
A COMPOSITIVE ABSTRACTION ALGORITHM FOR COMBINATORY LOGIC*

Adolfo PIPERNO

Dipartimento di Matematica

Istituto "G.Castelnuovo"

Universita' degli Studi di Roma "La Sapienza"

P.le Aldo Moro 5, 1-00185 ROMA, Italy.**

Abstract.

The problem of the translation of k-terms into combinators (bracket

abstraction) is of great importance for the implementation of functional

languages. In the literature there exist a lot of algorithms concerning this

topic, each of which is based on a particular choice of a eombinatory basis,

of its cardinality, of an abstraction technique.

The algorithm presented here originated from a modification of the

definition of abstraction given by Curry in 1930, and has the following

interesting properties:

i) it employs a potentially infinite basis of combinators, each of which

depends on at most two parameters and is, therefore, directly implementable;

ii) it gives compact code, introducing a number of basic combinators which

is proportional to the size of the expression to be abstracted and invariant

for one and multi-sweep abstraction techniques;

iii) it gives the result in the form R]MI...Mn, where R is a regular

combinator expressed as a composition of basic eombinators, I is the identity

combinator, and MI,...,M n are the constant terms appearing into the expression

subjected to the translation process.

It comes out that a slight modification of the algorithm yields a

combinatory equivalent of Hughes' supercombinators.

Keywords: Functional programming, Compiler design, Evaluation techniques.

0. Introduction.

We assume the reader to be familiar with the basic definitions and

properties of k-calculus and theory of combinators not explicitly cited in

this paper; for a complete treatment of them see e.g. [Bar] and [CurFe].

In particular:

- k-terms will be untyped k-~-q-terms, possibly containing constants;

- the word combinator will indicate a closed k-term, which will be denoted by

a boldface character; we will assume that the correspondence between k-calculus

and combinatory logic has already been defined and adopt k-notation

*) This research has been supported by grants of the Ministry of Public Instruction, Italy.
**) This work originated as the author's thesis in Mathematics (supervisor Prof. C.B~hm) by
such an affiliation.

40

to indicate the functional behaviour of a combinator;

- the problem of abstraction in combinatory logic (CL), which is the central

issue of the process of translation from k-calculus to CL, is introduced in

the following way:

let be given any CL-term U and the variables Xl,...,x n (n ~ 1); the abstract

of U with respect to Xl,...,x n (denoted [Xl,...,Xn] U) is a CL-term F such that:

i) x i does not occur in F (i ~ i ~ n);

ii) FXl...x n ~ U. (FXl...x n reduces to U).

The abstraction is a correspondence between CL-terms; it is constructively

defined by means of an algorithm, which can be viewed as a proof for

combinatory completeness; related algorithms can be classified in two

branches:

-multi-sweep algorithms, which repeatedly operate on one variable at a

time, in the following way: [Xl,...,xn] U =def [Xl]([x2]('--([Xn] U)~));

- one-sweep algorithms, which operate simultaneously on all the variables

Xl,...,Xn; we will use the notation [~n] U to indicate that the operation

[Xl,...,Xn] U has to be performed by such an algorithm.

The interest in the abstraction algorithms of combinatory logic comes from

computer science: in the last few years many so-called functional languages

have been proposed, together with special techniques for their implementation.

Some of these, starting with the one by Turner [Tur79a,b], make use of an

algorithm of translation from k-calculus to combinatory logic in order to

achieve the compilation of a program. Functional languages are in effect

enriched versions of k-calculus, and the combinatory code obtained from the

translation process is more easily executable by a computer than performing

~-reductions.

Such an approach is of practical interest if the size of the resulting code

is not too large; an exhaustive treatment about the complexity of the

algorithms existing in the literature can be found in [Mul].

A different implementation technique for functional languages is the one

suggested by Hughes [Hug]; the compilation process makes use of the so-called

supercombinators; these are introduced as a generalisation of Turner's

combinators avoiding the growth of the compiled code; however they need to be

interpreted somehow, while Turner's ones are directly implementable.

The main inspiration for the present research comes from the comparison

between the two schemes described above, the motivation being to find a

combinatory equivalent of supercombinators, i.e. a combinatory basis and an

abstraction algorithm operating on it in order to give a combinatory

interpretation of them.

The resulting algorithm derives from the sources of combinatory logic; in

fact the required basis comes from a modification of the one introduced by

Curry in 1930-32 [Cur30,Cur32], and the algorithm comes from a modification of

the definition of abstraction given by Curry in 1933 [Cur33].

In sections 1,2 we will introduce the set of combinators employed by the

41

algorithm as a compositive basis for regular combinators; in section 3 we will

give an intuitive description of the abstraction process; this will be

modified and formalized in sections 4 and 5.1,2, with the definitions of two

versions of the final algorithm, corresponding to one and multi-sweep

techniques; complexity problems will be analysed in section 6.

i. Basic combinators.

We will first recall the definitions of some fundamental combinators:

I ~ kx.x the elementary identificator;

K ~ kfx.f the elementary cancellator;

W~ kfx.fxx the elementary duplicator;

C ~ kfxy.fyx the elementary permutator;

B ~ ~fgx.f(gx) the elementary compositor (infix: f o g ~ Bfg) .

We will now give a classification of CL-terms which is useful to introduce

the combinatory basis employed in the abstraction algorithm (see [Sta] for an

interesting treatment about basis problems in CL):

Definition i.i:

A CL-term T is said to be pure if it is a combination of variables only.

Definition 1.2:

A combinator T is said to be proper if T ~ kx0...Xn.T , where T is a pure

combination of the variables x0,...,x n .

Definition 1.3:

A proper combinator U is said to be regular if U ~ kx0...Xn. X0Ul...Um, where

UI,...,U m are pure combinations of Xl,...,x n,

Let us consider the set R of all regular combinators; it is easy to verify

that:

(i) R constitutes a monoid with respect to the operation (o) of composition;

(ii) considering the elements of R as operators acting on variables, R 1 o R2

is obtained operating first with ~I and secondly with ~2 (~i, ~2 6 R) .

we describe some sequences of regular combinators, i.e. parametric subsets

of R, in order to specify a subset B c R such that every Z c R ean be

expressed as a composition of elements belonging to B.

B will be called compositive basis for regular combinators.

The sequences are given together with their inductive definition:

Id~ntificators: I n ~ kX0Xl...Xn. X0Xl...Xn (n ~ 0);

Def. Ii: I 0 = I ; It+ 1 = BI t ;

Cancellators:

Def. KI:

Multimlioators:

Def. WI:

K n ~ ~X0Xl...X n . X0Xl...Xn_l (n >- I);

K 1 = K ; Kt+ 1 = BK t ;

Wn,r--- kX0Xl...x n . X0Xl...Xn_iXn... (r+l times) ...X n (n _> l,r --> 0);

W 1 = W ; W t + 1 = B W t ;

42

Def. W2:

Def. W3:

Permutators;

Def. CI:

Def. C2:

Def. C3:

Compositors:

Def. BI:

Def. B2:

Wn, 1 = Wn ;

Wn, 0 = In ;

Wn, s+l : Wn ° Wn,s ;

Cm+n, ~, ~- ~X0Xl...Xm...Xm+n-lXm+ n . X0X I. . .Xm+nXm. , .Xm+n- 1

(m >_ i, n _> 0) ;

C 1 = C ; Ct+ 1 = BC t ;

Cn, l = Cn ; Cn+k+l,n = Cn+k+l,n+k o Cn+k~n ;

On, n = |n ;

anB m ~ kX0Xl...Xm...Xm+n+ 1 . X0Xl,.-Xm(Xm+l..-Xm+n+ I)

(m >_ 0, n > 0) ;

B 0 =] ; Bt+ 1 = B o B t ;

BOB t = B t ; Bs+iB t = B(BsBt)

Note that the permutators cited above are different from those introduced by

Curry in [Cur30] and [Cur32]; this choice is due to complexity reasons, and

will be motivated in section 6.

In the next section we will give a theorem of existence and uniqueness to

prove that the sequences of combinators introduced above effectively

constitute a compositive basis for R; the theorem was proved by Curry in

[Cur30], [Cur32]; the complete proof involving the different permutators can

be found in [Ptes].

2. Compositive normal form.

Notation: from this point onwards we will use Gothic characters to indicate

compositions of basic combinators; in particular:

: any composition of cancellators or identificators;

: any composition of multiplicators;

: any composition of permutators;

: any composition of compositors or identificators.

Definition 2.1: (Compositive form of regular combinators)

A regular combinator R is said to be in compositive form (CF) if it is

expressed as a composition of regular combinators (called atoms of R).

Definition 2.2: (Compositive normal form of regular combinators)

A regular combinator R is said to be in compositive normal form (CNF) if it

is expressed in the form (2.2.0) ~ o ~ o ~ o ~ ,

where ~, ~, ~, ~ (called components of R) are respectively:

2.2.1 ~ ~ lh (h=l,2...) or ~Khr° Khr_! ° .. o Kh! , where hl<h2 <...< h r ;

2.2.2 ~ ~ Whr,kr o Whr_l,kr_l o . . . o Whl,kl , where h I < h 2 <...< h r ;

2.2.3 ~ ~ Cl+al, 1 o 02+a2, 2 o ... o On+an, n , where a i ~ 0, 1 S i ~ n ;

2.2.4 ~ ~ [h (h=l,2...) or ~ BmqBnq o Bmq_iBnq_l o ... o gmlgn! ,

where m k ~ 0, n k > 0, 1 ~ k ~ q, and mq > mq_ 1 >...> m I.

Convention: we will omit the combinators ~h (h=l,2...) in a compositive form

43

different from an identificator.

Definition 2.3: (Principal CNF of regular combinators)

A regular combinator R is said to be in principal compositive normal form

(PCNF) if it is in CNF and ~ corresponds to a permutation which does not

interchange variables having the same name.

Example: We consider the combinators:

~ W2,1 o C2,1 o 81BI and ~ W2, 1 ° C3,1 ° BIB1; it is easy to verify that

both ~ and ~ represent the combinator S (~ kxyz.xz(yz)), but only ~ is in

PCNF.

Theorem 2.4: (Existence and uniqueness theorem)

Let R be a regular combinator; there exists one and only one combinator

in PCNF such that ~ is extensionally equal to R; we will call ~ the PNCF of R.

Corollary 2.5: (PCNF of proper combinators)

Let P be a proper combinator; there exists one and only

combinator ~ in PCNF such that ~I is extensionally equal to P.

one regular

The difference between the known concept of normal form of a combinator

(i.e. a term constituted only by constants and not containing any redex as a

subterm) and the one described above will become more evident in the next

section, where we will define the notion of normal representation of a CL-

term. In the world of regular combinators however the concept of PCNF shares

some similarity with that of strong normal form, and it is possible to define

an algorithm which, given a regular combinator ~ expressed as a composition

of basic combinators, yields the PCNF of ~, repeatedly applying some schemes

of tranformation rules [Ptes]: by corollary 2.5 this algorithm can be extended

to the set of proper combinators.

3. Normal representation of a CL-term.

In this section we will extend the notion of PCNF to the whole set of CL-

terms, in order to express any term as a function of a predetermined sequence

of variables Xl,...,x n (even not occurring in the considered term). A normal

representation will be defined also for terms not possessing normal form in

the usual sense. (I)

The definition of normal representation of a CL-term X is given in three

steps [CurFe]:

3.1) ReduG~on tO the C~$~ wh~re X is a pure term: let X be a combination of

the variables Xl,...,x n (possibly not occurring in X) and the atomic constants

al,...,ap, appearing in X exactly in the specified order (free variables, i.e.

(I) Obviously in such a case uniqueness is lost; note that the uniqueness of the normal
representation is lost also for not proper terms possessing normal form.

44

variables different from Xl,...,Xn, are treated as constants); let X' be the

term obtained replacing al,...,a p with the variables YI,.--,Yp, not occurring in

X; if the combinator H' represents X' as a function of yl,...,yp,Xl,...,Xn, then

H'al...a p represents X as a function of Xl,...,x n.

3.2) Reduction to a r~qzl~r Z~rm: let Y be a pure combination of the

variables Xl,...,x n (possibly not occurring in Y) and let y be a variable not

occurring in Y; it follows that Y'~yY is a regular combination of Y,Xl,...,Xn;

if the combinator U' represents Y' as a function of y,xl,...,Xn, then U ~'I

represents Y as a function of Xl,..~,x n.

3.3) Analysis of a regular term: see definitions 2.2, 2.3 and theorem 2.4.

The notion of normal representation of a CL-term actually defines an

abstraction algorithm, which is constituted by:

a) a preliminary phasis, corresponding to step 3.1 of the above given

definition;

b) a properly abstraction phasis, which yields the PCNF of the proper

combinator corresponding to the pure combination resulting from the preliminary

phasis. This is done by a Markov algorithm in which the rewriting rules

generate the components of the PCNF of a regular combinator; the intuitive

meaning of the abstraction process is the following:

let M be a pure combination of the variables xl,~..,x n (possibly not occurring

in M) ; the combinator ~ such that ~I Xl...x n ~M is obtained, starting from M,

in four steps:

(i) elimination of parentheses appearing in M, in the order specified in 2.2.4;

(ii) reordering of variables (2.2.3);

(iii) elimination of multiplicities of variables (2.2.2);

(iv) elimination of cancellations of variables (2.2.1).

4. Introducing the compositive abstraction algorithm.

The sketch of algorithm described in the previous section, given by Curry in

[Cur33], is complicated by the substitution process attending the preliminary

phasis. However we observe that the new variables introduced in 3.1 are not

involved in the steps (ii), (iii) and (iv) of the abstraction algorithm (note

that this was not true with Curry's choice of permutators); in addition to

this, we will modify the substitution rule of 3.1 in order to 'neutralize' the

new variables also with respect to step (i) ; after this, we will define the

final version of the abstraction algorithm.

Definition 4.1:

Let M be a CL-term and A the set of the atoms (variables and atomic

constants) of M; the binary tree bT(M) associated to M is inductively defined

as follows:

bT(a) = a if M~ a E A;

bT(AB) =~ bT(A)/\bT(B) if M~AB.

45

Definition 4.2: (Constant components of a CL-term)

Let bT(M) be the binary tree associated to the term M containing in this

order the (not necessarily distinct) atomic constants al,...,ap; we will call

constant components of M the subterms of M associated to those subtrees of

bT(M) whose leaves are labelled by constants (6 {al,...,ap}) only.

Definition 4.3: (Maximal constant components of a CL-term)

Let Cc(M) be the multiset of the constant component of the term M;

a term AECc(M) is said to be maximal if there does not exist a term B6 Cc(M)

such that bT (A) is a son of bT(B) Jn bT (M).

We will write CMc(M) to indicate the set of maximal costant components of M.

Z 8 Z

%

(a) Fig. 4.4 (b)

Fig.4.4 shows (a) the constant components and (b) the maximal constant

components of the term M------ x(ab) (a(yc(ba) z)) .

Hence CMc(M) ------ { (ab), a, c, (ba) }

5.1. Compositive abstraction algorithm (one-sweep) .

Initial position: Let be given the problem [Xn] T.

Let CMc(T) --= {MI,...,M q} be the set of maximal constant components of T,

andV------ {Xl,...,Xn}.

If T ------ hiT 2. . .Tm, where h I 6 CMc(T) U V , we make the following position:

[Xn]T " [X~]lhlT2...Tm.

Abstraction:

(Notation: H will

position).

Termination:

[~n] H MI...MqXl...x n

indicate a combinator: at the beginning H ~ |by initial

H MI.,.Mq, where x i does not occur in Mj ,

for any x i 6 Y and 1 ~ j ~ q.

Elimination of Parentheses:

[Xn]H h0,1...h0, j0(hl,iMi,2...Ml, jl)...(hp, iMp, 2...~,jp)

[Xn] BJ0BJ]-I H h0,1...h0,j0hl,iMi,2...Ml, Jl... (hp, iMp, 2...Mp, jp) ,

where hi, j 6CMc(T) UV (0_<i_<p; i_< j< ji) , Mh, k is any term, and for all t

(l<t_<p) there exists an r t (i_< rt_<n) such that in Mt, 2 there is at least an

occurrence of Xrt.

46

P e r m ~

[Xn] H hl...hr_lhrhr+l...hjhj+l...h p

[~n] Cj,r H hl...hr_lhr+l...hjhrhj+l...hp,

where h k E CMc(T) U V (i ~ k ~ p) • h r ~ x s E V , and:

if there exists a z (r+l N z N p-l) such that h z ~ x vE V~

then hz+ 1 ~ x u E V and v ~ u;

if hj ~ x t (x t E V) then t < s ;

if hj+ 1 ~ x t (x t E V) then t ~ s .

Elimination of multiplications:

[Xn] H Ml,..MqXjl...XjkXjk+l...Xjk+r...Xjs

[Xn]~Vq+k,r H Ml...MqXjl...XjkXjk+r+l...Xjs ,

where Ji E V (i N i ~ s) , and:

Jk+t = Jk (i ~ t S r) ;

Ji < Ji+l (i ~ i ~ k-l) ;

Ji ~ Ji+l (k+r+l ~ i ~ s-l) .

Elimination of cancellations:

[Xn] H M I. ..MqXlX2...xi_iXjl...Xjs

[Xn] Ki+q H MI...MqXlX2...xi_ixixjl...Xjs ,

where Js ~ n ; Jl > i ; Jr < Jr+l (i ~ r ~ s-l) .

5.2. Compositive abstraction algorithm (multi-sweep) .

Initial position:

Let be given the problem [Xl, x n] T.

Let CMc(T) ------ {MI,...,Mq} be the set of maximal constant components of T,

and V ------ {Xl, ...,Xn} .

If T------- hit 2...Tm, where

[Xl,...,Xn] T

Abstraction :

For every x q V:

Termination :

Ix] H Vl...Vsx ~ H VI...Vs, if x does not occur in Vj, for

Elimination of parentheses:

[x] H h0, l.~.h0, j0 (hl, IMI, 2...MI, jl) ... (hp, imp, 2...~, jp)

[x] 8joSJl_l H h0,1---h0, johl, iMi,2...Ml, Jl...(hp, iMp, 2.--Mp, jp) ,

where hi, I 6CMc(T) UV (0_<i_<p), and

- for 2 <-j-< J0, ho, j -= x or x does not occur in h0, j

- there is at least an occurrence of x in (hI, IMI,2...MI, jl).

h I E CMc(T) U V , we make the following position:

[Xl]([x2](...([Xn] hlT2...Tm)...)).

i _< j _< s.

47

p@rmutation:

[x] H hl...hr_lhrhr+l...hjhj+l-..hp

[x] Cj, r H hl...hr_lhr+l...hjhrhj+l...h p, where:

- for 1 ~ k ~ r-l, h k ~ x or x does not occur in h k ;

- h r ~ x ;

- for r+l ~ k ~ j, x does not occur in h k ;

- for j+l ~ k ~ p, h k ~ x.

Elimination of multiplications:

[x] HVl...VsX...(r times)...x

[x] Ws+l, r H Vl...VsX,

where x does not occur in V k

Elimination of cancellations:

[x] H Vl...V s

[x] Ks+ 1H Vl...VsX,

where x does not occur in V k

(i _< k _< s).

We now give an example of the application of the compositive abstraction

algorithm, for both one and multi-sweep techniques. Note that the result of

the one-sweep version of the algorithm is a regular combinator in PCNF, while

the result of the multi-sweep version is a composition of regular combinators

in PCNF, not on its whole in PCNF.

Let us consider the problem [~4] x(ab)(a(ydz(baz)))(c(bx)),

with x I ~ x, x 2 ------ y, x 3 ------ z, x 4 ~ t:

Initial position :

[X4] x(ab) (a(ydz(baz))) (c(bx)) ~ [X4] ~x(ab) (a(ydz(baz))) (e(bx))

Elimination of parentheses:

IX4] 8281|x (ab) a (ydz (baz)) (c (bx))

IX4] 83B3 (B281|) x (ab) aydz (baz) (c (bx))

IX4] 86BI (B383 (8281|)) x (ab) aydz (ba) z (c (bx))

[X4] BsBI (B6BI (B3B3 (B2BI|))) x (ab) aydz (ba) zc (bx)

Ix4] BgBI (BsBI (B~BI (B383 (B2BJ)))) x (ab) aydz (ba) zcbx

Permutation: (We put 9------ BgB 1 o 8881 o B6BI ~ B3B3 o B2BI)

Ix4] Cll, 8 (9 ~) x (ab) aydz (ba) cbxz

[X4] Clo, 6 (ell, 8 (9~)) x (ab) ayd (ba) cbxzz

IX4] C9, 4 (Clo, 6 (Cll, 8 (~ i))) x (ab) ad (ba) cbxyzz

[x4] C7,1(C9,4 (Ci0,6(Cii,8 (~)))) (ab) ad(ba)cbxxyzz

Elimination of multiplications: (We put ~ _---- C7,1 o C9,4 o Clo, 6 o Cii,8)

[~4] W7, 1 (~(~)) (ab) ad (ha) cbxyzz

[X4] Wg, 1 (W7,1 (~(9|))) (ab) ad (ba) cbxyz

Elimination of cancellations: (We put ~ ~ Wg, I o W7,1)

[x4] KIO(~(~(~))) (ab)ad(ba)cbxyzt

(i _< k _< s).

48

TerminationL (We put ~------ KI0) ~ ~(~(~(~))) (ab)ad(ba)cb.

Thus [X4] x(ab) (a(ydz(baz))) (c(bx)) ~ (~o ~ o ~o ~) ~ (ab) a d (ba) c b

Let us now consider the problem [x,y,z,t] x(ab)(a(ydz(baz)))(c(bx)) :

Initial position: [x,y,z,t]x(ab) (a(ydz(baz))) (c(bx))

Ix] ([y] ([z] ([t] | x(ab) (a(ydz(baz))) (c(bx)))))

Abstraction with respect to the variable t:

[x] ([y] ([z] ([t] K51x(ab) (a(ydz(baz))) (c(bx))t))) ~ (We put ~4-- K5)

[x] ([y] ([z] ~4~ x(ab) (a(ydz(baz))) (c(bx)))) -~

Abstraction with respect to the variable z:

[x] ([y] ([z] B2B I(~41) x(aS)a(ydz(baz)) (c(bx))))

[x] ([y] ([z] B383(8291(~41)) x(ab)aydz(baz) (c(bx))))

[x] ([y] ([z] 868 I(83B 3(8281(~4 l))) x(ab)aydz(ba) z(c(bx))))

[x] ([y] ([z] 09, 8(868 I(8393 (8281(~4 l)))) x(ab)aydz(ba) (c(bx))z))

[x] ([y] ([z] 08,6(09,8(8681(B383(8281(~41))))) x(ab)ayd(ba) (e(bx))zz))

[x] ([y] ([z]Ws,: (08,6 (0%8 (86B: (B~83(828: (~41))))))x(ab)ayd(ba)(c(bx)) z))

(We put ~3------ W8,1 ° 08,6 ° 09,8 0 8681° 8383 0 B281)

[x] ([y] ~3(~41) x(ab)ayd(ba) (c(bx)))

Abstraction with respect to the variable v:

[x] ([y] C7,4(~3(~41)) x(ab) ad(ba) (c(bx))y) ~ (We put ~2------C7,4)

[x] ~2(~3(~41)) x(ab)ad(ba) (c(bx))

Abstraction with respect to the variable x:

[x] 858 I(~2(~3(~4 |))) x(ab) ad(ba)c(bx)

[x] B6B I(B5B 1(~2(~3(~4 I)))) x(ab)ad(ba)cbx

Ix] 07, 1 (B6BI (8581 (~2 (~3 (~4 I))))) (ab) ad (ba) cbxx

Ix] WT,:(CT,:(B6B:(BsB:(Z2(Z3(~41)))))) (ab)ad(ba)cbx

(We put ~i =- W7, I o O7,1 o B6BI o 8581)

Ix] ~i(~2(~3(~41))) (ab)ad(ba)eb.

Thus [x,y,z,t]x(ab)(a(ydz(baz)))(c(bx)) --= (~i o ~2 o ~3 o ~4)I (ab)ad (ba) cb.

6. Complexity.

In the analysis of complexity of the algorithms described in sections 5.1,2

we shall adopt the following conventions:

- the length of a CL-term T (denoted by L(T)) is the number of atoms

occurring in it, i.e. the number of leaves of bT(T);

- the length of a regular combinator ~ expressed in compositive form

(denoted by ~(~)) is the number of basic combinators involved in the

representation of ~;

- the length of an abstraction problem is the sum of the length of the term

to be abstracted and the number of abstracted variables;

- the complexity of the algorithm is the order of magnitude of the length

of the result as a function of the length of the abstraction problem, in the

worst case.

49

Note that the compositive algorithm makes use of a parametric set of basic

combinators; as observed by Mulder [Mul], in such a case we must multiply the

complexity of the algorithm by a factor which can be:

(i) I, if we count each combinator as an item;

(ii) proportional to the size of parameters, if we consider the

representation of the introduced combinators into a computer.

We will use the notation [h] to indicate the greatest integer ~ h (C Q).

Complexity measurement will be made for pure CL-terms; in fact, constant

subterms occurring in a combination are never handled by the abstraction

process of the algorithms.

Theorem 6.1;

Let be given the problem [Xn] X, where X is a pure combination of the

variables xl,...,x n (each of them possibly not occurring in X; n ~ i), and let

be the regular combinator resulting from the application of the compositive

one-sweep algorithm; then, assuming i(X) > i:

(6.i.i) £(~) N [5/2 g(x)] - 3 + t,

where t (< n) is the number of variables, between xi,...,x n, not occurring in X.

Proof; ~ ~° ~ o ~o ~; hence f(~) = f(~) + £(~) + f(~) + f(~), with:

(6.1.2) f(~) =t;

(6.i.3) f(~) ~ [A(X)/2J, the maximum number of duplications that may

appear in X;

(6.1.4) f(~) ~ L(X) - i, the maximum number of permutators needed to

represent a permutation of L(X) items;

(6.i.5) f(~) ~ L(X) - 2, the maximum number of parentheses that may appear

in X.

The 6.1.i follows immediately from 6.1.2-5.

Let us now consider the problem [xi,...,Xn] X, in order to analyse the

complexity of the multi-sweep version of the compositive algorithm with

respect to the one-sweep one.

Theorem 6.2:

For every pure combination X of the variables x!,...,x n (possibly not

occurring inX), let ~ be the regular combinator, in PCNF, such that ~| ~ [Xn] X,

and ~l,...,~n the regular combinators, in PCNF, such that (~i o... ° ~n) ~

[x I Xn] X; the following property holds: ~(~) = ~(~i o...o ~n)"

Sketch of the oroof: We have:

- ~±~i ° ~i ° ~i ° ~i (i ~ i ~ n);

_ ~ o ~o ~o ~.

The theorem follows from proving:

(6.2.1) ~(~) = ~±=I n ~(~i) ; (6.2.2) ~(~) : Zi=l n ~(~i) ;

(6.2.3) f(~) = [i=i n ~(~i) ; (6.2.4) ~(~) = ~i=l n f(~i) •

The complete proof, here omitted, can be found in [Ptes].

50

Note that theorem 6.2 is not valid with Curry's permutators; this point can

be intuitively explained as follows: during the permutation phasis of <he

abstraction process, variables are moved from left to right; it is easy to

verify that this operation can be done in one step by the new permutators, but

not by the old ones.

7. Conclusion.

To summarize, we showed a new (old) abstraction algorithm which seems to be

interesting for the following reasons:

- it is compositive: the resulting code has a 'structured' look, i.e. it may

be viewed as a succession of procedure callings, hence it is quite readable;

- it is efficient: the worst case mentioned above concerns pure

combinations; in the general case, the complexity rate is a function of the

number of variables occurring in the term to be abstracted, not of its whole

length: this fact makes the algorithm suitable for the compilation of a

functional program;

- it can be defined in both one and multi-sweep techniques, preserving the

length of the resulting code: this 'invariance property' is not valid for any

other abstraction algorithm;

- it gives a combinatory equivalent of Hughes' supercombinators: in effect

supercombinators are proper combinators; their interpretation can be achieved

adding to the abstraction rules of the multi-sweep version of the compositive

algorithm a clause of belonging to the set of maximal free expressions (see

[Hug]). This point will be better explained in the appendix,

Acknowledgement.

The author is grateful to Prof. Corrado B6hm for helpful

discussions about the subject of this paper.

suggestions and

References.
[Bar] H.P.Barendregt, The Lambda Calculus, its Syntax and Semantics,

Studies in Logic, Vol.103, North-Holland, Amsterdam (1984).
[Cur30] - H.B.Curry, Grundlagen der kombinatorischen Logik,

American Journal of Mathematics, Voi.52 (1930).
[Cur32] - H.B.Curry, Some additions to the theory of combinators,

American Journal of Mathematics, Voi.54 (1932).
[Cur33] - H.B.Curry, Apparent variables from the standpoint of

Combinatory Logic, Annals of Mathematics, VoI.34 (1933).
[CurFe] - H.B.Curry & R.Feys, combinatory logic, Vol.l,

North-Holland, Amsterdam (1958).
[Hug] - R.J.M.Hughes, SuperCombinaters: a new implementation method for

Applicative Languages, Symp.on LISP and Funct.Progr.,ACM (Aug 1982).
[Mul] J.C.Mulder, Complexity of cembinatory code,

University of Utrecht (int.rep., 1985).
[Ptes] - A.Eiperno, Metodi di astrazione in logica combinatoria:

analisi, proposte, applicazioni, Tesi di laurea, 1986.
[Sta] - R.Statman, On translating la~bda terms into combinators: the basis problem,

LICS, Boston, 1986.
[Tur79a] - D.A.Turner, Another algorithm for bracket abstraction,

The Journal of symbolic Logic, Voi.44 n.2 (1979).
[Tur79b] - D.A.Turner, A new implementation technique for applicative

languages, Software Practice and Experience, n.9 (1979).

51

APPENDIX: Compositive algorithm and supercombinators.

We suppose the reader to be familiar with the notions of supercombinators

and fully lazy evaluation ; we will show in an intuitive way how the

compositive abstraction algorithm can be modified in order to yield a purely

combinatory interpretation of supercombinators.

Supercombinators were introduced by Hughes [Hug] with the purpose of giving an

efficient implementation technique of full laziness; they are built up,

starting from an arbitrary k-expression E, in the following way:

I) find the innermost k-expression kt.H appearing in E;

2) let FI,...,F n be the non-constant maximal free expressions (1) (MFE) of H,

ordered as stated by some optimisation rules: replace FI,...,E n with the

variables Xl,...,Xn, not occurring in E, and let H* be the term obtained after

this substitution;

3) give a name (~) to kxl...Xnt. H*;

4) replace kt.H with [FI...F n in E;

5) repeat steps 1-4 until there are no more k-expressions.

The method described above can be considered as an algorithm of translation

from k-calculus to CL, working with the infinite basis constituted by the

whole set Qf proper combinators; the resulting supercombinators, however, are

not directly implementable, and need an extra level of interpretation.

Let us now consider the multi-sweep version of the compositive abstraction

algorithm, where the conditions that rule the steps of the algorithm are

enriched in an opportune way with some clauses of belonging to the set of MFE

of the expression subjected to the abstraction process.

It comes out that the result of the operation [x] T, when subjected to the

final algorithm, is of the form ~ICI...CkFI...Fn, where ~ is a regular

combinator (in PCNF), CI,...,C k are constant subexpressions of T, and FI,...,F n

are the MFEs of kx.T. Thus ~CI...C k is the combinatory interpretation, via

the compositive abstraction algorithm, of the supercombinator resulting from

the application of Hughes' method to kx.T.

In addition to this, the optimisation rules, introduced by Hughes to improve

the efficiency of supercombinators, can be enclosed into the permutation step

of the final algorithm.

Summarizing, it is possible to modify the multi-sweep version of the

compositive abstraction algorithm, in order to have a purely combinatory

equivalent of Hughes' method, which has the following properties:

- it preserves the linearity property of the native algorithm;

- it makes use of a directly implementable set of combinators: no extra

level of interpretation is needed.

(i) recall that a free expression of kx.T is a subexpression of T which does not depend
on the bound variable x, and that a free expression is called maximal if it is not a proper
subexpression of a free expression.

