-~) (7) 

and nk is a unit vector determining the main direc- 
tion of the filter. Hp describes the frequency char- 
acteristics. The parameter A specifies how concen- 
trated the filter is with respect to its main direction. 

Note that  the simple formulation of Eq. (4) results 
in the following features. 

• The magnitudes in theneighbourhood are taken 
into account so that  only relevant parts (pixels 
on the curve) have effect on the computation. 

• the gradient of~(z,  y) is estimated for those pix- 
els. 

• The magnitude of the estimate f2(~z,~v) con- 
tains information about the certainty of the in- 
put data, i.e. the quality of the orientation es- 
timates in the neighbourhood, as well as infor- 
mation about the fit to the curvature model. 

• The curvature magnitude ~ is implicitly re- 
flected through the magnitude of f2(~,~v) and 
the frequency characteristics of the filters used. 

The algorithm can be modified to take into account 
that  the tangent and gradient of a curve are perpen- 
dicular, i.e. 

arg(f~(~,~v)) = 2arg(f2(~,~v)) + ~ (S) 

Neighbourhoods not fulfilling Eq. (8) are not of 
curve/curvature type and the direction of the vec- 
tor field corresponds to another type of event, e.g. 
line ends. 

4 T h e  a l g o r i t h m  in 3D 

The interpretation of the orientation tensor as a com- 
plex number (Eq. (3) can in the 3D-case be done in 
three different ways. (Substitute z or ~ in Eq. 3 with 
z.) Applying Eq. (4) on the three interpretations re- 
sults in three different 3D-vectors. It can be shown 
(proof omitted) that  the vectors will point in the 
principal direction (or in the opposite direction) of 
most curvature provided that  there is one dominant 
curvature direction in the neighbourhood. 

Experiments have shown correct estimation of cur- 
vature direction and a reasonable tota ! (the three es- 
timates combined) magnitude invariance of the cur- 
vature direction. The scheme has been able to keep 
track of the weaker 'least curvature direction'. Even 
the surface of a sphere, with two equal strength cur- 
vatures, is handled correctly. 

5 T h e  I n v e r s e  

The inverse (the transformation from the curvature 
description to the principal directions k~ and k~) is 
obtained by summing the outer products of the three 
3D-vectors (denoted b~, by and bz) and computing 
the eigenvalues of the obtained matrix. 

z 

bkb~ (9) 

The eigenvector of thelargest eigenvalue determines, 
apart from the sign, kl. The eigenvector of the sec- 
ond large~ eigenvalue determines, also apart from 
the sign, k2. The third eigenvalue should for a well 
defined surface be close to zero and the local normal 
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Figure 1: A stylized example of Eq. (4). 
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vector should be perpendicular to the two curvature 
directions. The sign of k~ and k~ is obtained by 
checking the directions of the three 3D-vectors. 

6 C o n c l u s i o n  

A new algorithm for 3D curvature description has 
been presented. It is a hierarchical non-thresholding 
method, where the curvature is estimated on a 
gradient-equivalent image derived from the grey level 
volume (or time sequence). Both steps are performed 
without thresholding and with convolution as base 
operation. The algorithm output consists of a con- 
tinuous representation constituted by three different 
3D vectors. This representation can be translated 
into the two principal curvature directions. 
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