
FIFTH GENERATION COMPUTER PROJECT:
CURRENT RESEARCH ACTIVITY AND FUTURE PLANS

Koichi Furukawa

Institute For New Generation Computer Technology
1-4-28, Mita, Minato-ku, Tokyo 108 Japan

1. Introduction

The FGCS project, aiming at developing a new generation of general purpose
computers, began in 1982 and is now almost half way through the ten years of the project.
The project was established to explore a qualitatively new approach to computer science in
order to solve many difficult problems which have accumulated in the field. We considered
that the two single most important and difficult problems are opening up a new market for
computers to keep the computer industry growing, and overcoming the low productivity of
software compared with hardware. We spent three years developing the target of a new
broad market for next generation computers, and concluded that knowledge
information processing will be the answer.

At the same time, we attempted to dpsign a computer system adequate for the new
application area, i.e. knowledge information processing, and produced the rough sketch of
the system shown in Fig. 1. The system has two significant features: one is a highly parallel
architecture deviating from the traditional yon Neumann architecture, and the other is the

+

t
Highhlyt Parallel

Architecture

VLSI Technology

Fig.1 The role of logic programming in the FGCS projec t

24

bridge of logic programming to span the chasm between knowledge information processing
and the parallel architecture.

Logic programming has been functioning as a strong guideline and as a vehicle to
promote research in the project. As a result of our research so far, we have succeeded in
developing a more detailed framework providing a clearer perspective on how the bridge
must be constructed, the chasm spanned. It consists of a set of programming languages
layered in a hierarchy and a set of program transformation methods forming the links
between them.

We have designed two new logic programming languages. Guarded Horn Clauses
(GHC) is an abstract machine language for parallel execution, and Complex
Indeterminate Language (CIL) is an extended version of Prolog suited for writing
knowledge information processing application programs. We have also worked up meta
programming techniques for introducing user languages by defining their interpreters
along with a general method for compiling programs written in those new languages into
Prolog. The method is based on the idea of applying partial evaluation to meta programs.

Program transformation is the key to achieving both expressiveness and efficiency of
programming languages. One of the new program transformation methods we developed is
designed to handle the transformation of some kinds of CIL programs into normal Prolog
programs, and the other transforms normal Prolog programs into GHC programs. By
successively applying the transformation methods, the CIL programs can be transformed
into GHC programs. These are the tentative steps we have taken so far toward
establishing the link between knowledge programming and parallel architecture.

In Section 2 an informal explanation of GHC will be given using examples. Meta
programming techniques and their optimization by partial evaluation will be presented in
Section 3. Two program transformation methods will be described in Section 4, followed by
the conclusion in Section 5.

2. Guarded Horn Clauses

GHC is a logic programming language for concurrent programming and parallel
execution. It is a successor of Relational Language [Clark 81], Concurrent Prolog [Shapiro
83a] and PARLOG [Clark 84]. Another candidate for a parallel logic language is Horn
logic itself, i.e. a language consisting of only pure Horn Clauses (PHC, for short). PHC
has, however, serious drawbacks both in software and hardware. The software problem
is that you cannot describe parallel phenomena explicitly in PHC, and the hardware
problem is that you have to maintain different environments for each or-branch of
computations, for which no efficient method has been discovered so far.

On the other hand, concurrent logic languages do not have these two problems (to be
precise, Concurrent Prolog suffers from the multiple environment problem). This
favorable characteristic derives from the restrict ion imposed on PHC to obtain
"guarded" Horn clauses. Namely the restriction makes the underlining execution
mechanism of concurrent logic languages much simpler than that of PHC. The only
apparent drawback of concurrent logic languages compared with PHC is that they loose the
capability to find all solutions satisfying given conditions based on don't know

25

nondeterminism. But we succeeded in removing this drawback by program
transformation [Ueda 86]. The details will be discussed below in Section 4.

GHC is a language consisting of a set of guarded Horn clauses, as the name suggests.
We use a vertical bar "I" called commit operator to designate the guard part of each clause:
the guard part is to the left of the commit, and the body part is on the right. The guard part
specifies the condition for the body to be selected for successive computation. The important
features of GHC are the following suspension rules [Ueda 85]:

(a) The guard of a clause cannot export any bindings to (or, make any bindings observable
from) the caller of that clause, and

(b) the body of a clause cannot export any bindings to (or, make any bindings observable
from) the guard of that clause before commitment.

Rule (a) determines synchronization and rule (b) execution of bodies. Let us take a
simple example of service at a counter with two queues. We need to merge these two queues
into one in order to make a single queue for service. Let us define a procedure
me rge (Xs, ¥s, Zs), in which two queues Xs and Ys will be merged into a single queue Zs, in
terms of GHC:

(ml) merge([X lXs] ,Ys ,Zs) : - t rue [Zs=[X[Us] ,merge(Xs,Ys,Us) .
(m2) merge(Xs, [YIYs] ,Zs) : - t rue I Zs=[Y}Us] ,merge(Xs,Ys,Us) .
(m3) merge([] ,Ys ,Zs) : - t rue I Zs=Ys.
(m4) merge(Xs , [] ,Zs) : - t rue I Zs=Xs.

The fact that the clause (ml) waits for people arriving at the first queue is represented
by its first argument [X] Xs]. The usual situation using the merge program is something like

?- queue l (As) ,queue2(Bs) ,merge(As,Bs,Cs) ,serve(Cs) .

where queue 1 (As) and queue2 (Bs) are processes generating a sequence of people joining
the queues. Suppose that the processes queuel and queue2 do not generate any instances.
Then, As (and Bs also) will remain as a variable and the execution of the merge process
will be suspended due to the necessary unification As=[XIXs] and the rule of suspension.
What this mean is since the expression [X I Xs] asserts that i t has at least one element,
the unification will force the conclusion that the same fact is true for As, and this means the
unification would give a binding to the variable appearing in the caller. When queuel
instantiates the variable As to, say, [john lRes t] , t heaboveun i f i ca t i on will become
[j oh n IRes t] = [X lXs] and this can be solved without giving any new binding to variables in
the caller. Therefore, the guard part of the clause (ml) can be successfully solved and it
can be committed for successive computation. The body of (ml) consists of a unification
which will give a binding to the variable Zs representing the merged queue, and a
recursive call to the merge process. When there are people in both queues, clauses (ml) and
(m2) can both solve the guard parts. In such a case, one of the clauses is chosen
nondeterministically for successive computation.

I t is very easy to represent assembly line-like parallel processing in GHC. In an
assembly line program, a shared variable between processes will represent a sequence of
unfinished products. Programming in GHC corresponds to designing such an assembly

26

2 3

[2,3,4,..~ [3,5,7,..] [5,7,I1...1

:@ @
Fig.2 The process structure of a p r ime generation program by

Aristotle's sieve

line, and its execution corresponds to building and operating it to manufacture products.
Since new processes are created during execution of the GHC program, it is possible to
modify the assembly line while operating it. A prime generation program by Aristotle's
sieve is an example of dynamic creation of processes. The system consists of an integer
generator, a sequence of dynamically created filter processes corresponding to each
prime to remove multiples of the prime, and a sift process to continue creation of filter
processes as shown in Fig. 2.

Shared variables among processes can be regarded as communication channels and
the entire channels form a communication network defining a process structure. It is
expected that the process structure will reflect the target problem's structure: in other
words, in parallel programs, the process structure will play the role of a data structure in
sequential programs. Furthermore, since each process is an active object, the entire
process structure's function is much richer and stronger than that of a data structure.

Let us consider the problem of finding all possible paths from some point to a fixed
goal. A typical programming technique in writing a Prolog or LISP program is to use a
stack or queue to maintain all partial paths traversed (we do not consider using backtrack
in Prolog here). The program is shown in Fig. 3. The first argument of the predicate "paths"
is the stack. The same problem is easily written in GHC, as shown in Fig. 4, where no
stack appears explicitly. A process structure corresponding to the control stack is created
dynamically as shown in Fig. 5. Note that the structure is no more a stack than a collection
of.possible partial paths. Also, the GHC program is simpler and easier to understand. This
comes from the fact that you can capture the program in an object-oriented way; that is, a
process represents an object.

3. Knowledge Programming Methodology

A knowledge programming system is a system for building various kinds of knowledge
based application systems and requires many programming paradigms such as object-
oriented programming, meta programming, constraint programming, and so on to describe
a wide range of application systems.

Concurrent logic languages are known to be well suited to realizing object-oriented
programming [Shapiro 83b]. Several research efforts are underway aimed at designing an

27

start_paths(Start,Goal,Paths) :- paths([[Start]] ,Goal,Paths).

pa ths([] ,_ , []) :- !.
paths([FirstlRest],Goal,[PathlPaths]) : -

F i r s t = [GoaII_],
reverse(First,Path),
paths(Rest,Goal,Paths).

paths([FirstlRest],Goal,Paths) :-
expand(First,Add),

append(Add,Rest,Next),
paths(Next,Goal,Paths).

expand([LastlRest],Ts) :-
neighbors(Last,Nodes),

removeIf(Nodes,[LastlRest],Ts) .

remove l f ([] ,_ ,Z) : - !, Z=[] .
removelf([NINs],Path,Ts) : -

member(N,Path), ! , removelf(Ns,Path,Ts).
removelf([NINs],Path,Ts) : -

Ts=[[NIPath] ITs l] , remove l f (Ns,Path ,Ts l) .

member(X,[Xl_]) : - ! .
member(X,[ZIY]) : - member(X,Y).

append([] ,X,X) .
append([UIX],Y, [UJZ]) : -append(X,Y,Z).

reverse(X,Y) :- appendReverse(X,[],Y).

appendReverse([],X,X).
appendReverse([UlX],V,Y) :- appendReverse(X,[UlV],Y).

neighbors(start,Z) :- Z:[a,d].
neighbors(a, Z) :- Z : [s tar t ,b] .
neighbors(b, Z) :- Z=[a,c,goal].
neighbors(c, Z) :- Z=[b,d,goal].
neighbors(d, Z) :- Z=[start ,c,e] .
neighbors(e, Z) :- Z=[d,goal].
neighbors(goal, Z) :- Z: [b,c,e] .

Fig.3 A path finding program using stack in Prolog

object-oriented programming language or system based on concurrent logic languages
[Furukawa 84], [Kahn 86]. But they are not well developed yet, and we need further
research to obtain significant results.

28

start_paths(Start,Paths) :- true I pathFinder(Start,[],Paths).

pathFinder(goal,History,Paths) :- true I Paths=[[goallHistory]].
pathFinder(Node,History,Paths) :- Node\=goal [

(Node -> Nexts), pathFinder1(Node,Nexts,History,Paths).

pathFinderi(Node,[],History,Paths) :- true I Paths=[].
pathFinder1(Node,[NINs],History,Paths) :- true I

member(N,History,Result),
childPathFinder(Result,N,[NodelHistory],P1),
pathFinderl(Node,Ns,History,P2),
merge(PI,P2,Paths).

childPathFinder(true Paths) :- true I Paths=[].
childPathFinder(false,Node,History,Paths) :- true I

pathFinder(Node,History,Paths).

member(_,[],R) :- true I R=false.
member(X,[Xl_],R) :- true I R=true.
member(X,[A[Y],R) :- X\=A I member(X,Y,R).

m e r g e ([X l X s] , Y s , Z s) : - t r ue I Zs= [X lUs] ,merge (Xs ,Ys ,Us) .
me rge (Xs , [Y IYs] ,Zs) : - t r ue I Zs= [Y IUs] ,merge(Xs ,Ys ,Us) •
m e r g e ([] , Y s , Z s) : - t r ue I Ys=Zs.
m e r g e (X s , [] , Z s) : - t r ue I Xs=Zs.

s t a r t - > N e x t : - t rue I N e x t = [a , d] •
a->Next : - t rue I N e x t = [s t a r t , b] .
b->Next : - t rue I N e x t = [a , c , g o a l] •
c ->Next : - t r ue i N e x t = [b , d , g o a l] .
d->Next : - t r ue I N e x t = [s t a r t , c , e] .
e->Next : - t rue [N e x t = [d , g o a l] ,

Fig. 4 A path finding program in GHC

In this section, we concentrate rather on the topics of meta programming and
constraint programming.

3.1 Meta Programming

Although Prolog can deduce goals from rules and facts, its built-in fixed control
structure (i.e., the top down and left-to-right strategy) has been the object of considerable
criticism. Recently a methodology called meta programming has emerged and its usefulness
has been shown in realizing various inference systems with different control structures than
the built-in one[Sterling 84]. Examples are Production System, a bottom-up parser, a
parallel parser, a symbolic computation system, and a backward reasoning system with
certainty factor handling.

29

start

a d

I
b e

c goal

fr paths "~
om s t a r t J

(a) (b)

Fig. 5 A map and its co r re spond ing process s t r u c t u r e

These examples show that the addition of meta programming features can make
Prolog into a good knowledge programming language. However, meta programming has a
serious drawback concerning efficiency, because of its interpretive mode of execution. To
remedy this defect, we developed a very powerfulcompiling method based on partial
evaluation [Futamura 71,83], [Takeuchi 86].

Fig. 6 shows a simple example of rule compilation by partial execution in Fig. 6. Fig. 6
(b) is a set of rules of which the inference engine is given in Fig. 6 (a). The result obtained by
partial execution of the inference engine together with the given set of rules is shown in
Fig. 6 (c).

Forintui~ve unders tandingof the above ~ansforma~on process, we t ry"symbol ica]"
execu~on of thegoat

?- solve(should_take(A,aspirin),[B]). (i)

Note that this execution is symbolic because we do not have sufficient information for
actual execution. By applying the fourth definition of "solve" clauses to the goal (1), we
obtain the following sequence of goals:

?- rule(should_take(A,aspirin),B,F),
solve(.B,S), cf(F,S,B). (2)

Next, we apply the first definition of the "ru 1 e" clauses to the first goal of (2) and execute
the body of the clause. Then, we find the values of B and F and obtain a new sequence of
goals:

?- solve((complains_of(A,Symptom),
suppresses(aspirin,Symptom),

30

solve(true , [100]).
solve((A,B) ,Z) :- solve(A,X), solve(B,Y), append(X,Y,Z).
solve(not(A),[CF]) :- solve(A,[C]), C < 20, CF is 100-C.
solve(A ,[CF]) :- rule(A,B,F), solve(B,S), cf(F,S,CF).

cf(X,Y,Z) :- product(Y,1OO,YY),Z is (X*YY)/IO0.

product([] ,A,A).
product([XlY],A,XX) :- B is X'A/100, product(Y,B,XX).

rule(A,B,F) :- ((A:-B)<>F).
rule(A,true,F) :- (A<>F).

(a) An inference engine with certainty factor handling

should_take(Person,Drug) :-
complains_of(Person,Symptom),
suppresses(Drug,Symptom),
not(unsuitable(Drug,Person)) <> 70.

suppresses(aspirin,pain) <> 60.
suppresses(lomotil,diarrhoea) <> 65.

unsuitable(Drug,Person) :-
aggravates(Drug,Condition),
suffers_from(Person,Condition) <> 80.

aggravates(aspirin,peptic_ulcer) <> 70.
aggravates(lomoti l , impaired_liver_function) <> 70.

(b) A set of rules with certainty factor

solve(should_take(A,aspir in),[B]) :-
solve(complains_of(A,pain),C),
solve(suffers_from(A,peptic_ulcer),D),
cf(80,[701D],E),E<20,F is 100-E,
append(C,[60,F],G),cf(10,G,B).

solve(should_take(A,lomoti l) , [B]) :-
solve(complains_of(A,diarrhoea),C),
solve(suffers_from(A, impaired l iver_funct ion),D),
cf(80,[7OID],E),E<20,F is 100-E,
append(C,[65,F],G),cf(70,G,B).

(c) A result of partial execution of the inference engine (a) together with a set of
rules (b)

Fig. 6 An example of rule compilation by partial execution

31

not(unsuitable(Drug,A))),S),
cf(70,S,B).

(3)

The next execution step is the application of the second definition of the "sol re" clauses,
which results in the following goal sequence:

?- solve(complains_of(A,Symptom),Sl),
solve((suppresses(aspirin,Symptom),

not(unsuitable(aspirin,A))),S2),
append(SI,S2,S), cf(70,S,B).

(4)

The normal Prolog processor would now proceed to the execution of the first goal of (4). But
in this case we cannot execute the goal "solve(complains of(A,Symptom))" because
this goal is only solved by the input from the user when the system is actually used.
Therefore, symbolic execution proceeds to execute the next goal and produces the goals:

?- solve(complains_of(A,Symptom),Sl),
solve(suppresses(aspirin,Symptom),S21),
solve(not(unsuitable(aspirin,A)),S22),
append(S21,S22,S2),
append(SI,S2,S),cf(70,S,B).

(5)

Now, we try to execute the second goal "so 1 ve (supp res se s (. . .))" of (5). Note that this
goal can be completely solved by applying the first definition of the suppresses clauses,
which unifies the variable "Symptom" to the constant "pai n" and "$21" to 70. The resulting
goal sequence is as follows:

?- solve(complains_of(A,pain),Sl),
solve(not(unsuitable(aspirin,A)),SZ2),
append(60,S22,S2),
append(S1,S2,S),cf(70,S,B).

(B)

Note that the variable Symptom in the first predicate
"sol ve(complains_of(A,Symptom),Sl)" is also instantiated. Continuing the symbolic
execution process, we finally obtain the result given in Fig. 6 (c).

We succeeded in speeding up the original interpretive program by about three times
for the above example. We also examined another example of an algebraic manipulation
system which was five times faster. These numbers suggest that partial evaluation is a
very promising technique for optimization of ineta programs. Another merit of the
approach is that meta programming enforces a clear separation of object knowledge from
control, which makes the programs far easier to understand than the mixed approach.
Goebel et al. [Goebel 86] described a MYCIN-like diagnosis system in terms of the
combination of a meta interpreter and a set of logical formulas connecting malfunctions
and symptoms. In his system the connection is represented in such a way that ' T f X has a
malfunct ion A, then it has a set o f symptoms B ' ; instead of /7[f X has a set o f symptoms B,
then you can conclude that X has a malfunct ion A '; which is the representation style in
MYCIN. The behaviour ofa meta interpreter is described by something like 'Tfyou want to
identify that X has some malfunction A, then you need to show that X has all symptoms that
A gives rise to." By partially executing the meta interpreter together with logical formulas

32

describing the relationship between malfunctions and symptoms, we managed to obtain a
set of"compiled" rules which are similar to those in MYCIN.

3.2 Constraint Programming

Constraint Programming is another important paradigm in knowledge
programming. There have been many efforts to incorporate it into the logic programming
framework [Colmerauer 82,86], [Mukai 85], [Dincbus 86], [Jaffar 86]. They are roughly
divided into two groups: one is Colmerauer's and Mukai's work dealing with only passive
constraints based on a freeze mechanism, and the other is Dincbus's and Lassez's work
dealing with not only passive constraints but also active constraints.

We developed a language called CIL (Complex Indeterminate Language), a version of
Prolog with passive constraints, and with the addition of the "complex indeterminate"
concept from situation semantics. It possesses not only a freeze mechanism, but also
"indefinite terms" to represent frame structures. Indefinite terms are used to represent
semantic structures in the experimental discourse understanding system called DUALS
[Mukai 85], [Yokoi 86].

Besides the natural language understanding system, we tried to use CIL to build a
VLSI CAD system for solving layout problems and it was shown that constraint
programming is useful for representing building block layout problems.

4. Program Transformation

The layers of logic languages we have described, that is, the concurrent logic
languages like GHC and knowledge programming logic languages such as CIL are good
stepping stones toward dividing the original problem of bridging the gap between
knowledge information processing and highly parallel computer architecture into three
smaller problems: 1. Developing knowledge information processing application systems in
knowledge programming languages such as CIL; 2. Transforming programs in knowledge
programming logic languages (such as CIL) into those in GHC; and 3. Developing an
efficient highly parallel computer on which programs in GHC run very fast.

Here, we focus on the second problem. The general compilation method of meta
programs described in Section 2 is regarded as one of the very promising techniques to
partial solution of the problem. It transforms two layer programs consisting of a meta
interpreter and object programs into single layer programs.

In this section, we present two other program transformation methods. One is for
removing freeze from passive constraints programs, and the other is for removing
backtrack. The latter method is applied to transform Prolog programs into GHC programs.

4.1 Program transformation for removing freeze

We developed several methods to transform programs with passive constraints into
those without them using unfold/fold transformation method [Burstal177].

Let us explain one of the ideas of the transformation methods briefly. We consider a
problem of finding all paths between two points in a given map, possibly including cycles.

33

Fig. 7 shows an elegant program using passive constraints to check cycles in possible
solutions to avoid wasteful search efforts. The reason why we need constraints is that the
check goal must be in front of the path generation goal to protect the program from falling
into an infinite loop.

The constraints are a set of inequalities for all pairs of nodes in each possible path. We
need the freeze mechanism to delay the evaluation of each of these inequalities appearing
as constraints until both of the variables in it are instantiated.

By shuffling the set of inequalities and rearranging properly between other goals, it
becomes possible to evaluate all inequalities immediately after they are called. We
found a way of shuffling analogous to the exchange of the summation order by
structural commutativity such as

n i - I

~ X,, = ~ ~X,j [Seki86].
j= t i= j+t i = 2 j = l

4.2 Program Transformation for removing backtrack

To remedy an apparent drawback of GHC compared with Prolog, Ueda [Ueda 86]
proposed a transformation method from "all solutions search" Prolog programs to

good path(X,Y,Path) :-
good_list(Path), path(X,Y,Path).

good_list(L) :- freeze(L,good_list1(L)).

good_listl([]), good_listl([X[L]) :-
out of(X,L), good_list(L).

out_of(X,L) :- freeze(L,out_ofl(X,L)), out_ofl(X,[]).
out_ofl(X,[Y[L]) :- dif(X,Y), out_of(X,L).

path(X,X,[X]).
path(X,Y,[X[Path]) :-

neighbor(X,Z), path(Z,Y,Path).

neighbor(X,Y) :- neighbor1(X,Y).
neighbor(X,Y) :- neighbor1(Y,X).

neighbor1(a,b).
neighbor1(a,c).
neighborl(b,d).
neighborl(b,c).
neighborl(c,e).
neighborl(d,e).

Fig. 7 An e legant pa th f inding p r o g r a m u s i n g p a s s i v e c o n s t r a i n t i n P r o l o g l l

34

equivalent GHC programs. His method has two phases: the first phase involves performing
of mode analysis to determine, for each variable, whether it is an input or an output
variable, and, given the analyzed program, the transformation is performed in the second.

We will briefly explain the method using the following example:

(gO) ?- append(U,V,[1,2,3]).
(al) append([],Z,Z).
(a2) append([AlX],Y,[AIZ]) :- append(X,Y,Z).

When execution starts, we first obtain a partial answer [11X] from (a2), and, after the
successive recursions and backtracks, we get three values for X; namely X=[], X=[2] and
x--[2,3].

The problem here is that we need to copy the structure [l lX] for all three different
computations of X, which would cause a serious problem in an actual parallel execution
environment due to the undecidability of the "var" check included in the copy operation
[Ueda 86].

To avoid the copy problem, we rewrite the clause (a2) into the following:

(a2)' append(X1,Y,[AlZ]) :- append(X,V,Z),Xl=[AlX].

The recursive call in (a2)' does not require any copy operations since the variable X1
does not change during the recursion. But in this case we need an extra job after the
recursion: namely, to cons A to X to obtain X1. The and-or graph for the goal (gO) is shown
if Fig. 8.

Now let us design an appropriate process structure of GHC to compute all possible
solutions of (X,Y). By mapping or-branches in the original Prolog program to and-forks
in the target GHC program, we obtain a process structure and its corresponding recursive
program schema in GHC as shown in Fig. 9.

Let us consider the behaviour of a particular process, say, the process P3 in the Fig. 9.
Since this process corresponds to the computation following the path (a2)' (a2)' (al), we
obtain the following equations:

(gl) ?- X3:[],Y=[3],X2=[21X3],X=[ll X2].

as a result of unfolding the original goal according to the given path. These equations for
building solutions constitute the process Q3 in Fig. 9. To realize this final computation,
necessary information such as "1", "2", and "3" is stacked during the P's recursions, and
it is used in building the solution in the "cont" program. The name "cont" comes from the
fact that the final computation (gl) can be interpreted as a collection of continuation tasks
after the recursions in the clause (a2)'.

The transformed program is shown in Fig. 10, where ap corresponds to P, apl to Q and
ap2 to P', respectively. Note that the computation for building solutions such as (gl) is
included in apl as a call to the "cont" program.

35

?-append(U,V,[1,2,3]).

~ ~

U=]
V:11,2,3]

?-append(X2,V,[2,3]), U=[IIX2].

x2=[] I ?-append(X3,V, [3]) , X2=[21X3].
v:[2,3] I J L

]
X3=[] I ?-append(X4,V, []), X3:[31 X4] .

~__4[l]k [il

Fig. 8 An and-or t ree of the goal ?-append (U, V, [1 ,2 ,3])

(a) A process s t ruc ture of the list decomposi t ion p rogram in GHC

<process_creator> : -< terminat ion-cond i t ion> [<f inal izer>.
<process_creator> : -o therw ize I

<sol u t ion_f i nde r>, <p rocess_creator>.

<solut ion_f inder> : - t r u e [<solut ion_bui lder>.

(b) A p rog ram schema for the process s t ruc ture (a).

Fig. 9 GHC process s t ruc ture and its p rogram schema
for the list decomposi t ion pro blem.

36

: - . . . , ap(Z, 'L0 ' , S, [])

ap(Z, Cont, S0, S2) : - t rue l
apl(Z, Cont, SO, S l) , ap2(Z, Cont, St, $2).

apt(Z, Cont, SO, Sl) : - t rue l
cont(Cont, [] , Z, SO, SI) .

ap2([AIZ] , Cont, SO, Sl) : - t rue I
ap(Z, ' L I ' (A ,Con t) , SO, S l) .

ap2(Z, _, SO, SI) : - otherwise I S0=SI-

con t (' L l ' (A ,Con t) , X, Y, SO, Sl) : - t rue j
cont(Cont, [AIX] , Y, S0, S l) .

cont ('LO' , X, Y, SO, SI) : - t rue l
SO: [(X,Y) IS l] .

Fig. lO ListDecomposition Program in GHC

We sketched Ueda's method to transform "all solutions search" Prolog programs to
equivalent GHC programs. Although this method has a certain limitation on input
programs, it is known that it covers a wide range of application programs.

5. Conclusion

We set out in the Fifth Generation Computer project to develop a highly parallel
computer with logic programming as the centerpiece. We have already designed several
language levels, starting from high level programming languages which handle large
applications, down to the machine language that can be executed in a highly parallel
manner. We also aim to develop unified program transformation techniques to fill the
gaps between these language levels.

We are confident that we have produced the first approximations to solutions of this
problem. Fig. 11 is the picture of the levels of programming languages we have obtained
through our activities so far.

We can now see the basic outline of the path from applications to parallel execution,
although the path has not taken concrete shape yet. Application programs are written
in a powerful knowledge programming language equipped with meta programming
facilities. These are transformed to more efficient programs written in a general purpose
user language. Then these programs are further translated into the more primitive
parallel logic programming language FGHC, which can be executed by Multi-PSI and/or
PIM.

What remains is to give this path concrete shape. Our approach is to isolate the
component problems and solve them one by one and put the results together to achieve the
target.

37

(

iii II II

~ 1 1 1 I I

Knowledge Programming Language ~ \
, Meta Programming
, Constraint Programming

Program Transformation /
Partial Evaluation

General Purpose User Language ~'~

; Prolog
GHC (KLI-u)

Program Transformation /
Compilation (Optimization)

Flat GHC (KLI-c)
J

Compilation (Optimization)

, Multi-PSI/PIM (KLI-b))

Fig. 11 Levels of programming languages and transformation methods among them

References

[Burstall 77] R. Burstall and J. Darlington, "A Transformation System for Developing
Recursive Programs," JACM Vol. 24,No. 1, 1977.

[Clark 84] K. Clark and S. Gregory, "PARLOG: Parallel Programming in Logic," Research
Report DOC 84/4, Imperial College, April, 1984.

[Colmerauer 82] A. Colmerauer, "Prolog and Infinite Trees," In Logic Programming, K. L.
Clark and S. A. Tarnlund (eds.), Academic Press, 1982.

[Colmerauer 86] A. Colmerauer, "Theoretical Model of Prolog II," in Logic Programming
and Its Applications, M. Van Caneghem and D. H. D. Warren (eds.), Albex Publishing Corp.,
1986.

[Dincbus 86] M. Dincbus and P. Vanhentenryck, "Constraints and Logic Programming,"
Technical Report TR-LP-9, ECRC, Munich, 1986.

[Furukawa 84] K. Furukawa, A. Takeuchi, S. Kunifuji,.H. Yasukawa, M. Ohki, K. Ueda,
"Mandala: A Logic Based Knowledge Programming System," Proc. of the FGCS'84, 1984.

38

[Futamura 71] Y. Futamura, "Partial Evaluation of Computation Process: An Approach to a
Compiler-Compiler," Systems, Computers,Controls 2, 1971.

[Futamura 83] Y. Futamura, "Partial Computation of Programs," Journal of IECE of Japan,
Vol. 66, No. 2, 1983.

[Goebel 86] R. Goebel, K. Furukawa and D. Poole, "Using Definite Clauses and Integrity
Constraints as the Basis for a Theory Formation Approach to Diagnostic Reasoning," in
Proc. of the Third International Conf. on Logic Programming, London, 1986.

[Hammond 83] P. Hammond and M. Sergot, "A PROLOG Shell for Logic Based Expert
Systems," Proc. of the Third BCS Expert Systems Conference, 1983.

[Jaffar 86] J. Jaffar and J-L. Lassez, "Constraint Logic Programming," Technical Report,
Department of Computer Science, Monash University, June 1986.

[Kahn 86] K. Kahn, et al., "Vulcan: Logical Concurrent Objects," Proc. of the ACM Object-
oriented Programming, System, Languages and Applications Conference, Oregon, 1986.

[Mukai 85] K. Mukai, H. Yasukawa, "Complex Indeterminates in Prolog and its Application
to Discourse Models," New Generation Computing, Vol. 3, No. 4, 1985.

[Sekl 86] H. Seki and K. Furukawa, "Compiling Control by a Program Transformation
Approach," ICOT Technical Memo No.240, 1986.

[Shapiro 83a] E. Shapiro, "A Subset of Concurrent Prolog and Its Interpreter," ICOT
Technical Report TR-003, 1983.

[Shapiro 83b] E. Shapiro, "Logic Programs with Uncertainties: A Tool for Implementing
Rule-based Systems," Proc. of IJCAr83, 1983.

[Sterling 84] L. Sterling, "Logical Levels of Problem Solving," Proc. of the Second
International Conf. on Logic Programming, Uppsala University, 1984.

[Takeuchi 86] A. Takeuchi and K. Furukawa, "Partial Evaluation of Prolog Programs and
its Application to Meta Programming," in Proc. of the IFIP Congress 86, 1986.

[Ueda 85] K. Ueda, "Guarded Horn Clauses," ICOT Technical Report TR-103, 1985, also in
Logic Programming '85, Lecture Notes in Computer Science, 221, Springer-Verlag, 1986.

[Ueda 86] K. Ueda, "Making Exhaustive Search Programs Deterministic,"

