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1. I n t r o d u c ~ . n  
The use of models for top-down control is the major strategy to beat the inherent complexity of 
many visual processes. Fortunately,  inh)rmation to select appropriate models from long-term memory 
for top-down control is often available for a visual system. For example, it can be provided by 
previous bottom-u p analysis, by the spatio-temporal context, by expectations about a scene, by goals 
or intentions of the system, and by other information sources, e.g., prior descriptions in natural 
language and the like. The main research focus in model-based visi~m has been on the use of static 
information, for example, the use of object models (see e.g. !Tsotsos 871 for an overview). 

In this paper we concentrate on tempi)ral aspects of model-based vision: the use of motion concepts 
for top-down control. Motion concepts can constrain visual processes in two ways. First, they can 
provide a spatial focus for analysis, because instances of motion con!:epts can typically only be found 
at certain locations in a scene (e.g., a 'turmoff' event can only take place at intersections). Second, 
motion concepts can focus the analysis on a specific spatio-temporal behavior. We investigate both 
aspects in the domain of street traffic scenes, where typical objects are cars, pedestrians, trucks, and 
so on, and typical motion ~oncepts are 'turn-off'-events, 'overtake' events, 'cross'-events and tile like. 
In our examples, top-down information is given by natural language utterances. 

Two central and interrelated questions are: 1) At which- level of representation should bottom 
up processes and top-down control interact? and 2) Itow should motion concepts be represented to 
support top-down guidance? In tMohnhaupt i Neumann 901 we propose a hybrid representation of 
motion concepts. A propositional representation including a logic based style of reasoning is exploited 
for event recognition and brag-term memory, and an analogical quantitative spatio-temporal buffer is 
used for motion visualization and prediction, for learning object motion and several aspects of spatio 
temporal reasoning. The  buffer facilitates important tasks related to concrete visual scenes. It can be 
instantiated on demand from long-term memory. 

ttere, we focus on one aspect of the spatio-temporal buffer: the generation of predictions suited 
for top-down control of motion analysis. The central idea is to express motion concepts as typicality 
distributions in the buffer. The bu fief is shared between bottom-up and top-down processes. We show 
that spatio-temporal constraints for motion analysis can be derived~ and we sketch how models and 
bottom-up data can interact to allow for meaningful predictions. Both leads to a significant reduction 
of complexity: For traffic scenes top-down control through the use of motion concepts can reduce the 
amount of computation by several orders of magnitude. 

2. M o t i o n  concep t s  impl i ed  by verbs  of l ocomot ion  
lu street traffic scenes we associate motion concepts with verbs of locomotion like 'drive', 'walk', 
'turn-off', etc. , as proposed by [Neumann 891 for bottom-up event recognition using propositional 
event models. These event models are inappropriate for top-down control mainly for two reasons: 
First, predictions in terms of predicates are mmecessarily imprecise, because typical and atypical 
instances cannot be distinguished. And second, propositional event models are difficult to adapt to 
constraints provided by bottom-up analysis, for example obstacles on the street; clearly this should 
lead to an adapted prediction. 

This lead us to consider a spatio-temporal buffer representation for top-down control. It is shared 
by bottom-up and top-down processes and closely related to perceptual representations. The buffer is 
fourdimensional (x, y, direction of velocity, speed). It can be filled with a typicality field for motion 
in a certain subfield of the xy-plane in tile scene, for example, a typicality field representing a turn- 
off model for a particular intersection. The  typicality field results from accumulated and processed 
event instances (see [Mohnhaupt t Neumann 89], IMohnhaupt 4 Neumann 90]). Stationary scene 
objects like the street shape can also be filled in, from model-based expectations as well as from 
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visual processes. The spatio-temporal buffer is an extension of the purely spatial buffer proposed hy 
[Kosslyn 80]. One can think of it as an internal image-like representation with temporal behavior to 
simulate events of interest and to derive helpful information. 

Given the typicality field of an event and a starting situation resulting from bottom-up analysis, 
a search space for the likely progression of the event instances can be computed by following all typi- 
cality values above a certain threshold. A subsequent motion analysis can focus on this search space 
which comprises the spatial and spatio-temporal constraints. 

3, A n  e x a m p l e  
Consider the  task of analyzing a typical street traffic scene as depicted in Figure 1, a synthetic model 
of a real scene. The number of interesting objects and events, which could in  principle be analyzed 
can be very big. To focus the analysis we assume top-down information given in terms of a natural 
language question like: Did a car drivin# towards Dammtor turn off Schl~terstreet into Bieberstreet 
in front of the FB lnfovmatik? Top-down control is now performed in two steps. First, spatial 
constraints are exploited, and second additional motion constraints are derived. 

Location inf6rmation associated with a motion concept can be derived as follows. We assume the 
semantic content of the utterance to be represented in a case frame representation, including slots 
for agent, object, location goal, destination, direc'tional, and the verb. The verb determines an event 
model (here the event model for 'turn-off'). From information about the applicability of turn-off events 
it is derived that they can only happen at intersections. The locative of the case frame allows to choose 
the intersection Schl/iterstreet/Bieberstreet as a focus for analysis. In addition, the directional entry 
of the case frame further constrains the analysis, because a particular turn-off area can be inferred as 
shown in Figure 1 (dark area). 

Our main focus is now on motion information associated with the motion concept to allow for 
further top-down control. Within the depicted dark area in Figure 1, a certain direction of motion 
and a certain speed can be expected in case of a turn-off event from Schlfiterstreet into Bieberstreet 
driving towards Dammtor. Hence, the next step is to instantiate the spatio-temporal buffer with tile 
scene geometry and the typicality distribution for turn-off. Given a starting point of the turn-offevent 
in the image sequence, a spatio-temporal search area for subsequent motion analysis can be generated 
by considering continuations above a certain typicality. The prediction algorithm is local and provides 
location and velocity information. In our example all the successor ceils with typicality values above 
a certain threshold lead to Figure 2. 

In the example in Figure 2 the typicality distribution results from observing several turn-off exam- 
pies, see Figure 3. xy-traces of observed examples are shown, objects are represented by their center 
of mass. Note that information about velocity is not visible in Figure 2 and Figure 3 but is part of 
the model. After recording examples, subsequent local processingleads to generalizations which cover 
the approximate area represented by the examples (see [Mohnhaupt t Neumann 90] for details of the 
learning steps and methods to instantiate typicality distributions from long-term memory and from 
models recorded in a different environment). 

To support our considerations a real image s'equeuce was recorded on this intersection. Figure 4 
shows one frame of this sequence. The most interesting event for now is the white taxi turning off 
Schl/iterstreet. Other moving objects include cars and pedestrians. 

In order to be able to apply the constraining information shown in Figure 2 to the image sequence, 
the low-level motion representation is based on 3-dimensional Gabor cells [Adelson + Bergen 85]. The 
implementation is described in IFleet 88]. The output of spatio-temporal Gabor cells is well suited 
for top-down control, as by using a Gabor filter bank an image sequence is decomposed into orienta- 
tion, velocity, and scale specific information. Hence, top-down constraints can be brought to bear by 
selecting the appropriate subset of cells for an analysis (in the example, only those cells are chosen 
which are sensitive to motion towards the upper left according to the predictions computed within 
the buffer). Figure 5 shows the spatio-temporal energy of Gabor cells which are maximally sensitive 
to an orientation of 45 degrees with a speed of one pixel per frame. The main information about the 
taxi is within the predicted area, other motions as well as static information are removed. 
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4 .  S u m m a r y  
We showed how to exploit motion concepts associated with verbs of locomotion for top-down control 
in traffic scenes. Two kinds of constraints could be  derived: spatial constraints through knowledge 
about the applicability of motion concepts, and motion constraints through knowledge about typical 
motion. We proposed to compute motion constraints using a spatio-temporal buffer a s a  shared repre- 
sentation for bottom-up and top-down processes. Within the buffer motion concepts are expressed as 
typicality distributions from which predictions about object motion can be derived. A local prediction 
algorithm allows for the computation of search areas for low-level motion analysis. A low-level motion 
representation based on spatio-temporal Gabor cells is well suited for the integration of this kind of 
top-down information. 

We presented an example where this procedure has been implemented. Using top-down guidance, 
the complexity of computation could be reduced significantly. Instead of analyzing the whole scene 
at the Same level of detail, 1) only a small area could be chosen for an analysis and 2) the analysis 
could be focussed On specific spatin-temporal behavior withifi the area of interest. 
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