LISTLOG — A& PROLOG EXTENSION FOR LIST PROCESSING

Isuzsa Farkas

Computer Research and Innovation Center - S5ZKI

H —~ 1815 Budapest, Donati utca 35-45, Hungary

Abstract

In this paper an alternative list representation for logic programs

ig introduced, based on so~

alled segment variables. These variables

represent a whole sublist (s

goent) of & list, that de, when
substituting such & variable by a list, not the list itself, bub its
elements are considered the elements of the original list. The notion
of segment variables was first introduced in the LISF78 pattern
matoher [11, and was suggestaed to he wsed in FROLOE by Marc
Eisenstadt, as a step towards a more human man-maching interface for

FROLOG. The original motivation for using these variables was to

simplify the definition of some basic list processing predicates,

mainly by avoiding recuwrsion.

However , we have shown that this list repressntation has an even more

important advantage: 1t brings the declarative and the procedural
gamantics of several list hanodl ing predicates FIEY A et to each
othetr, geg. allowing & more complete set of solubtions or avoiding

some infinite loops.

LISTLOG is & FROLOG extension, handling these list expressions; it is
implenented as a front-end AR] FROLOG, providing an extended

matehing algoriths.

1. List expressions with segment variables

A segment variable represents a whole segment (sublist) of & list. For

example, inm a FROLOGE list expression

fa, ¥ , bl (%)

substituting

X a-= Lo, dl
the list will contain L o ,d 1 as the second element. Intuitively,
however , one may want to have

Layo,d, =1
as the result of such a substitubtion. To allow this, we introduce a
e type of wvariable, called seagmnent variable, handled in a
special way: it can be substituted only by & list expression, and when
such a variable is substituted by a list, this list becomss s sublist
of the original liet. For segment variables we will use a """ prefisx
to distinguish them from normal variables. That is,
La 4 Xy bl will becomns Pa , o o4, o , bl
when the substitution X <-— [eo,dl dis applied (cf previous exanples
(%)),
This is & guite natural extension of normal PROLOE lists: in the
gupression
La b | X1

X also represents a whole (Final) segment of the list, but here we
have the restriction bthat only the variable after the vertical ber is
randled in this way. Our generalization sisply seane, that we allow
asuch a variable nobt only at bthe last position. The above list can be
rewritten in LISTLOG as

L oa, b, X1
representing the lists beginning with the elements a and b and
continuing with any number of any slesents. Bimilarly,

L N X . b1

can be wsed to represent the

and containing any number of any

I LIBTLOBG we allow all the normal

expressions are different:

lists beginning with &,

aleaments

ending with b,

in hetwesen.

FROLOG sxpressions, only bthes list

84

The syntax of expressions:

B P Essl on sa= dliet expressionr | ...

Shist edpressions 3= DOldst _elemr, ..., Slist _elam:l

Llist elem>

e
ax

= amegment variable> | Jexpression’

taegment variablel s:= ™ dvariebles

2. Defining list handling predicates in LISTLOG vs PROLOG

The main motivation for introducing this list representation was to

provide means for defining list handling predicates in a
algorithmic way as it is possible in PROLOG. Though these FROLOHE
definitions might be understandable to be read, it wmay cause
difficulty for a naive user to formulate s.9. the “between" ralation
(see below). The main problem with these FROLOE definitions is the use

af recursion, and & certain algoritheic approach. An other thing which

igs not easy to be accustomed to dis the assymetry of the PROLOGE lis
the first and the last elements of & list are bandled in a completely

different way.

However , when these problems do exist Ffor the naive users, WE EIE
awars that this is not a central topic in logic programming and
therefore it is not worthwhils to distract the users’ attention from
thee main points such as declarabive approach, backtracking, eto.
Defining an alternstive list representation and providing & suitabls

unifying algorithm, we achisve such an extension to PROLOG which might

ST 1Y .

e wsed @, though only in the special area of Llist procs

In the 4ollowing yvou can compare

handling predicates:

in PROLOG
mamber (X, LX 1 L1).
membier (X, LY 1 LI 1

member (4,10 .

append (L1, L, L) .

append (CATLLT, LE, TallLd) @

apperd (L], L2, L) .

first elemd{XiL), X).
last _elem({X1,X).

last elem(lYILI,X) ¢

last _elemil,Xi.

sublist (8L, L)~
append (PREV, 8L, L),
append (LL LATER, L) .

baetween (X, Y, B, [XI LD -
until do, Y, B) .
betwean (X, Y, B, [Z1L1)

between (X, Y, B, LY .

(RUTEE T RO O D T o
until CLZILT, Y, L2l -
until L, Y. B .

reverse (L1, 01).
reverse{(TATLI ML) -
raverse (L, L)

pard (L, DAT, RLY,

FES A

palindrome ({30 .
palindroms (EAILTY 3~
palidnrome(L1),

apperdd (L1, CAT, LY.

85

the definition of some basic list

in LISTLOG

member (X, DPREV, X, “LATERID .

[T

append (L1, LE, TL1,

LA KT
X1, 4.

Last slemi{l™l,

sublist (8L, [TFREV, “BL, “LATERID).

between (X, Y, B, L L1 X B, Y, "L21).

raeverse (L1, 01).

reverge (CA, LI, ToLL, A1) 3~
reverse (L, L) .
palindromadll).

., A1)i

palindrome (LA ,

palindromes ().

86

3. Advantages of LISTLOG to PROLOB

&. Bolutions in a more concise form

A difference between the PROLOG and LISTLOG list representation
is that some object sets which in PROLOG may be described only by
infinitely many upressionsg, in LIBTLOB can bes represented by a

single gupression. For esasmple, those lists containing the canstant

1Y oas elemant can bres described in FROLOG by the Following

BLOMSS

Tl

whii 1

[S e

fig & consegquence of this, some goals having an infinite seguence of

solutions in FRILDG, will have only a single one in LIBTLOG, of

course, having the same meaning -~ representing the same set of

ob jects.

The sisplest example i)lustrating this difference is:
Pommmber (L, L0

in FROLGGE: iy fLLE

L= L1 1 T b= LK, Lo, T
= [X1 , 1 1 T1
= [X1,X2,1 ¢ T 1

" oxow o

b. Producing a more complete set of solutions

Ae o it s well known, evern ln pure FROLGE bheee are
difterances beltween the declarative and procedural semantics. One
of the aspects of Lthis is that some of the logically valid solutions

abE not produced by the PROLOG exscuiion mechanism. The following

grample illustrates & situstion when in LISTLOS a more complets seb

of solutions is gaineds

87

Fomembier (1,0 and member (2,03,

in PROLOG in LISTLOG

L= £1,217] L= 7%, 1, Y, 2, —Z1

= [l,X1,& T3 L A » Y. Lo, TED
= L1, Ri. X281

The solution set produced in PROLOG is rather restricitad: we can never

»

Find a list in which ° precasds 17, moreover, ‘17 is always stuchk
in the first position. In LISTLOG there are only twe solutions,
bt they describe all the logicelly possible solubtions. Note that
this difference iz a conseguence of the property dealt with in the
previous section, that iz, of the possibility of describing a larger
set of obiects by an expression in LISTLOGE than in PROLOG. The reason

why PROLOE gives anly these solutions is that the second subgoal has

infinitely many aolutions already for the first solution of the
first subgoal, and the interpreter would reburn tao the fFirst

subgoal only after exhausting all the possible solutions of the second
subgoal. In LISTLOG the more concise form of the solutions makes

possible to avoid this.
c. Avoiding infinite loops

A third problem with the FROLOE execulion mechanism is that in

some cases 1t produces an infindte loop instead of & negative answar,

az in the following examples:

meamnber (1,0 and nobt sesber (1,0 .

Toomext _to(X,Y,L) and not preceedsd(X,Y,L).
?osublist(D13,0200.

firet _elem{l, 1) and last_slem{l,2) and palindromil).

The structure of the infinite loop is that a First subgoal has
infinitely many soclutions, all of them refused by & second subgoal.
These type of goals are answered with "NOY in LISTLOE, again due to

the more concise form of the solutions,

88

4, Unification in LISTLOG

”

(253 wee have extended the notion of expressions, an extendsd

unification algorithm must be provided as well. Before presenting

such an algorithm, first revisit the general definitions o
unification and thieen those propertiss different in PROLOG and

LISTLOG, A summary of general unification is found in 3D,

a. General notions of unification

instantiating an expression mseans substituting sisultanecusly
some of ihs variables by wothsyr expressions and parforoing
the possible simplifications. The EMPresnl on prodused by
ingtantiating is called an instance of the original one.

simplifying an edpression means replacing those subexpressions
whose argumants becomne known by the value of the function atbt

the given arguments

an expression £ is the unifier of two expressions E1 and EZ i+ it
is an instance of both of theo, belonging to the same

aubstitutions.

if Ul and U2 are unifirers of two expressions, then Ul is more

general tham UWEZ 14 U2 ie an instance of Ul.

b. Simplification in LISTLOG

In the above definition only the notion of simplification depends
an the given forma]l system: g.g. in FROLOE no simplification
is needed since in Herbrand interpretations functions are defined

fraving the function srpressions thesselves as values.

Simplification in LIBTLOG means to flatten the elements of the

list substitituted for a segmant variable into the elements of
the list containing this variable. E.g. the expression

fa o X, ™ e, YW1, bl iwn wimplifisd to fla 5, X 5 ¢ ¢ Y bl

89

The ftollowing expressions e.g. can be unified in LISTLOGE 3

s X1 Bz = LY, 21

|
!

L

l

g

v
Lz, 211 L1, 21, &1

~ .

after simplification =

\/

£1, ~Z, 21

1o= {1
=¥ - L Ey, B, N 49— L1, TE2

L1,

c. Maximally general unifiers

Am owe hknow, in PROLOG there always exists a nost general unifier for
any two unifiable expressions, and the FROLOG unification algorithm
i a deterministic procedure, giving this unifier. Im LIBTLOG this
is not bruss: there may be expressions having nobt comparable unifiers,

as it is illustrated by the following example:

El = [%, 1 , =¥ Eno= LW, 2, "2

Wi L%, 1, W, 3, 231 Uz = [V,

that is, Ul and UZ sre both unifiers of El and EZ2, and none of them is

an instance of the other.

There may be infinitely many incomparable unifiers: these two

expressions have the following unifisrs:

E1 = [, “X1

UL o= 1
g o= L1l
Uz o= [1,11

It ¥ollows from the above that here we may have only maximally

ganeral unflers instead of most general OS5

Q0

=

5. A unification algorithm

aocording to the above, 1%

nondetermninistic, producing sach of L

The algorithm

PROLOG. is

The

nil?

umad in diffaerence

constructors are and 7., whi

consi dered constructor
1.

ligts PRE and SUF ftogsther by

is A%

I P

furiction

of form e

PRE .. SLIF

The unfication algorithm is based on

liat

i

(12 L1 Ll Ll =

(&) Hl . T1 = HZ ra Ly ML=
Froperties (1) argd {2y are

and {(4), are added for LISTLOG unificat

(Y Pl 51 = Frio= B2

i

brez

le

maximally general

unification

that

it

LISTLOGE

algorithm will

in PROLOG the

also the

e

uwiifiers.

presented here is a natural esxtension of the unticabion
anly

tappend”

. (This corresponds bo the list

the

L2

- M2

i

+ollowing

and

e

used in PROLOGS

denote the list thalt resuliz by appending

properties

T2

further properties,

&1

ard

and

L
P2 = F1 .. §
i &1
F : :
1]
Gy
B Y
[+ i
{41} Fone 8 = H o T o 01 and 8 o= H o,
Fo= oM. P and P1

T

a om

82 = 5 .. 51 o
S 0= 8 .. 82,

or

g

O3

-~

ther

ot

o

The unification defined in PROLOG
operator (™, fx, 70@).

unify (X,¥r -
elemX), !, X=Y .
urnlfy (X, Yy -
glemi{¥), !, X=Y .
unify X, ¥} s—
ig _list(X), 'y, unify_lists{X,¥);
iw_listi(Y), !, unify lists{X,Y) .
unify (X, ¥} -
deconp (X, IMIALID jcomp (INIALZI, YY) yunify_args (AL 1,A12).

unify _args (L1, 01 .
unify_args (CAILLI, IBIL2T) -
unify (AR, unify_args{l i, L2) .

(ul) wnify lists(LI, 01y .
(2 unify _lists(IB8ITI,L) 1~
bound_segment (8, 8X), !, simplify(8X,581), app(Sl,T.L1),
unify i) .
w3 unify_listsd,I81TI) 2
bound_segment (8,8Y), |, simplifyv(BY,81), appSl,T,.L1L),
unity ., L1) .
(ud) unify_lists(l81,L) -
unbound _segment (§,81), ', Si=L .
(ud) unify listsl, {81} 21—
wnbound _segment (8,81, !, 8i=L .
(uéd unify _lists{lSLITII, 0821723 v—
unbound segment (81, X)), unbound segment (82,Y), !,
(X == YV, b, undfy{(TL,TE);
XK= ¥, ™ T3, wunify (D™ Z1T13,T8);
Yemf{™ Xy™ Z3, wndify (T1, 0 Z1T210) o
(Uu7) unify liste(CHITLI, [SITE1) -
unbound_ segment (8, X}, !,
undfy (X, L1y, unify {(DHITLII, T2k
urndfy (X, DH. ™ 23y, unify(TLi, 0™ Z1T230)
(u8) wunify _1lists({SITII,IHITR2T) 2~
unbound_segment (8, X}, 1.
umify (X, 01D, unify (T1,IHITZ2D)
undFy (X, EH™ 23, unify (D™ ZITL3, T2y .

92

() unify_ listsil8i11T3, 01 2~

unbound segment (8, X, 1, unify (X, U1, unidfy (T, L1 .
Gal®) wnify lists (L3, 08171 52—

unbound_segmeant (8, XY, Ty undFy (X, 01, unify (T, 00
(ul 1) wunify lists (CHLITLI, CH2ZITRYY 1~

urk ey i HEY e uniFy (T T2

wvar 1%, i

constant (XY, .
ism Tisbdly 1

var (Xy, ! . Fall;

Lsld, Ui

bound _segment (8

var (81, !, failgj

iy, (variiy, ', ¥ail;

.

unbound _segment (85, X)) 1
var (8), . fails

Bl %)y var (X)) .

simplify X, L) s
@lem{Xl, '.
simplify LI, L2 2
is listilly, 1y simplify dlist i, LEy .
simplify(d,¥V) -
decomp (X TRIALLDY, simplify args (AL, AL yoomp (DM ALZT, Y)Y .

simplifty _args(ll, 01}
simplify _args (I&TLLIIIEILEY) 3

aioplifyv{A, B, simplify_argsi, L2 .

gimplify Jlist (03,032 &~

H

simplify Jist (LEILI, IELILLDY o

wrbound _segmant (B, Y, 1, El=E, simplify_listd, L1y,

93

simplify _list(IEILIELY &~
pound _segment (B, X, ', simplify i, X1},
simplify _list{l L1}, app(¥i,L1,EL).
aimplify_list (TELILLIY, LEZILEY) -
simplifyEL,EE), simplify list(L1i,L3 .

app (i)

app (CATLLII, LE, DALY 1~
app (L.l L2, L) .

fAn example unification

El = [“X,1,"Y]
B2 = [°A,2, BRI

% oA L ¥

£1, "Y1 [%1 01,1
L AL, 2, "B L2, 81

(u7)

Al < UL, e X1

ARl Lyl Ul W IR ARG g Cox2e1,7%1
L~01,2,"R] L2, 2, Bl Ly, Bl I =N

(Ui (144 (2D {4

[1,v1 £1,"Y3
[z, Rl L3, Bl

(il {ulil

FATLURE FrilURE

§1 = £ A 49— [°¥,1,7AZ1, BE = { X G- DO, 3, X21,
Y o< [A2, 3, E] 2 B (- [4XT,1,7Y0 3

Ut = [~X,.1,7A2,2,~Bl U2 = [°A,2, X2, 1,"Y1

94

6. Transforming LISTLOG statements into PROLOG

A5 the only difference betwesn PROLOE and LISTLOG lies in the data
structures they handle, the only necessary transformation is to use

aur wunification algorithm instead of the normal PROLOS ore. This is

done in such & way that the szpressions occurring in the head of a
statemsnt are substituted by {(new) variables, and the above

unification algorithm is called enplicitly before executing the body

af the statemsnt. E.g.

member (X, 0P, 0, "8 . membier (X, ¥) -

Uiy iy,

appand (L1 L2, Dol append UL, L2, 2

wrd Fy Gy DL, “L23) .

A additional problem is how to call the PROLOG built-in predicates
smuch s Cwite’. In the above execution scheme simplification is

performed during the unification when entering a definition, Howsver,

thie C LB & problem in the case of buili-in predicates, because
here wae cannot apply this transformation. This is solved in our

m in such & way, that a predicate

cal L (CONDITION

is introduced which provides an interface for FROLOGE predicates:
before evaluating e G1ven condi tion it simplifties its

arguments. BE.ge

append (L, 2,33, 04,50, L) ,call (write(l)).

gives the supected output 01,2,3%, 4,31, the simplified form of

Fo01,2,42, 04,511 produced by the Tappend” definition.

7. Efficiency qguestions

In the case of the above PROLOG unification understandability had a
higher priority than efficiency. However, it is worth sentioning that
there are cases when even this implementation increases efficiency,

compared to FROLUG. For example, a guestion of the form

-

rever se(ll, 2, 3,4, 8, 600,11 , L1

95

in FROLOG can be answered negatively only by actually reversing the

ligt, while in LIETLOG this answsr is produced by a single
unify (0¥, 13, £33

unification step, independently of the length of the list to be

Fevatr sed .

8. Conclusions, further plans

We have shown the advantages of an alternative list representation
for logic programming. LISTLOSE, the resulted PROLOG extension is
implemented in FROLOG &t the moment, but we are conzidering & more
efficient direct ilmplementation for it. Further directions are to try
to generalize this wmethod From lists to other PROLOG structures,
ar Femaining in the list processing arsa, to refine further the above

list representation [41.

References

L3 L.G.Te

ler ~ HodoEnea ~ D.B.Smithse
The Lisp7@ pattern matching svystem.
CET Mok

b sl g
An dmproved man-maching interface for FROLOG.
Imperial College - Open WUniversity Jjoint projesch, 1984,
L2 JoH.Btickman:
Uniwversal unification.
7th International Corference on Automated Deduction, LNOCE 178,
Springesr Verlag, 1984,
L43 s, Farkas:
Lemgth restricted segment variables in PROLOG.

tin preparation)

