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Abs t rac t  

We propose a method for automatically aligning images with local distortions from different sensors, using 
real images instead of calibration objects. The algorithm has three components. First, we extract intensity 
discontinuities, because this is a feature that is likely to show up across modalities. Second, we use a 
correlation scheme that averages over time rather thax~ space, for high precision. Third, we propose an 
architecture and a learning scheme that learn the correlation surfaces over time and implement the image 
coordinate transform. 

In t roduc t ion  and  problem definit ion 

Fusion, or integration, of information from different sensors is believed to facilitate object recogni- 
tion. The sensors may be of different mOdalities, e.g. video, infra-red or laser range cameras. Before 
fusion can occur, however, the images must be properly aligned. Thus the problem is defined: given 
two cameras at two positions with overlapping fields-of-view, find the coordinate transform that will 
align the overlapping portions. We represent the transform using a shift field, a vector field sharing 
some formal properties with the optical flow field. Note that the misalignment generally will vary 
across the image, due to rotation, zoom, and local distortions. The simplest approach is to use 
special calibration objects, e.g. hot corners, to produce calibration images, and then interpolate 
between these points. This approach presents problems in remote-control or autonomous situations 
(e.g. for a Mars rover or for bialogical visual systems) when calibration objects are not likely to be 
at hand. This is the motivation for developing an algorithm that achieves image alignment using 
natural images. 

A correlat ion scheme for image a l ignment  

One problem with using different modalities is that there is expected to be little correlation between 
intensity values, since reflectance, temperature, and distance correlate only to a very small degree. 
We therefore need to extract features that are likely to show up in any modality. Edges, or intensity 
discontinuities, have this property, since they often arise at object boundaries. This was recognized 
by Barniv and Casasent [1], who studied full-image correlations between images that were captured 
with the same camera, but with different filters. Correlating edge maps yielded a clear peak, the 
position of which gives any shift between the two images. 
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Figure 1: Sample image pairs. 
(a) and (b) depict the same scene, but are captured using two video cameras of different makes. (c) and (d) show 
the thresholded zero-crossings of (a), after filtering with the Laplacian of a Gaussian. 
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In the general case, however, the two sensors do not have identical fields-of-view and resolutions. 
While a full-image correlation will work for pure translations, it will not work for rotations and 
zooms (different resolutions). To remedy this we average in t ime rather than space. Let us define 

the atomic correlation function a~,i = m! ~) • m(2) where mg) is the pixel value at ( i , j )  in image 1 ,J ~,3 ' t ,$ 

and m (~) is a patch of pixels in image 2. aid defines a correlation surface that is local in both space 
and time. Averaging ai,~ over the whole image, we get a full-image correlation. Averaging a~j over 
a patch gives patch correlation. We average a i j  in time over a set of image pairs, sometimes in 
combination with a small amount of spatial averaging over 2x2 or 3x3 squares, in order to reduce 
the number of image pairs we need. Hence we get one correlation surface at every pixel position in 
image 1. We use a 2-D parabolic fit ~o find the position of the peak of the correlation surface, using 
sub-pixel accuracy. This position vector gives the local misalignment and the set of all position 
vectors defines a shift field, which gives us the desired coordinate transform. 

To generate a database of 180 video image pairs, we directed two cameras of different makes towards 
a screen upon which vacation slides were projected. The digitized images were filtered with the 
Laplacian of a Gaussian, a n d  edges were marked at the zero-crossings. A sample image pair is 
shown in figure 1. Figure 2(a-h) shows sample correlation surfaces and 2(c) the shift field displayed 
as a needle diagram. One camera was zoomed-in compared to t h e  other, which clearly shows in 
figures 1 and 2(c). The average error in peak position was very low. For auto-alignment, i.e. when 
images 1 and 2 were identical and the true misalignment was known, the average error in peak 
position was less than 0.1 pixels. Figure 3 shows how the average error in peak position varies 
with the number of images used and with the amount of spatial averaging. For cross-alignment, 
i.e. when images 1 and 2 were different and the true misallgnment was not known, we estimated 
the standard deviation to a = 0.2 pixels. To assess the robustness to noise we generated artificial 
Mondrian images and added various amounts of salt-and-pepper noise. We found that  even at very 
low signal to noise ratios (SiNIR = 1.0) the average position error was less than 0.2 pixels and the 
width of the correlation peak increased by 50%. 

A n  a r c h i t e c t u r e  for  l e a r n i n g  and  i m p l e m e n t i n g  t h e  c o o r d i n a t e  t r a n s f o r m  

One way to implement the shift would be to use the setup depicted in figure 4. A patch m (2) of 
neurons in image 2 project via a set of weights w (referred to as a receptive field) to a neuron with 
output  V = m(2) "w. If only one component of w is non-zero, the corresponding component of m (2) 
will be shifted into ~/. We can approximate the ideal receptive field w with the correlation surface. 
A similar approach was suggested by [4]. With a defined as above, i.e. a~,~ = m~l~ ) * m!2], the 
learning rule tic = t~a + ~Vw (~ and/5 positive constants) will converge to w( t  = oo) o~ a . . . . .  ~, .[3], 
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Figure 2: Correlation surfaces and shift field. 
Using a set of 180 edge image pairs, an example of which is given in figure 1 (c-d), the time-averaged correlation was 
calculated at every pixel. (a) A typical correlation surface at a sample pixel position. (b) The average correlation 
surface of four neighbors. The peak is somewhat more pronounced, and its position better defined. (c) Shift .field. 
Parabolic fits were used to find the peak positions which are represented as needles in the diagram. The zoom effect 
is Obvious. For clarity only every fourth needle is shown. 
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Figure 3: Accuracy of alignment. 
The alignment error decreases rapidly as more images 
are used. The curves represent different amounts of 
spatial averaging. From top to bottom, no averaging, 
2x2 averaging, 3x3 averaging. 
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Figure 4: Learning Architecture. See text for 
details. 

i.e. the time-averaged correlation surface. We used the same image set as in the previous section to 
test this learning algorithm, presenting the images in random order. Starting from random weights 
or a peak in the wrong position, we get convergence after 300-500 iterations. 

If this algorithm runs continuously on an autonomous vision system, it would rapidly adapt to 
changes in camera positions or other distortions. Such dynamic realignment has been shown to 
occur in the barn owl optic tectum [2]. A VLSI implementation of the algorithm would be useful 
for integrated early vision modules now under development. 

F u r t h e r  discussion 

Our problem definition translates to finding correspondences between image pairs. This is related 
to the problem of binocular stereo and image motion, and algorithms developed in these areas could 
conceivably be used. However, the problem to be solved is not analogous, and our algorithm has 
two advantages. First, stereoscopic effect are a major source of error, since a close object would 

be interpreted as a local distortion in the imaging equipment. Averaging over several image pairs 
is a necessity and reduces stereoscopic errors at the cost of a wider peak. Second, time-averaging 
over many images yields very high precision and allows for a straightforward implementation of the 
learning algorithm as described in the previous section. 
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